A Ratiometric Fluorescent Probe Based on RhB Functionalized Tb-MOFs for the Continuous Visual Detection of Fe3+ and AA
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the RhB@Tb-MOFs Fluorescent Probe
2.2. Fluorescence Property of the RhB@Tb-MOFs Fluorescent Probe
2.3. RhB@Tb-MOFs Fluorescent Probe Continuously Detected Fe3+ and AA
2.4. Detecting Mechanism
3. Experimental Section
3.1. Reagents and Instruments
3.2. Synthesis of the Tb-MOFs and RhB@Tb-MOFs
3.3. Fluorescence Sensing for Detecting Fe3+ and AA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Guo, L.; Liu, Y.; Kong, R.; Chen, G.; Liu, Z.; Qu, F.; Xia, L.; Tan, W. A metal–organic framework as selectivity regulator for Fe3+ and ascorbic acid detection. Anal. Chem. 2019, 91, 12453–12460. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Zhang, T.; Zhong, T.; Zhang, C.; Tian, Y.; Wang, G. Coumarin-embedded MOF UiO-66 as a selective and sensitive fluorescent sensor for the recognition and detection of Fe3+ ions. J. Mater. Chem. C 2021, 9, 16978–16984. [Google Scholar] [CrossRef]
- Gao, T.; Dong, B.X.; Sun, Y.; Liu, W.L.; Teng, Y.L. Fabrication of a water-stable luminescent MOF with an open Lewis basic triazolyl group for the high-performance sensing of acetone and Fe3+ ions. J. Mater. Sci. 2019, 54, 10644–10655. [Google Scholar] [CrossRef]
- Nan, X.; Huyan, Y.; Li, H.; Sun, S.; Xu, Y. Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord. Chem. Rev. 2021, 426, 213580. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, Y.; Zhang, D.; Jiao, S.; Xu, J.; Liu, K.; Wang, L. Two exceptionally stable luminescent MOFs for the selective and sensitive detection of Fe3+ ions in aqueous solution. CrystEngComm 2019, 21, 6056–6062. [Google Scholar] [CrossRef]
- Panda, S.K.; Mishra, S.; Singh, A.K. Recent progress in the development of MOF-based optical sensors for Fe3+. Dalton Trans. 2021, 50, 7139–7155. [Google Scholar] [CrossRef]
- Wu, K.-Y.; Qin, L.; Fan, C.; Cai, S.-L.; Zhang, T.-T.; Chen, W.-H.; Tang, X.-Y.; Chen, J.-X. Sequential and recyclable sensing of Fe3+ and ascorbic acid in water with a terbium(iii)-based metal–organic framework. Dalton Trans. 2019, 48, 8911–8919. [Google Scholar] [CrossRef]
- Suekawa, M.; Fujikawa, Y.; Inoue, A.; Kondo, T.; Uchida, E.; Koizumi, T.; Esaka, M. High levels of expression of multiple enzymes in the Smirnoff-Wheeler pathway are important for high accumulation of ascorbic acid in acerola fruits. Biosci. Biotechnol. Biochem. 2019, 83, 1713–1716. [Google Scholar] [CrossRef]
- Zheng, X.; Gong, M.; Zhang, Q.; Tan, H.; Li, L.; Tang, Y.; Li, Z.; Peng, M.; Deng, W. Metabolism and regulation of ascorbic acid in fruits. Plants 2022, 11, 1602. [Google Scholar] [CrossRef]
- Malik, M.; Narwal, V.; Pundir, C.S. Ascorbic acid biosensing methods: A review. Process. Biochem. 2022, 118, 11–23. [Google Scholar] [CrossRef]
- Shi, X.; Li, J.; Xiong, Y.; Liu, Z.; Zhan, J.; Cai, B. Rh single-atom nanozymes for efficient ascorbic acid oxidation and detection. Nanoscale 2023, 15, 6629–6635. [Google Scholar] [CrossRef] [PubMed]
- Pirot, S.M.; Omer, K.M.; Alshatteri, A.H.; Ali, G.K.; Shatery, O.B.A. Dual-template molecularly surface imprinted polymer on fluorescent metal-organic frameworks functionalized with carbon dots for ascorbic acid and uric acid detection. Spectrochim. Acta A 2023, 291, 122340. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Chen, K.; Cheng, H.; Chen, X.; Feng, S.; Song, Y.; Liang, L. Chemical stability of ascorbic acid integrated into commercial products: A review on bioactivity and delivery technology. Antioxidants 2022, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; He, Y.; Zhou, J.; Zhong, S.; Song, G. Amino acids as the nitrogen source to synthesize boron nitride quantum dots for fluorescence turn-off-on detection of ascorbic acid. ChemistrySelect 2020, 5, 3828–3834. [Google Scholar] [CrossRef]
- Dong, C.-L.; Li, M.-F.; Yang, T.; Feng, L.; Ai, Y.-W.; Ning, Z.-L.; Liu, M.-J.; Lai, X.; Gao, D.-J. Controllable synthesis of Tb-based metal–organic frameworks as an efficient fluorescent sensor for Cu2+ detection. Rare Met. 2021, 40, 505–512. [Google Scholar] [CrossRef]
- Li, M.; Dong, C.; Yang, J.; Yang, T.; Bai, F.; Ning, Z.; Gao, D.; Bi, J. Solvothermal synthesis of La-based metal-organic frameworks and their color-tunable photoluminescence properties. J. Mater. Sci. Mater. Electron. 2021, 32, 9903–9911. [Google Scholar] [CrossRef]
- Sargazi, S.; Fatima, I.; Hassan Kiani, M.; Mohammadzadeh, V.; Arshad, R.; Bilal, M.; Rahdar, A.; Díez-Pascual, A.M.; Behzadmehr, R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int. J. Biol. Macromol. 2022, 206, 115–147. [Google Scholar]
- Deutchoua, A.D.D.; Siegnin, R.; Kouteu, G.K.; Dedzo, G.K.; Ngameni, E. Electrochemistry of 2,2-diphenyl-1-picrylhydrazyl (DPPH) in acetonitrile in presence of ascorbic acid—Application for antioxidant properties evaluation. ChemistrySelect 2019, 4, 13746–13753. [Google Scholar] [CrossRef]
- Zhou, X.; Qu, Q.; Wang, L.; Li, L.; Li, S.; Xia, K. Nitrogen dozen carbon quantum dots as one dual function sensing platform for electrochemical and fluorescent detecting ascorbic acid. J. Nanopart. Res. 2020, 22, 20. [Google Scholar] [CrossRef]
- AbhijnaKrishna, R.; Velmathi, S. A review on fluorimetric and colorimetric detection of metal ions by chemodosimetric approach 2013–2021. Coord. Chem. Rev. 2022, 459, 214401. [Google Scholar] [CrossRef]
- Amiri, M.; Haji Shabani, A.M.; Dadfarnia, S.; Shokoufi, N.; Hajipour-Verdom, B.; Sadjadi, S. Carbon dots doped by nitrogen and sulfur for dual-mode colorimetric and fluorometric determination of Fe3+ and histidine and intracellular imaging of Fe3+ in living cells. Microchim. Acta 2020, 187, 562. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Chen, X.; Almahri, A.; Allehyani, E.S.; Alhumaydhi, F.A.; Ibrahim, M.M.; Ali, S. Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review. J. Environ. Chem. Eng. 2021, 9, 106381. [Google Scholar] [CrossRef]
- Huang, X.; Yao, K.; Yu, J.; Dong, W.; Zhao, Z. Nitrogen removal performance and microbial characteristics during simultaneous chemical phosphorus removal process using Fe3+. Bioresour. Technol. 2022, 363, 127972. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.K.; Crisponi, G. Recent advances on iron(III) selective fluorescent probes with possible applications in bioimaging. Molecules 2019, 24, 3267. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Chen, Q.; Zhao, L.; Du, D.; Guo, N.; Ren, H.; Liu, W. Spectrofluorometric method for the determination of ascorbic acid in pharmaceutical preparation using l-tyrosine as fluorescence probe. Luminescence 2020, 35, 1092–1100. [Google Scholar] [CrossRef]
- Hou, L.; Song, Y.; Xiao, Y.; Wu, R.; Wang, L. ZnMOF-74 responsive fluorescence sensing platform for detection of Fe3+. Microchem. J. 2019, 150, 104154. [Google Scholar] [CrossRef]
- Leng, J.; Lan, X.; Liu, S.; Jia, W.; Cheng, W.; Cheng, J.; Liu, Z. Synthesis and bioimaging of a BODIPY-based fluorescence quenching probe for Fe3+. Rsc. Adv. 2022, 12, 21332–21339. [Google Scholar] [CrossRef]
- Feng, L.; Dong, C.; Li, M.; Li, L.; Jiang, X.; Gao, R.; Wang, R.; Zhang, L.; Ning, Z.; Gao, D.; et al. Terbium-based metal-organic frameworks: Highly selective and fast respond sensor for styrene detection and construction of molecular logic gate. J. Hazard. Mater. 2020, 388, 121816. [Google Scholar] [CrossRef]
- Wong, K.-L.; Law, G.-L.; Yang, Y.-Y.; Wong, W.-T. A highly porous luminescent terbium–organic framework for reversible anion sensing. Adv. Mater. 2006, 18, 1051–1054. [Google Scholar] [CrossRef]
- Majumder, S.; Chatterjee, S.; Basnet, P.; Mukherjee, J. Plasmonic photocatalysis of concentrated industrial LASER dye: Rhodamine 6G. J. Mol. Liq. 2022, 358, 119138. [Google Scholar] [CrossRef]
- Ruan, B.; Yang, J.; Zhang, Y.-J.; Ma, N.; Shi, D.; Jiang, T.; Tsai, F.-C. UiO-66 derivate as a fluorescent probe for Fe3+ detection. Talanta 2020, 218, 121207. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gao, Y.; Yang, W.; Zhang, C.; Fang, Y.; Wang, C.; Song, S.; Pan, Q. Dye-encapsulated lanthanide-based metal–organic frameworks as a dual-emission sensitization platform for alachlor sensing. Inorg. Chem. 2022, 61, 9801–9807. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, T.; Feng, L.; Ning, Z.; Liu, M.; Lai, X.; Gao, D.; Bi, J. Energy transfer and multicolor tunable luminescence properties of NaGd0.5Tb0.5−xEux(MoO4)2 phosphors for UV-LED. J. Electron. Mater. 2018, 47, 6494–6506. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, M.; Zhang, Y.; Kosinova, M.; Fedin, V.P.; Gao, E. Luminescent sensors based on coordination polymers with adjustable emissions for detecting biomarker of pollutant ethylbenzene and styrene. Appl. Organomet. Chem. 2021, 35, e6058. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, M.; Zhang, Y.; Kosinova, M.; Fedin, V.P.; Gao, E. A water-stable lanthanide coordination polymer as multicenter platform for ratiometric luminescent sensing antibiotics. Chem. Eur. J. 2020, 26, 3137–3144. [Google Scholar] [CrossRef]
- Gong, M.; Li, Z.; Wang, Q.; Xiang, W.; Xia, T.; Zhao, D. Encapsulating rhodamine B in the NbO-type metal-organic framework to construct dual-emitting ratiometric thermometer. J. Solid State Chem. 2022, 311, 123147. [Google Scholar] [CrossRef]
- Sánchez, F.; Gutiérrez, M.; Douhal, A. Novel approach for detecting vapors of acids and bases with proton-pransfer luminescent dyes encapsulated within metal-organic frameworks. ACS Appl. Mater. Inter. 2022, 14, 42656–42670. [Google Scholar] [CrossRef]
- Che, J.; Jiang, X.; Fan, Y.; Li, M.; Zhang, X.; Gao, D.; Ning, Z.; Li, H. A novel dual-emission fluorescence probe based on CDs and Eu3+ functionalized UiO-66-(COOH)2 hybrid for visual monitoring of Cu2+. Materials 2022, 15, 7933. [Google Scholar] [CrossRef]
- Jin, Y.; Yan, B. A bi-functionalized metal-organic framework based on N-methylation and Eu3+ post-synthetic modification for highly sensitive detection of 4-Aminophenol (4-AP), a biomarker for aniline in urine. Talanta 2021, 227, 122209. [Google Scholar] [CrossRef]
- Fan, Y.; Jiang, X.; Che, J.; Li, M.; Zhang, X.; Gao, D.; Bi, J.; Ning, Z. A ratiometric fluorescent sensor based on Dye/Tb (III) functionalized UiO-66 for highly sensitive detection of TDGA. Molecules 2022, 27, 6543. [Google Scholar] [CrossRef]
- Liu, J.; Ye, L.Y.; Mo, Y.Y.; Yang, H. Highly sensitive fluorescent quantification of acid phosphatase activity and its inhibitor pesticide Dufulin by a functional metal–organic framework nanosensor for environment assessment and food safety. Food Chem. 2022, 370, 131034. [Google Scholar] [CrossRef]
- Hao, J.-N.; Yan, B. A dual-emitting 4d–4f nanocrystalline metal–organic framework as a self-calibrating luminescent sensor for indoor formaldehyde pollution. Nanoscale 2016, 8, 12047–12053. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Yan, B. Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing iIons and organic small molecules especially for Fe(III) and Fe(II). ACS Appl. Mater. Inter. 2015, 7, 721–729. [Google Scholar] [CrossRef]
- Li, Y.; Ling, H.-X.; Gao, Y.; Zhang, S.; Yan, B. Lanthanide β-diketonate complex functionalized poly(ionic liquid)s/SiO2 microsphere as a fluorescent probe for the determination of bovine hemoglobin. ACS Appl. Polym. Mater. 2022, 4, 2941–2950. [Google Scholar] [CrossRef]
- He, Q.; Zhuang, S.; Yu, Y.; Li, H.; Liu, Y. Ratiometric dual-emission of Rhodamine-B grafted carbon dots for full-range solvent components detection. Anal. Chim. Acta 2021, 1174, 338743. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, T.; Yan, B. Dye functionalized lanthanide metal–organic framework as a multifunctional luminescent hybrid material for visual sensing of biomarker 2-methoxyaceticacid and sulfide anion. J. Colloid Interface Sci. 2022, 609, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Dalapati, R.; Biswas, S. Aqueous phase sensing of Fe3+ and ascorbic acid by a metal–organic framework and its implication in the construction of multiple logic gates. Chem. Asian J. 2019, 14, 2822–2830. [Google Scholar] [PubMed]
- Yang, J.; Che, J.; Jiang, X.; Fan, Y.; Gao, D.; Bi, J.; Ning, Z. A novel turn-on fluorescence probe based on Cu(II) functionalized metal–organic frameworks for visual detection of uric acid. Molecules 2022, 27, 4803. [Google Scholar] [CrossRef]
- Sun, J.; Hong, Y.-L.; Fang, X.-Q.; Wang, C.; Liu, C.-M. Fluorescent phosphine oxide-containing hyperbranched polyesters: Design, synthesis and their application for Fe3+ detection. J. Mater. Chem. C 2023, 11, 1927–1936. [Google Scholar] [CrossRef]
- Pang, S.; Liu, S. Dual-emission carbon dots for ratiometric detection of Fe3+ ions and acid phosphatase. Anal. Chim. Acta 2020, 1105, 155–161. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, X.; Liu, Y.; Liang, L.; Peng, Y.; Wu, S.; Zhao, Y. N-Doped Carbon Dots as Fluorescent “Turn-Off” Nanosensors for Ascorbic Acid and Fe3+ Detection. ACS Appl. Nano Mater. 2022, 5, 7268–7277. [Google Scholar] [CrossRef]
- Geng, R.; Tang, H.; Ma, Q.; Liu, L.; Feng, W.; Zhang, Z. Bimetallic Ag/Zn-ZIF-8: An efficient and sensitive probe for Fe3+ and Cu2+ detection. Colloid Surf. A 2022, 632, 127755. [Google Scholar] [CrossRef]
- Zhang, T.; Salah, A.; Chang, S.; Zhang, Z.; Wang, G. Study on the fluorescent covalent organic framework for selective “turn-off”recognition and detection of Fe3+ ions. Tetrahedron 2021, 96, 132405. [Google Scholar] [CrossRef]
- Xu, H.; Dong, Y.; Wu, Y.; Ren, W.; Zhao, T.; Wang, S.; Gao, J. An -OH group functionalized MOF for ratiometric Fe3+ sensing. J. Solid State Chem. 2018, 258, 441–446. [Google Scholar] [CrossRef]
- Yang, X.; Liang, Y.; Feng, W.; Yang, C.; Wang, L.; Huang, G.; Wang, D. Hollow terbium metal–organic-framework spheres: Preparation and their performance in Fe3+ detection. RSC Adv. 2022, 12, 4153–4161. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, L.; Ma, S.; Xia, T.; Jiao, F.; Kong, Z.; Duan, X. A microporous Tb-based MOF for multifunctional detection of the α-CHC, Cu2+ and Fe3+. J. Solid State Chem. 2022, 312, 123232. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, J.; Liu, M.; Ji, G.; Liu, Z. Fabrication of a Luminescence-Silent System Based on a Post-Synthetic Modification Cd-MOFs: A Highly Selective and Sensitive Turn-on Luminescent Probe for Ascorbic Acid Detection. Inorg. Chem. 2019, 58, 6167–6174. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Wang, Y.; Chen, J.; Meng, H.-M.; Li, Z. 2D Co-MOF nanosheet-based nanozyme with ultrahigh peroxidase catalytic activity for detection of biomolecules in human serum samples. Microchim. Acta 2021, 188, 130. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, S.; Li, H.; Chen, M. Cerium/polyacrylic acid modified porphyrin metal-organic framework as fluorescence and photothermal sensor for ascorbic acid measurement. Talanta 2023, 252, 123825. [Google Scholar] [CrossRef]
- Wang, X.; Long, C.; Jiang, Z.; Qing, T.; Zhang, K.; Zhang, P.; Feng, B. In situ synthesis of fluorescent copper nanoclusters for rapid detection of ascorbic acid in biological samples. Anal. Methods-UK 2019, 11, 4580–4585. [Google Scholar] [CrossRef]
- Sun, M.; Zhong, Z.; Wang, Y.; Yu, B.; Zhang, L.; Zhang, W. Dual-functional lanthanide-MOF probe nanocomposite based on hydroxyapatite nanowires as fluorescent sensor for ascorbic acid. Microchim. Acta 2023, 190, 89. [Google Scholar] [CrossRef] [PubMed]
- Selivanova, N.; Galyametdinov, Y. Terbium(III) as a Fluorescent Probe for Molecular Detection of Ascorbic Acid. Chemosensors 2021, 9, 134. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Li, W.; Liu, M.; Yang, J.; Liu, M.; Gao, D.; Li, H.; Ning, Z. A Ratiometric Fluorescent Probe Based on RhB Functionalized Tb-MOFs for the Continuous Visual Detection of Fe3+ and AA. Molecules 2023, 28, 5847. https://doi.org/10.3390/molecules28155847
Jiang X, Li W, Liu M, Yang J, Liu M, Gao D, Li H, Ning Z. A Ratiometric Fluorescent Probe Based on RhB Functionalized Tb-MOFs for the Continuous Visual Detection of Fe3+ and AA. Molecules. 2023; 28(15):5847. https://doi.org/10.3390/molecules28155847
Chicago/Turabian StyleJiang, Xin, Wenwei Li, Min Liu, Jie Yang, Mengjiao Liu, Daojiang Gao, Hongda Li, and Zhanglei Ning. 2023. "A Ratiometric Fluorescent Probe Based on RhB Functionalized Tb-MOFs for the Continuous Visual Detection of Fe3+ and AA" Molecules 28, no. 15: 5847. https://doi.org/10.3390/molecules28155847
APA StyleJiang, X., Li, W., Liu, M., Yang, J., Liu, M., Gao, D., Li, H., & Ning, Z. (2023). A Ratiometric Fluorescent Probe Based on RhB Functionalized Tb-MOFs for the Continuous Visual Detection of Fe3+ and AA. Molecules, 28(15), 5847. https://doi.org/10.3390/molecules28155847