Study of Micro-Samples from the Open-Air Rock Art Site of Cueva de la Vieja (Alpera, Albacete, Spain) for Assessing the Performance of a Desalination Treatment
Abstract
:1. Introduction
2. Result and Discussion
2.1. Sample Analysis Prior to Cleaning Treatment
2.2. Samples Analysis after the Cleaning Treatment
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Micro-Energy Dispersive X-ray Fluorescence Spectroscopy (Micro-EDXRF)
3.2.2. Micro-Raman Spectroscopy
3.2.3. X-ray Diffraction
3.2.4. Chemometrics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Brumm, A.; Oktaviana, A.A.; Burhan, B.; Hakim, B.; Lebe, R.; Zhao, J.; Sulistyarto, P.H.; Ririmasse, M.; Adhityatama, S.; Sumantri, I.; et al. Oldest Cave Art Found in Sulawesi. Sci. Adv. 2021, 7, eabd4648. [Google Scholar] [CrossRef] [PubMed]
- Robbins, L.H.; Murphy, M.L.; Brook, G.A.; Ivester, A.H.; Campbell, A.C.; Klein, R.G.; Milo, R.G.; Stewart, K.M.; Downey, W.S.; Stevens, N.J. Archaeology, Palaeoenvironment, and Chronology of the Tsodilo Hills White Paintings Rock Shelter, Northwest Kalahari Desert, Botswana. J. Archaeol. Sci. 2000, 27, 1085–1113. [Google Scholar] [CrossRef]
- Sampietro-Vattuone, M.M.; Peña-Monné, J.L. Application of 2D/3D Models and Alteration Mapping for Detecting Deterioration Processes in Rock Art Heritage (Cerro Colorado, Argentina): A Methodological Proposal. J. Cult. Herit. 2021, 51, 157–165. [Google Scholar] [CrossRef]
- Morillas, H.; Maguregui, M.; Bastante, J.; Huallparimachi, G.; Marcaida, I.; García-Florentino, C.; Astete, F.; Madariaga, J.M. Characterization of the Inkaterra Rock Shelter Paintings Exposed to Tropical Climate (Machupicchu, Peru). Microchem. J. 2018, 137, 422–428. [Google Scholar] [CrossRef]
- Tan, N.H. Rock Art Research in Southeast Asia: A Synthesis. Arts 2014, 3, 73–104. [Google Scholar] [CrossRef] [Green Version]
- Chazine, J.-M.; Setiawan, P. Discovery of a New Rock Art in East Borneo: New Data for Reflexion; Collogue UNESCO: Paris, France, 2008. [Google Scholar]
- Black, J.L.; MacLeod, I.D.; Smith, B.W. Theoretical Effects of Industrial Emissions on Colour Change at Rock Art Sites on Burrup Peninsula, Western Australia. J. Archaeol. Sci. Rep. 2017, 12, 457–462. [Google Scholar] [CrossRef]
- Aramendia, J.; de Vallejuelo, S.F.-O.; Maguregui, M.; Martinez-Arkarazo, I.; Giakoumaki, A.; Martí, A.P.; Madariaga, J.M.; Ruiz, J.F. Long-Term In Situ Non-Invasive Spectroscopic Monitoring of Weathering Processes in Open-Air Prehistoric Rock Art Sites. Anal. Bioanal. Chem. 2020, 412, 8155–8166. [Google Scholar] [CrossRef]
- Ravindran, T.R.; Arora, A.K.; Singh, M.; Ota, S.B. On-and Off-Site Raman Study of Rock-Shelter Paintings at World-Heritage Site of Bhimbetka. J. Raman Spectrosc. 2013, 44, 108–113. [Google Scholar] [CrossRef]
- Mazel, V.; Richardin, P.; Touboul, D.; Brunelle, A.; Richard, C.; Laval, E.; Walter, P.; Laprévote, O. Animal Urine as Painting Materials in African Rock Art Revealed by Cluster ToF-SIMS Mass Spectrometry Imaging. J. Mass Spectrom. 2010, 45, 944–950. [Google Scholar] [CrossRef]
- Gomes, H.; Collado Giraldo, H.; Martins, A.; Nash, G.; Rosina, P.; Vaccaro, C.; Volpe, L. Pigment in Western Iberian Schematic Rock Art: An Analytical Approach. Mediterr. Archaeol. Archaeom. Int. Sci. J. 2015, 15, 163–175. [Google Scholar] [CrossRef]
- Pitarch, À.; Francisco Ruiz, J.; de Vallejuelo, S.F.-O.; Hernanz, A.; Maguregui, M.; Manuel Madariaga, J. In Situ Characterization by Raman and X-ray Fluorescence Spectroscopy of Post-Paleolithic Blackish Pictographs Exposed to the Open Air in Los Chaparros shelter (Albalate del Arzobispo, Teruel, Spain). Anal. Methods 2014, 6, 6641–6650. [Google Scholar] [CrossRef]
- Iriarte, M.; Hernanz, A.; Ruiz-López, J.F.; Martín, S. μ-Raman Spectroscopy of Prehistoric Paintings from the Abrigo Remacha Rock Shelter (Villaseca, Segovia, Spain). J. Raman Spectrosc. 2013, 44, 1557–1562. [Google Scholar] [CrossRef]
- Hernanz, A.; Ruiz-López, J.F.; Madariaga, J.M.; Gavrilenko, E.; Maguregui, M.; Fdez-Ortiz de Vallejuelo, S.; Martínez-Arkarazo, I.; Alloza-Izquierdo, R.; Baldellou-Martínez, V.; Viñas-Vallverdú, R.; et al. Spectroscopic Characterisation of Crusts Interstratified with Prehistoric Paintings Preserved in Open-Air Rock Art Shelters. J. Raman Spectrosc. 2014, 45, 1236–1243. [Google Scholar] [CrossRef]
- Hernanz, A.; Ruiz-López, J.F.; Gavira-Vallejo, J.M.; Martin, S.; Gavrilenko, E. Raman Microscopy of Prehistoric Rock Paintings from the Hoz de Vicente, Minglanilla, Cuenca, Spain. J. Raman Spectrosc. 2010, 41, 1394–1399. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Rivas, T.; Carrera, F.; García, L. Deterioration Processes Affecting Prehistoric Rock Art Engravings in Granite in NW Spain. Earth Surf. Process. Landf. 2018, 43, 2435–2448. [Google Scholar] [CrossRef]
- Hernanz, A.; Gavira-Vallejo, J.M.; Ruiz-López, J.F.; Edwards, H.G.M. A Comprehensive Micro-Raman Spectroscopic Study of Prehistoric Rock Paintings from the Sierra de las Cuerdas, Cuenca, Spain. J. Raman Spectrosc. 2008, 39, 972–984. [Google Scholar] [CrossRef]
- Peña-Monné, J.L.; Sampietro-Vattuone, M.M.; Báez, W.A.; García-Giménez, R.; Stábile, F.M.; Martínez Stagnaro, S.Y.; Tissera, L.E. Sandstone Weathering Processes in the Painted Rock Shelters of Cerro Colorado (Córdoba, Argentina). Geoarchaeology 2022, 37, 332–349. [Google Scholar] [CrossRef]
- Rousaki, A.; Vargas, E.; Vázquez, C.; Aldazábal, V.; Bellelli, C.; Carballido Calatayud, M.; Hajduk, A.; Palacios, O.; Moens, L.; Vandenabeele, P. On-Field Raman Spectroscopy of Patagonian Prehistoric Rock Art: Pigments, Alteration Products and Substrata. TrAC Trends Anal. Chem. 2018, 105, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Ilmi, M.M.; Maryanti, E.; Nurdini, N.; Lebe, R.; Oktaviana, A.A.; Burhan, B.; Perston, Y.L.; Setiawan, P.; Ismunandar; Kadja, G.T.M. Uncovering the Chemistry of Color Change in Rock Art in Leang Tedongnge (Pangkep Regency, South Sulawesi, Indonesia). J. Archaeol. Sci. Rep. 2023, 48, 103871. [Google Scholar] [CrossRef]
- Ruiz López, J.F. El Abrigo de los Oculados (Henarejos, Cuenca). In Actas del Congreso de Arte Rupestre Esquemático en la Península Ibérica: Comarca de Los Vélez, 5–7 May 2004; García, J.M., Ed.; Dialnet: Barcelona, Spain, 2006; pp. 375–388. ISBN 84-611-2821-4. [Google Scholar]
- Ruiz, J.F.; Hernanz, A.; Armitage, R.A.; Rowe, M.W.; Viñas, R.; Gavira-Vallejo, J.M.; Rubio, A. Calcium Oxalate AMS 14C Dating and Chronology of Post-Palaeolithic Rock Paintings in the Iberian Peninsula. Two dates from Abrigo de los Oculados (Henarejos, Cuenca, Spain). J. Archaeol. Sci. 2012, 39, 2655–2667. [Google Scholar] [CrossRef]
- Lofrumento, C.; Ricci, M.; Bachechi, L.; De Feo, D.; Castellucci, E.M. The First Spectroscopic Analysis of ETHIOPIAN Prehistoric Rock Painting. J. Raman Spectrosc. 2012, 43, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Hedges, R.E.M.; Ramsey, C.B.; Klinken, G.J.V.; Pettitt, P.B.; Nielsen-Marsh, C.; Etchegoyen, A.; Niello, J.O.F.; Boschin, M.T.; Llamazares, A.M. Methodological Issues in the 14C Dating of Rock Paintings. Radiocarbon 1997, 40, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Baran, E.J. Review: Natural Oxalates and Their Analogous Synthetic Complexes. J. Coord. Chem. 2014, 67, 3734–3768. [Google Scholar] [CrossRef]
- Sonke, A.; Trembath-Reichert, E. Expanding the Taxonomic and Environmental Extent of an Underexplored Carbon Metabolism—Oxalotrophy. Front. Microbiol. 2023, 14, 1161937. [Google Scholar] [CrossRef]
- Russ, J.; Kaluarachchi, W.D.; Drummond, L.; Edwards, H.G.M. The Nature of a Whewellite-Rich Rock Crust Associated with Pictographs in Southwestern Texas. Stud. Conserv. 1999, 44, 91–103. [Google Scholar] [CrossRef]
- Russ, J.; Palma, R.L.; Loyd, D.H.; Boutton, T.W.; Coy, M.A. Origin of the Whewellite-Rich Rock Crust in the Lower Pecos Region of Southwest Texas and Its Significance to Paleoclimate Reconstructions. Quat. Res. 1996, 46, 27–36. [Google Scholar] [CrossRef]
- López-Montalvo, E.; Villaverde, V.; Roldán, C.; Murcia, S.; Badal, E. An Approximation to the Study of Black Pigments in Cova Remigia (Castellón, Spain). Technical and Cultural Assessments of the Use of Carbon-Based Black Pigments in Spanish Levantine Rock Art. J. Archaeol. Sci. 2014, 52, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Domingo, I.; Chieli, A. Characterizing the Pigments and Paints of Prehistoric Artists. Archaeol. Anthropol. Sci. 2021, 13, 196. [Google Scholar] [CrossRef]
- Beltrán, A. El arte rupestre levantino, cronología y significación. Caesaraugusta 1968, 31, 7–43. [Google Scholar]
- Domingo Sanz, I.; Vendrell, M.; Chieli, A. A Critical Assessment of the Potential and Limitations of Physicochemical Analysis to Advance Knowledge on Levantine Rock Art. Quat. Int. 2021, 572, 24–40. [Google Scholar] [CrossRef]
- Roldán, C.; Murcia-Mascarós, S.; Ferrero, J.; Villaverde, V.; López, E.; Domingo, I.; Martínez, R.; Guillem, P.M. Application of Field Portable EDXRF Spectrometry to Analysis of Pigments of Levantine Rock Art. X-ray Spectrom. 2010, 39, 243–250. [Google Scholar] [CrossRef]
- Mas, M.; Jorge, A.; Gavilán, B.; Solís, M.; Parra, E.; Pérez, P.-P. Minateda Rock Shelters (Albacete) and Post-Palaeolithic Art of the Mediterranean Basin in Spain: Pigments, Surfaces and Patinas. J. Archaeol. Sci. 2013, 40, 4635–4647. [Google Scholar] [CrossRef]
- Iriarte, M.; Hernanz, A.; Gavira-Vallejo, J.M.; de Buruaga, A.S.; Martín, S. Micro-Raman Spectroscopy of Rock Paintings from the Galb Budarga and Tuama Budarga Rock Shelters, Western Sahara. Microchem. J. 2018, 137, 250–257. [Google Scholar] [CrossRef]
- Manuel Madariaga, J. Analytical Chemistry in the Field of Cultural Heritage. Anal. Methods 2015, 7, 4848–4876. [Google Scholar] [CrossRef]
- Musumarra, G.; Fichera, M. Chemometrics and Cultural Heritage. Chemom. Intell. Lab. Syst. 1998, 44, 363–372. [Google Scholar] [CrossRef]
- Visco, G.; Avino, P. Employ of Multivariate Analysis and Chemometrics in Cultural Heritage and Environment Fields. Environ. Sci. Pollut. Res. 2017, 24, 13863–13865. [Google Scholar] [CrossRef] [Green Version]
- Festa, G.; Scatigno, C.; Armetta, F.; Saladino, M.L.; Ciaramitaro, V.; Nardo, V.M.; Ponterio, R.C. Chemometric Tools to Point Out Benchmarks and Chromophores in Pigments through Spectroscopic Data Analyses. Molecules 2022, 27, 163. [Google Scholar] [CrossRef]
- Piña-Torres, C.; Lucero-Gómez, P.; Nieto, S.; Vázquez, A.; Bucio, L.; Belio, I.; Vega, R.; Mathe, C.; Vieillescazes, C. An Analytical Strategy Based on Fourier Transform Infrared Spectroscopy, Principal Component Analysis and Linear Discriminant Analysis to Suggest the Botanical Origin of Resins from Bursera. Application to Archaeological Aztec Samples. J. Cult. Herit. 2018, 33, 48–59. [Google Scholar] [CrossRef]
- Donais, M.K.; Douglass, L.; Ramundt, W.H.; Bizzarri, C.; George, D.B. Handheld Laser-Induced Breakdown Spectroscopy for Field Archaeology: Characterization of Roman Wall Mortars and Etruscan Ceramics. Appl. Spectrosc. Pract. 2023, 1, 27551857231175850. [Google Scholar] [CrossRef]
- Moropoulou, A.; Polikreti, K. Principal Component Analysis in Monument Conservation: Three Application Examples. J. Cult. Herit. 2009, 10, 73–81. [Google Scholar] [CrossRef]
- Brai, M.; Casaletto, M.P.; Gennaro, G.; Marrale, M.; Schillaci, T.; Tranchina, L. Degradation of Stone Materials in the Archaeological Context of the Greek–Roman Theatre in Taormina (Sicily, Italy). Appl. Phys. A 2010, 100, 945–951. [Google Scholar] [CrossRef]
- Colantonio, C.; Pelosi, C.; D’Alessandro, L.; Sottile, S.; Calabrò, G.; Melis, M. Hypercolorimetric Multispectral Imaging System for Cultural Heritage Diagnostics: An Innovative Study for Copper Painting Examination. Eur. Phys. J. Plus 2018, 133, 526. [Google Scholar] [CrossRef]
- Alberghina, M.F.; Barraco, R.; Basile, S.; Brai, M.; Pellegrino, L.; Prestileo, F.; Schiavone, S.; Tranchina, L. Mosaic Floors of Roman Villa del Casale: Principal Component Analysis on Spectrophotometric and Colorimetric Data. J. Cult. Herit. 2014, 15, 92–97. [Google Scholar] [CrossRef]
- Borba, F.S.L.; Cortez, J.; Asfora, V.K.; Pasquini, C.; Pimentel, M.F.; Pessis, A.-M.; Khoury, H.J. Multivariate Treatment of LIBS Data of Prehistoric Paintings. J. Braz. Chem. Soc. 2012, 23, 958–965. [Google Scholar] [CrossRef]
- Linderholm, J.; Geladi, P.; Sciuto, C. Field-Based near Infrared Spectroscopy for Analysis of Scandinavian Stone Age Rock Paintings. J. Near Infrared Spectrosc. 2015, 23, 227–236. [Google Scholar] [CrossRef]
- Olivares, M.; Castro, K.; Corchón, M.S.; Gárate, D.; Murelaga, X.; Sarmiento, A.; Etxebarria, N. Non-Invasive Portable Instrumentation to Study Palaeolithic Rock Paintings: The Case of La Peña Cave in San Roman de Candamo (Asturias, Spain). J. Archaeol. Sci. 2013, 40, 1354–1360. [Google Scholar] [CrossRef]
- Luciano, G.; Leardi, R.; Letardi, P. Principal Component Analysis of Colour Measurements of Patinas and Coating Systems for Outdoor Bronze Monuments. J. Cult. Herit. 2009, 10, 331–337. [Google Scholar] [CrossRef]
- Gulotta, D.; Saviello, D.; Gherardi, F.; Toniolo, L.; Anzani, M.; Rabbolini, A.; Goidanich, S. Setup of a Sustainable Indoor Cleaning Methodology for the Sculpted Stone Surfaces of the Duomo of Milan. Herit. Sci. 2014, 2, 6. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costantini, I.; Aramendia, J.; Prieto-Taboada, N.; Arana, G.; Madariaga, J.M.; Ruiz, J.F. Study of Micro-Samples from the Open-Air Rock Art Site of Cueva de la Vieja (Alpera, Albacete, Spain) for Assessing the Performance of a Desalination Treatment. Molecules 2023, 28, 5854. https://doi.org/10.3390/molecules28155854
Costantini I, Aramendia J, Prieto-Taboada N, Arana G, Madariaga JM, Ruiz JF. Study of Micro-Samples from the Open-Air Rock Art Site of Cueva de la Vieja (Alpera, Albacete, Spain) for Assessing the Performance of a Desalination Treatment. Molecules. 2023; 28(15):5854. https://doi.org/10.3390/molecules28155854
Chicago/Turabian StyleCostantini, Ilaria, Julene Aramendia, Nagore Prieto-Taboada, Gorka Arana, Juan Manuel Madariaga, and Juan Francisco Ruiz. 2023. "Study of Micro-Samples from the Open-Air Rock Art Site of Cueva de la Vieja (Alpera, Albacete, Spain) for Assessing the Performance of a Desalination Treatment" Molecules 28, no. 15: 5854. https://doi.org/10.3390/molecules28155854
APA StyleCostantini, I., Aramendia, J., Prieto-Taboada, N., Arana, G., Madariaga, J. M., & Ruiz, J. F. (2023). Study of Micro-Samples from the Open-Air Rock Art Site of Cueva de la Vieja (Alpera, Albacete, Spain) for Assessing the Performance of a Desalination Treatment. Molecules, 28(15), 5854. https://doi.org/10.3390/molecules28155854