Therapeutic Applications of Essential Oils from Native and Cultivated Ecuadorian Plants: Cutaneous Candidiasis and Dermal Anti-Inflammatory Activity
Abstract
:1. Introduction
2. Results
2.1. Isolation and Physical Properties of Essential Oil
2.2. Essential Oil Compounds Identification
2.3. Cytotoxicity Studies by Methylthiazolyldiphenyl-Tetrazolium Bromide (MTT) Method
2.4. In Vivo Tolerance Studies by Evaluation of Transepidermal Water Loss (TEWL)
2.5. Efficacy Studies: Antifungal Activity
2.6. In Vivo Anti-Inflammatory Activity
2.6.1. Arachidonic Acid (AA)-Induced Mouse Ear Edema
2.6.2. Pro-Inflammatory Cytokines Determination
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Plant Material
4.3. Essential Oil Isolation
4.4. Determination of Physical Properties of Essential Oil
4.5. Essential Oil Compounds Identification
4.5.1. Quantitative Analysis
4.5.2. Qualitative Analysis
4.6. Cytotoxicity Studies by Methylthiazolyldiphenyl-Tetrazolium Bromide (MTT) Method
4.7. In Vivo Tolerance Studies
4.8. Antifungal Efficacy Studies
4.8.1. Preparation of Culture Medium
4.8.2. Inoculum Preparation
4.8.3. Antifungal Activity
4.9. In Vivo Anti-Inflammatory Activity: Arachidonic Acid (AA)-Induced Edema
4.9.1. Study Protocol
4.9.2. Time Quantitative PCR to Assay Inflammatory Biomarkers
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez, D.A.; Schairer, D.; Tuckman-Vernon, C.; Chouake, J.; Kutner, A.; Makdisi, J.; Friedman, J.M.; Nosanchuk, J.D.; Friedman, A.J. Amphotericin B releasing nanoparticle topical treatment of Candida spp. in the setting of a burn wound. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 269–277. [Google Scholar] [CrossRef]
- Espinoza, L.C.; Sosa, L.; Granda, P.C.; Bozal, N.; Díaz-Garrido, N.; Chulca-Torres, B.; Calpena, A.C. Development of a Topical Amphotericin B and Bursera graveolens Essential Oil-Loaded Gel for the Treatment of Dermal Candidiasis. Pharmaceuticals 2021, 14, 1033. [Google Scholar] [PubMed]
- Hussein, M.; Wong, L.J.M.; Zhao, J.; Rees, V.E.; Allobawi, R.; Sharma, R.; Rao, G.G.; Baker, M.; Li, J.; Velkov, T. Unique mechanistic insights into pathways associated with the synergistic activity of polymyxin B and caspofungin against multidrug-resistant Klebsiella pneumoniae. Comput. Struct. Biotechnol. J. 2022, 20, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ami, R. Treatment of Invasive Candidiasis: A Narrative Review. J. Fungi 2018, 4, 97. [Google Scholar]
- Hassan, Y.; Chew, S.Y.; Than, L.T.L. Candida glabrata: Pathogenicity and Resistance Mechanisms for Adaptation and Survival. J. Fungi 2021, 7, 667. [Google Scholar]
- Kawai, A.; Yamagishi, Y.; Mikamo, H. In vitro efficacy of liposomal amphotericin B, micafungin and fluconazole against non-albicans Candida species biofilms. J. Infect. Chemother. 2015, 21, 647–653. [Google Scholar] [CrossRef]
- Branco, J.; Miranda, I.M.; Rodrigues, A.G. Candida parapsilosis Virulence and Antifungal Resistance Mechanisms: A Comprehensive Review of Key Determinants. J. Fungi 2023, 9, 80. [Google Scholar]
- Pérez-González, N.; Espinoza, L.C.; Rincón, M.; Sosa, L.; Mallandrich, M.; Suñer-Carbó, J.; Bozal-de Febrer, N.; Calpena, A.C.; Clares-Naveros, B. Gel Formulations with an Echinocandin for Cutaneous Candidiasis: The Influence of Azone and Transcutol on Biopharmaceutical Features. Gels 2023, 9, 308. [Google Scholar]
- Sosa, L.; Calpena, A.C.; Silva-Abreu, M.; Espinoza, L.C.; Rincón, M.; Bozal, N.; Domenech, O.; Rodríguez-Lagunas, M.J.; Clares, B. Thermoreversible Gel-Loaded Amphotericin B for the Treatment of Dermal and Vaginal Candidiasis. Pharmaceutics 2019, 11, 312. [Google Scholar]
- Gündel, S.d.S.; de Godoi, S.N.; Santos, R.C.V.; da Silva, J.T.; Leite, L.B.d.M.; Amaral, A.C.; Ourique, A.F. In vivo antifungal activity of nanoemulsions containing eucalyptus or lemongrass essential oils in murine model of vulvovaginal candidiasis. J. Drug Deliv. Sci. Technol. 2020, 57, 101762. [Google Scholar] [CrossRef]
- Margraf, A.; Perretti, M. Immune Cell Plasticity in Inflammation: Insights into Description and Regulation of Immune Cell Phenotypes. Cells 2022, 11, 1824. [Google Scholar]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, L.C.; Vera-García, R.; Silva-Abreu, M.; Domènech, Ò.; Badia, J.; Rodríguez-Lagunas, M.J.; Clares, B.; Calpena, A.C. Topical Pioglitazone Nanoformulation for the Treatment of Atopic Dermatitis: Design, Characterization and Efficacy in Hairless Mouse Model. Pharmaceutics 2020, 12, 255. [Google Scholar] [PubMed] [Green Version]
- Parameswaran, N.; Patial, S. Tumor necrosis factor-α signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 2010, 20, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Hoover, L.; Bochicchio, G.V.; Napolitano, L.M.; Joshi, M.; Bochicchio, K.; Meyer, W.; Scalea, T.M. Systemic inflammatory response syndrome and nosocomial infection in trauma. J. Trauma 2006, 61, 310–316; discussion 316–317. [Google Scholar] [CrossRef] [PubMed]
- Fossiez, F.; Djossou, O.; Chomarat, P.; Flores-Romo, L.; Ait-Yahia, S.; Maat, C.; Pin, J.J.; Garrone, P.; Garcia, E.; Saeland, S.; et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 1996, 183, 2593–2603. [Google Scholar] [CrossRef]
- Chan, T.C.; Hawkes, J.E.; Krueger, J.G. Interleukin 23 in the skin: Role in psoriasis pathogenesis and selective interleukin 23 blockade as treatment. Ther. Adv. Chronic Dis. 2018, 9, 111–119. [Google Scholar] [CrossRef]
- Whelton, A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: Physiologic foundations and clinical implications. Am. J. Med. 1999, 106, 13s–24s. [Google Scholar] [CrossRef]
- Sriuttha, P.; Sirichanchuen, B.; Permsuwan, U. Hepatotoxicity of Nonsteroidal Anti-Inflammatory Drugs: A Systematic Review of Randomized Controlled Trials. Int. J. Hepatol. 2018, 2018, 5253623. [Google Scholar] [CrossRef]
- Zuo, X.; Gu, Y.; Wang, C.; Zhang, J.; Zhang, J.; Wang, G.; Wang, F. A Systematic Review of the Anti-Inflammatory and Immunomodulatory Properties of 16 Essential Oils of Herbs. Evid.-Based Complement. Altern. Med. Ecam 2020, 2020, 8878927. [Google Scholar] [CrossRef]
- Nakatsu, T.; Lupo, A.T.; Chinn, J.W.; Kang, R.K.L. Biological activity of essential oils and their constituents. In Studies in Natural Products Chemistry; Atta-ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 21, pp. 571–631. [Google Scholar]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Kumar, P.; Saxena, M.J.; Maurya, P. Distribution of aromatic plants in the world and their properties. In Feed Additives; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: Cambridge, MA, USA, 2020; Chapter 6; pp. 89–114. [Google Scholar]
- The Plant List. Burseraceae. Available online: http://www.theplantlist.org (accessed on 3 July 2020).
- Jørgesen, P.M.; León-Yáñez, S. Catalogue of the Vascular Plants of Ecuador. Available online: http://legacy.tropicos.org/ProjectAdvSearch.aspx?projectid=2 (accessed on 11 July 2020).
- Viteri Jumbo, L.O.; Corrêa, M.J.M.; Gomes, J.M.; González Armijos, M.J.; Valarezo, E.; Mantilla-Afanador, J.G.; Machado, F.P.; Rocha, L.; Aguiar, R.W.S.; Oliveira, E.E. Potential of Bursera graveolens essential oil for controlling bean weevil infestations: Toxicity, repellence, and action targets. Ind. Crops Prod. 2022, 178, 114611. [Google Scholar] [CrossRef]
- Rey-Valeirón, C.; Guzmán, L.; Saa, L.R.; López-Vargas, J.; Valarezo, E. Acaricidal activity of essential oils of Bursera graveolens (Kunth) Triana & Planch and Schinus molle L. on unengorged larvae of cattle tick Rhipicephalus (Boophilus) microplus (Acari:Ixodidae). J. Essent. Oil Res. 2017, 29, 344–350. [Google Scholar] [CrossRef]
- Torre, L.d.l.; Navarrete, H.; Muriel, M.P.; Macía Barco, M.J.; Balslev, H. Enciclopedia de las Plantas Útiles del Ecuador; Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador and Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus: Quito, Ecuador; Aarhus, Danmark, 2008. [Google Scholar]
- Valarezo, E.; Ojeda-Riascos, S.; Cartuche, L.; Andrade-González, N.; González-Sánchez, I.; Meneses, M.A. Extraction and Study of the Essential Oil of Copal (Dacryodes peruviana), an Amazonian Fruit with the Highest Yield Worldwide. Plants 2020, 9, 1658. [Google Scholar]
- The Plant List. Lauraceae. Available online: http://www.theplantlist.org/1.1/browse/A/Piperaceae/ (accessed on 4 July 2022).
- Encyclopædia Britannica. Lauraceae. Available online: https://www.britannica.com/plant/Meliaceae (accessed on 3 July 2021).
- Trofimov, D.; de Moraes, P.L.R.; Rohwer, J.G. Towards a phylogenetic classification of the Ocotea complex (Lauraceae): Classification principles and reinstatement of Mespilodaphne. Bot. J. Linn. Soc. 2019, 190, 25–50. [Google Scholar] [CrossRef]
- Palacios, W. Árboles del Ecuador: Familias y Géneros; Ministerio del Ambiente del Ecuador-MAE: Quito, Ecuador, 2011. [Google Scholar]
- Ballabeni, V.; Tognolini, M.; Giorgio, C.; Bertoni, S.; Bruni, R.; Barocelli, E. Ocotea quixos Lam. essential oil: In vitro and in vivo investigation on its anti-inflammatory properties. Fitoterapia 2010, 81, 289–295. [Google Scholar] [CrossRef]
- Bruni, R.; Medici, A.; Andreotti, E.; Fantin, C.; Muzzoli, M.; Dehesa, M.; Romagnoli, C.; Sacchetti, G. Chemical composition and biological activities of Ishpingo essential oil, a traditional Ecuadorian spice from Ocotea quixos (Lam.) Kosterm. (Lauraceae) flower calices. Food Chem. 2004, 85, 415–421. [Google Scholar] [CrossRef]
- Ballabeni, V.; Tognolini, M.; Bertoni, S.; Bruni, R.; Guerrini, A.; Rueda, G.M.; Barocelli, E. Antiplatelet and antithrombotic activities of essential oil from wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) calices from Amazonian Ecuador. Pharmacol. Res. 2007, 55, 23–30. [Google Scholar] [CrossRef]
- Scalvenzi, L.; Radice, M.; Toma, L.; Severini, F.; Boccolini, D.; Bella, A.; Guerrini, A.; Tacchini, M.; Sacchetti, G.; Chiurato, M.; et al. Larvicidal activity of Ocimum campechianum, Ocotea quixos and Piper aduncum essential oils against Aedes aegypti. Parasite 2019, 26, 23. [Google Scholar] [CrossRef] [Green Version]
- Passos, B.G.; de Albuquerque, R.D.D.G.; Muñoz-Acevedo, A.; Echeverria, J.; Llaure-Mora, A.M.; Ganoza-Yupanqui, M.L.; Rocha, L. Essential oils from Ocotea species: Chemical variety, biological activities and geographic availability. Fitoterapia 2022, 156, 105065. [Google Scholar] [CrossRef]
- WFO Plant List. Myrtaceae Juss. Available online: https://wfoplantlist.org/plant-list (accessed on 20 February 2023).
- Chabir, N.; Romdhane, M.; Valentin, A.; Moukarzel, B.; Marzoug, H.N.B.; Brahim, N.B.; Mars, M.; Bouajila, J. Chemical Study and Antimalarial, Antioxidant, and Anticancer Activities of Melaleuca armillaris (Sol Ex Gateau) Sm Essential Oil. J. Med. Food 2011, 14, 1383–1388. [Google Scholar] [CrossRef]
- Amri, I.; Mancini, E.; De Martino, L.; Marandino, A.; Lamia, H.; Mohsen, H.; Bassem, J.; Scognamiglio, M.; Reverchon, E.; De Feo, V. Chemical Composition and Biological Activities of the Essential Oils from Three Melaleuca Species Grown in Tunisia. Int. J. Mol. Sci. 2012, 13, 16580–16591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molares, S.; González, S.B.; Ladio, A.; Agueda Castro, M. Etnobotánica, anatomía y caracterización físico-química del aceite esencial de Baccharis obovata Hook. et Arn. (Asteraceae: Astereae). Acta Bot. Bras. 2009, 23, 578–589. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Soares, G.A.B.; Bhattacharya, T.; Chakrabarti, T.; Tagde, P.; Cavalu, S. Exploring Pharmacological Mechanisms of Essential Oils on the Central Nervous System. Plants 2022, 11, 21. [Google Scholar]
- Mekonnen, A.; Tesfaye, S.; Christos, S.G.; Dires, K.; Zenebe, T.; Zegeye, N.; Shiferaw, Y.; Lulekal, E. Evaluation of Skin Irritation and Acute and Subacute Oral Toxicity of Lavandula angustifolia Essential Oils in Rabbit and Mice. J. Toxicol. 2019, 2019, 5979546. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, L.C.; Valarezo, E.; Fábrega, M.J.; Rodríguez-Lagunas, M.J.; Sosa, L.; Calpena, A.C.; Mallandrich, M. Characterization and In Vivo Anti-Inflammatory Efficacy of Copal (Dacryodes peruviana (Loes.) H.J. Lam) Essential Oil. Plants 2022, 11, 3104. [Google Scholar]
- Cowen, L.E.; Sanglard, D.; Howard, S.J.; Rogers, P.D.; Perlin, D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2014, 5, a019752. [Google Scholar] [CrossRef]
- Sacchetti, G.; Guerrini, A.; Noriega, P.; Bianchi, A.; Bruni, R. Essential oil of wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) leaves from Amazonian Ecuador. Flavour Fragr. J. 2006, 21, 674–676. [Google Scholar] [CrossRef]
- Valarezo, E.; Vullien, A.; Conde-Rojas, D. Variability of the Chemical Composition of the Essential Oil from the Amazonian Ishpingo Species (Ocotea quixos). Molecules 2021, 26, 3961. [Google Scholar] [CrossRef]
- Hayouni, E.A.; Bouix, M.; Abedrabba, M.; Leveau, J.-Y.; Hamdi, M. Mechanism of action of Melaleuca armillaris (Sol. Ex Gaertu) Sm. essential oil on six LAB strains as assessed by multiparametric flow cytometry and automated microtiter-based assay. Food Chem. 2008, 111, 707–718. [Google Scholar] [CrossRef]
- Espinoza, L.C.; Silva-Abreu, M.; Calpena, A.C.; Rodriguez-Lagunas, M.J.; Fabrega, M.J.; Garduno-Ramirez, M.L.; Clares, B. Nanoemulsion strategy of pioglitazone for the treatment of skin inflammatory diseases. Nanomedicine 2019, 19, 115–125. [Google Scholar] [CrossRef]
- Rivera-Yañez, C.R.; Terrazas, L.I.; Jimenez-Estrada, M.; Campos, J.E.; Flores-Ortiz, C.M.; Hernandez, L.B.; Cruz-Sanchez, T.; Garrido-Fariña, G.I.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Anti-Candida Activity of Bursera morelensis Ramirez Essential Oil and Two Compounds, α-Pinene and γ-Terpinene—An In Vitro Study. Molecules 2017, 22, 2095. [Google Scholar] [CrossRef] [Green Version]
- Mendez, A.H.S.; Cornejo, C.G.F.; Coral, M.F.C.; Arnedo, M.C.A. Chemical Composition, Antimicrobial and Antioxidant Activities of the Essential Oil of Bursera graveolens (Burseraceae) From Perú. Indian J. Pharm. Educ. Res. 2017, 51, s429–s436. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Lin, Z.-X.; Xiang, W.-L.; Huang, M.; Tang, J.; Lu, Y.; Zhao, Q.-H.; Zhang, Q.; Rao, Y.; Liu, L. Antifungal activity and mechanism of d-limonene against foodborne opportunistic pathogen Candida tropicalis. Lwt 2022, 159, 113144. [Google Scholar] [CrossRef]
- Thakre, A.; Zore, G.; Kodgire, S.; Kazi, R.; Mulange, S.; Patil, R.; Shelar, A.; Santhakumari, B.; Kulkarni, M.; Kharat, K.; et al. Limonene inhibits Candida albicans growth by inducing apoptosis. Med. Mycol. 2018, 56, 565–578. [Google Scholar] [CrossRef]
- Zore, G.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine Int. J. Phytother. Phytopharm. 2011, 18, 1181–1190. [Google Scholar] [CrossRef]
- Zhang, J.H.; Sun, H.L.; Chen, S.Y.; Zeng, L.; Wang, T.T. Anti-fungal activity, mechanism studies on alpha-Phellandrene and Nonanal against Penicillium cyclopium. Bot. Stud. 2017, 58, 13. [Google Scholar] [CrossRef] [Green Version]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Tiyajamorn, T.; Bharathi, M.; Chaiyasut, C. A Narrative Review on the Bioactivity and Health Benefits of Alpha-Phellandrene. Sci. Pharm. 2022, 90, 57. [Google Scholar] [CrossRef]
- Belletti, N.; Ndagijimana, M.; Sisto, C.; Guerzoni, M.E.; Lanciotti, R.; Gardini, F. Evaluation of the Antimicrobial Activity of Citrus Essences on Saccharomyces cerevisiae. J. Agric. Food Chem. 2004, 52, 6932–6938. [Google Scholar] [CrossRef]
- Huang, Q.-S.; Zhu, Y.-J.; Li, H.-L.; Zhuang, J.-X.; Zhang, C.-L.; Zhou, J.-J.; Li, W.-G.; Chen, Q.-X. Inhibitory Effects of Methyl trans-Cinnamate on Mushroom Tyrosinase and Its Antimicrobial Activities. J. Agric. Food Chem. 2009, 57, 2565–2569. [Google Scholar] [CrossRef]
- Ali, N.A.M.; Rahmani, M.; Shaari, K.; Ali, A.M.; Lian, G.E.C. Antimicrobial Activity of Cinnamomum impressicostatum and C. pubescens and Bioassay-Guided Isolation of Bioactive (E)-Methyl Cinnamate. J. Biol. Sci. 2010, 10, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Duran, J.; Torres, R.; Stashenko, E.E.; Ortiz, C. Antifungal and Antibiofilm Activity of Colombian Essential Oils against Different Candida Strains. Antibiotics 2023, 12, 668. [Google Scholar] [CrossRef]
- Silva, R.A.d.; Antonieti, F.M.P.M.; Röder, D.V.D.d.B.; Pedroso, R.d.S. Essential Oils of Melaleuca, Citrus, Cupressus, and Litsea for the Management of Infections Caused by Candida Species: A Systematic Review. Pharmaceutics 2021, 13, 1700. [Google Scholar] [CrossRef]
- de Macêdo, D.G.; de Almeida Souza, M.M.; Morais-Braga, M.F.B.; Coutinho, H.D.M.; dos Santos, A.T.L.; Machado, A.J.T.; Rodrigues, F.F.G.; da Costa, J.G.M.; de Menezes, I.R.A. Seasonality influence on the chemical composition and antifungal activity of Psidium myrtoides O. Berg. S. Afr. J. Bot. 2020, 128, 9–17. [Google Scholar] [CrossRef]
- Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J. Antimicrob. Chemother. 2009, 64, 1219–1225. [Google Scholar] [CrossRef]
- Young, J.M.; Spires, D.A.; Bedord, C.J.; Wagner, B.; Ballaron, S.J.; de Young, L.M. The Mouse Ear Inflammatory Response to Topical Arachidonic Acid. J. Investig. Dermatol. 1984, 82, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Ku, C.M.; Lin, J.Y. Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes. Food Chem. 2013, 141, 1104–1113. [Google Scholar] [CrossRef]
- Lappas, C.M.; Lappas, N.T. D-Limonene modulates T lymphocyte activity and viability. Cell Immunol. 2012, 279, 30–41. [Google Scholar] [CrossRef]
- d’Alessio, P.A.; Mirshahi, M.; Bisson, J.-F.; Bene, M.C. Skin repair properties of dLimonene and perillyl alcohol in murine models. Anti-Inflammatory Anti-Allergy Agents. Med. Chem. 2014, 13, 29–35. [Google Scholar]
- Hansen, J.S.; Norgaard, A.W.; Koponen, I.K.; Sorli, J.B.; Paidi, M.D.; Hansen, S.W.; Clausen, P.A.; Nielsen, G.D.; Wolkoff, P.; Larsen, S.T. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice. J. Immunotoxicol. 2016, 13, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Valsalan Soba, S.; Babu, M.; Panonnummal, R. Ethosomal Gel Formulation of Alpha Phellandrene for the Transdermal Delivery in Gout. Adv. Pharm. Bull. 2021, 11, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Kawata, A.; Suzuki, S.; Fujisawa, S. Cytotoxicity and Pro-/Anti-inflammatory Properties of Cinnamates, Acrylates and Methacrylates Against RAW264.7 Cells. In Vivo 2018, 32, 1309–1322. [Google Scholar] [CrossRef] [Green Version]
- Pries, R.; Jeschke, S.; Leichtle, A.; Bruchhage, K.-L. Modes of Action of 1,8-Cineol in Infections and Inflammation. Metabolites 2023, 13, 751. [Google Scholar] [CrossRef] [PubMed]
- de Elguea-Culebras, G.O.; Panamá-Tapia, L.A.; Melero-Bravo, E.; Cerro-Ibáñez, N.; Calvo-Martínez, A.; Sánchez-Vioque, R. Comparison of the phenolic composition and biological capacities of wastewater from Origanum vulgare L., Rosmarinus officinalis L., Salvia lavandulifolia Vahl. and Thymus mastichina L. resulting from two hydrodistillation systems: Clevenger and MAE. J. Appl. Res. Med. Aromat. Plants. 2023, 34, 100480. [Google Scholar] [CrossRef]
- ISO 279:1998; Essential Oils-Determination of Relative Density at 20 °C—Reference Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2020; pp. 1–4.
- ISO 280:1998; Essential Oils-Determination of Refractive Index. International Organization for Standardization (ISO): Geneva, Switzerland, 2020; pp. 1–3.
- ISO 592:1998; Essential Oils-Determination of Optical Rotation. International Organization for Standardization (ISO): Geneva, Switzerland, 2020; pp. 1–4.
- van Den Dool, H.; Dec. Kratz, P. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Rodriguez-Tudela, J.L.; Arendrup, M.C.; Barchiesi, F.; Bille, J.; Chryssanthou, E.; Cuenca-Estrella, M.; Dannaoui, E.; Denning, D.W.; Donnelly, J.P.; Dromer, F.; et al. EUCAST Definitive Document EDef 7.1: Method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts: Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST)∗. Clin. Microbiol. Infect. 2008, 14, 398–405. [Google Scholar] [CrossRef]
BGR | DPE | MQU | MAR | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Yield (mL/kg) | 31 | 2 | 45 | 3 | 15 | 1 | 9 | 1 |
Density, ρ (g/cm3) | 0.8385 | 0.0010 | 0.8456 | 0.0023 | 0.8758 | 0.0013 | 0.9053 | 0.0045 |
Refractive index, n20 | 1.4760 | 0.0011 | 1.4751 | 0.0002 | 1.4790 | 0.0012 | 1.4641 | 0.0023 |
Specific rotation, [α] (°) | 47.7 | 1.1 | 12.2 | 0.7 | 11.2 | 0.2 | 4.3 | 1.1 |
Compounds | RIC | RIR | BGR | DPE | MQU | MAR | Type | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
% | SD | % | SD | % | SD | % | SD | ||||
α-Thujene | 926 | 924 | - | 1.9 | 0.1 | - | - | MH | |||
α-Pinene | 932 | 932 | - | 8.3 | 0.3 | 1.6 | 0.1 | 3.6 | 0.1 | MH | |
Sabinene | 969 | 969 | - | 1.4 | 0.4 | - | - | MH | |||
β-Pinene | 973 | 974 | - | 2.6 | 0.9 | 1.3 | 0.1 | 1.4 | 0.1 | MH | |
Myrcene | 986 | 988 | 1.1 | 0.4 | - | - | 1.3 | 0.1 | MH | ||
α-Phellandrene | 1005 | 1002 | 35.9 | 1.3 | 50.3 | 3.3 | - | - | MH | ||
p-Cymene | 1021 | 1020 | - | 3.1 | 0.8 | - | - | MH | |||
Limonene | 1025 | 1024 | 49.4 | 2.2 | 23.0 | 1.5 | - | - | MH | ||
1,8-Cineole | 1025 | 1026 | - | - | 1.3 | 0.1 | 83.4 | 2.5 | OM | ||
Terpinolene | 1082 | 1086 | - | 5.2 | 0.9 | - | - | MH | |||
Menthofuran | 1159 | 1159 | 6.6 | 1.2 | - | - | - | OM | |||
α-Terpineol | 1187 | 1186 | - | - | - | 8.0 | 0.1 | OM | |||
(E)-Cinnamaldehyde | 1268 | 1267 | - | - | 10.0 | 1.4 | - | PP | |||
α-Copaene | 1372 | 1374 | - | - | 4.5 | 0.9 | - | SH | |||
(E)-Methyl cinnamate | 1376 | 1376 | - | - | 19.3 | 1.3 | - | PP | |||
(E)-Caryophyllene | 1415 | 1417 | - | - | 15.8 | 1.8 | - | SH | |||
6,9-Guaiadiene | 1442 | 1442 | - | - | 4.5 | 0.5 | - | SH | |||
(E)-Cinnamyl acetate | 1445 | 1443 | - | - | 12.5 | 0.7 | - | PP | |||
Germacrene D | 1476 | 1480 | 1.5 | 0.1 | - | - | - | SH | |||
β-Selinene | 1489 | 1489 | - | - | 5.8 | 0.5 | - | SH | |||
Bicyclogermacrene | 1496 | 1500 | - | - | 4.2 | 0.4 | - | SH | |||
Anisyl propanoate | 1510 | 1511 | - | - | 2.7 | 0.4 | - | OC | |||
7-epi-α-Selinene | 1520 | 1520 | - | - | 2.5 | 0.3 | - | SH | |||
(E)-γ-Bisabolene | 1527 | 1529 | - | - | 3.1 | 0.3 | - | SH | |||
Caryophyllene oxide | 1580 | 1582 | - | - | 2.5 | 0.4 | - | OS | |||
Monoterpene hydrocarbons (MH) | 86.4 | 95.8 | 3.0 | 6.2 | |||||||
Oxygenated monoterpene (OM) | 6.6 | - | 1.3 | 91.4 | |||||||
Sesquiterpene hydrocarbons (SH) | 1.5 | - | 40.4 | - | |||||||
Oxygenated sesquiterpene (OS) | - | - | 2.5 | - | |||||||
Phenylpropanoids (PP) | - | - | 41.8 | ||||||||
Other compounds (OC) | - | - | 2.7 | - | |||||||
Total identified | 94.6 | 95.8 | 91.7 | 97.6 |
MIC (µg/mL) | |||
---|---|---|---|
Candida albicans | Candida glabrata | Candida parapsilosis | |
Amphotericin B | 0.15 | 0.60 | 0.30 |
BGR | 524.06 | 262.03 | 524.06 |
DPE | 132.13 | 32.98 | 65.96 |
MQU | 273.69 | 273.69 | 136.84 |
MAR | 565.81 | 565.81 | 565.81 |
Blank | - | - | - |
Species | Plant Part | Ambient Conditions | Parish | Canton | Province | Coordinates | Altitude (m a.s.l.) | ||
---|---|---|---|---|---|---|---|---|---|
T (°C) | P (atm) | Latitude | Longitude | ||||||
Bursera graveolens | Fruits | 26 | 0.98 | Garza Real | Zapotillo | Loja | 4°19′13” S | 80°17′58” W | 150 |
Dacryodes peruviana | Fruits | 25 | 0.89 | La Paz | Yacuambi | Zamora Chinchipe | 3°40′13” S | 78°54′21” W | 1025 |
Mespilodaphne quixos | Leaves | 24 | 0.91 | Pano | Tena | Napo | 1°01′12” S | 77°51′57” W | 650 |
Melaleuca armillaris | Leaves | 29 | 0.79 | Guayllabamba | Quito | Pichincha | 0°04′43” S | 78°20′59” W | 2171 |
Gene | Primer Sequence (5′ to 3′) |
---|---|
GAPDH | FW: AGCTTGTCATCAACGGGAAG |
RV: TTTGATGTTAGTGGGGTCTCG | |
IL-8 | FW: GCTGTGACCCTCTCTGTGAAG |
RV: CAAACTCCATCTTGTTGTGTC | |
IL-23 | FW: GAGCCTTCTCTGCTCCCTGATA |
RV: GACTGAGGCTTGGAATCTGCTG | |
IL-17A | FW: TTTTCAGCAAGGAATGTGGA |
RV: TTCATTGTGGAGGGCAGAC | |
TNFα | FW: AACTAGTGGTGCCAGCCGAT |
RV: CTTCACAGAGCAATGACTCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosa, L.; Espinoza, L.C.; Valarezo, E.; Bozal, N.; Calpena, A.; Fábrega, M.-J.; Baldomà, L.; Rincón, M.; Mallandrich, M. Therapeutic Applications of Essential Oils from Native and Cultivated Ecuadorian Plants: Cutaneous Candidiasis and Dermal Anti-Inflammatory Activity. Molecules 2023, 28, 5903. https://doi.org/10.3390/molecules28155903
Sosa L, Espinoza LC, Valarezo E, Bozal N, Calpena A, Fábrega M-J, Baldomà L, Rincón M, Mallandrich M. Therapeutic Applications of Essential Oils from Native and Cultivated Ecuadorian Plants: Cutaneous Candidiasis and Dermal Anti-Inflammatory Activity. Molecules. 2023; 28(15):5903. https://doi.org/10.3390/molecules28155903
Chicago/Turabian StyleSosa, Lilian, Lupe Carolina Espinoza, Eduardo Valarezo, Núria Bozal, Ana Calpena, María-José Fábrega, Laura Baldomà, María Rincón, and Mireia Mallandrich. 2023. "Therapeutic Applications of Essential Oils from Native and Cultivated Ecuadorian Plants: Cutaneous Candidiasis and Dermal Anti-Inflammatory Activity" Molecules 28, no. 15: 5903. https://doi.org/10.3390/molecules28155903
APA StyleSosa, L., Espinoza, L. C., Valarezo, E., Bozal, N., Calpena, A., Fábrega, M. -J., Baldomà, L., Rincón, M., & Mallandrich, M. (2023). Therapeutic Applications of Essential Oils from Native and Cultivated Ecuadorian Plants: Cutaneous Candidiasis and Dermal Anti-Inflammatory Activity. Molecules, 28(15), 5903. https://doi.org/10.3390/molecules28155903