Investigations of Electronic, Structural, and In Silico Anticancer Potential of Persuasive Phytoestrogenic Isoflavene-Based Mannich Bases
Abstract
:1. Introduction
2. Results
2.1. DFT Studies
2.1.1. Global Chemical Reactivity Descriptors
2.1.2. Frontier Molecular Orbitals
2.1.3. Molecular Electrostatic Potential
2.2. Docking Studies
2.3. ADME Results
3. Materials and Methods
3.1. DFT Calculations
3.2. Molecular Docking
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Islam, M.T.; Khalipha, A.B.; Bagchi, R.; Mondal, M.; Smrity, S.Z.; Uddin, S.J.; Shilpi, J.A.; Rouf, R. Anticancer activity of Thymol: A literature-based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life 2019, 71, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Arshad, R.; Khan, M.A.; Mutahir, S.; Hussain, S.; Al-Hazmi, G.H.; Refat, M.S. DFT, Molecular Docking and ADME Studies of Thiazolidinones as Tyrosinase Inhibitors. Polycycl. Aromat. Compd. 2022, 1–16. [Google Scholar] [CrossRef]
- Mutahir, S.; Khan, M.A.; Naglah, A.M.; Al-Omar, M.A.; Almehizia, A.A.; Huwaimel, B.; Abouzied, A.S.; Alharbi, A.S.; Refat, M.S. Structural Characterization and Molecular Docking Screening of Most Potent 1,2,4-Triazine Sulfonamide Derivatives as Anti-Cancer Agents. Crystals 2023, 13, 767. [Google Scholar] [CrossRef]
- Bidram, E.; Esmaeili, Y.; Ranji-Burachaloo, H.; Al-Zaubai, N.; Zarrabi, A.; Stewart, A.; Dunstan, D.E. A concise review on cancer treatment methods and delivery systems. J. Drug Deliv. Sci. Technol. 2019, 54, 101350. [Google Scholar] [CrossRef]
- Debela, D.T.; Muzazu, S.G.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021, 9, 20503121211034366. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef]
- Stepanenko, I.; Zalibera, M.; Schaniel, D.; Telser, J.; Arion, V.B. Ruthenium-nitrosyl complexes as NO-releasing molecules, potential anticancer drugs, and photoswitches based on linkage isomerism. Dalton Trans. 2022, 51, 5367–5393. [Google Scholar] [CrossRef]
- Riondino, S.; Formica, V.; Valenzi, E.; Morelli, C.; Flaminio, V.; Portarena, I.; Torino, F.; Roselli, M. Obesity and Breast Cancer: Interaction or Interference with the Response to Therapy? Curr. Oncol. 2023, 30, 1220–1231. [Google Scholar] [CrossRef]
- Jia, L.; Lv, W.; Liang, L.; Ma, Y.; Ma, X.; Zhang, S.; Zhao, Y. The Causal Effect of Reproductive Factors on Breast Cancer: A Two-Sample Mendelian Randomization Study. J. Clin. Med. 2023, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Kwa, M.; Plottel, C.S.; Blaser, M.J.; Adams, S. The intestinal microbiome and estrogen receptor–positive female breast cancer. JNCI J. Natl. Cancer Inst. 2016, 108, djw029. [Google Scholar]
- Schneider, G. S1P signaling in the tumor microenvironment. Tumor Microenviron. Signal. Pathw. Part A 2020, 1223, 129–153. [Google Scholar]
- Yadav, N.; Francis, A.P.; Priya, V.V.; Patil, S.; Mustaq, S.; Khan, S.S.; Alzahrani, K.J.; Banjer, H.J.; Mohan, S.K.; Mony, U. Polysaccharide-drug conjugates: A tool for enhanced cancer therapy. Polymers 2022, 14, 950. [Google Scholar] [CrossRef] [PubMed]
- Tramontini, M.; Angiolini, L. Mannich Bases-Chemistry and Uses; CRC Press: Boca Raton, FL, USA, 1994; Volume 5. [Google Scholar]
- Mutahir, S.; Yar, M.; Khan, M.A.; Ullah, N.; Shahzad, S.A.; Khan, I.U.; Mehmood, R.A.; Ashraf, M.; Nasar, R.; Pontiki, E. Synthesis, characterization, lipoxygenase inhibitory activity and in silico molecular docking of biaryl bis(benzenesulfonamide) and indol-3-yl-hydrazide derivatives. J. Iran. Chem. Soc. 2015, 12, 1123–1130. [Google Scholar] [CrossRef]
- Tariq, S.; Mutahir, S.; Khan, M.A.; Mutahir, Z.; Hussain, S.; Ashraf, M.; Bao, X.; Zhou, B.; Stark, C.B.W.; Khan, I.U. Synthesis, in Vitro Cholinesterase Inhibition, Molecular Docking, DFT, and ADME Studies of Novel 1,3,4-Oxadiazole-2-Thiol Derivatives. Chem. Biodivers. 2022, 19, e202200157. [Google Scholar] [CrossRef]
- Roman, G. Anticancer activity of Mannich bases: A review of recent literature. ChemMedChem 2022, 17, e202200258. [Google Scholar] [CrossRef]
- Tokalı, F.S.; Taslimi, P.; Demircioğlu, İ.H.; Şendil, K.; Tuzun, B.; Gülçin, İ. Novel phenolic Mannich base derivatives: Synthesis, bioactivity, molecular docking, and ADME-Tox Studies. J. Iran. Chem. Soc. 2022, 19, 563–577. [Google Scholar] [CrossRef]
- Raoof, S.S.; Sadiq, A.S. Mannich Bases: Synthesis, Pharmacological Activity, and Applications: A Review. Iraqi J. Sci. 2022, 63, 5086–5105. [Google Scholar] [CrossRef]
- Mutahir, S.; Jończyk, J.; Bajda, M.; Khan, I.U.; Khan, M.A.; Ullah, N.; Ashraf, M.; Qurat ul, A.; Riaz, S.; Hussain, S.; et al. Novel biphenyl bis-sulfonamides as acetyl and butyrylcholinesterase inhibitors: Synthesis, biological evaluation and molecular modeling studies. Bioorganic Chem. 2016, 64, 13–20. [Google Scholar] [CrossRef]
- Pervaiz, S.; Mutahir, S.; Ullah, I.; Ashraf, M.; Liu, X.; Tariq, S.; Zhou, B.-J.; Khan, M.A. Organocatalyzed Solvent Free and Efficient Synthesis of 2,4,5-Trisubstituted Imidazoles as Potential Acetylcholinesterase Inhibitors for Alzheimer’s Disease. Chem. Biodivers. 2020, 17, e1900493. [Google Scholar] [CrossRef]
- Molnár, B.; Kinyua, N.I.; Mótyán, G.; Leits, P.; Zupkó, I.; Minorics, R.; Balogh, G.T.; Frank, É. Regioselective synthesis, physicochemical properties and anticancer activity of 2-aminomethylated estrone derivatives. J. Steroid Biochem. Mol. Biol. 2022, 219, 106064. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, Y.; Zhang, X.; Yu, G.; Li, J.; Cong, S.; Deng, Y. Discovery of novel 3-butyl-6-benzyloxyphthalide Mannich base derivatives as multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem. 2022, 58, 116660. [Google Scholar] [CrossRef] [PubMed]
- Bhilare, N.V.; Marulkar, V.S.; Shirote, P.J.; Dombe, S.A.; Pise, V.J.; Salve, P.L.; Biradar, S.M.; Yadav, V.D.; Jadhav, P.D.; Bodhe, A.A. Mannich Bases: Centrality in Cytotoxic Drug Design. Med. Chem. 2022, 18, 735–756. [Google Scholar] [CrossRef]
- Roman, G. Mannich bases in medicinal chemistry and drug design. Eur. J. Med. Chem. 2015, 89, 743–816. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.P.; da Silva, G.B.; Vargas, M.D.; Pinheiro, C.B.; Visentin, L.d.C.; José Filho, D.; Araújo, A.J.; Costa-Lotufo, L.V.; Pessoa, C.; de Moraes, M.O. Novel platinum (II) complexes of 3-(aminomethyl) naphthoquinone Mannich bases: Synthesis, crystal structure and cytotoxic activities. Dalton Trans. 2010, 39, 10203–10216. [Google Scholar] [CrossRef] [PubMed]
- Go, M.-L.; Leow, J.L.; Gorla, S.K.; Schuller, A.P.; Wang, M.; Casey, P.J. Amino derivatives of indole as potent inhibitors of isoprenylcysteine carboxyl methyltransferase. J. Med. Chem. 2010, 53, 6838–6850. [Google Scholar] [CrossRef]
- Chen, Y.; Cass, S.L.; Kutty, S.K.; Yee, E.M.; Chan, D.S.; Gardner, C.R.; Vittorio, O.; Pasquier, E.; Black, D.S.; Kumar, N. Synthesis, biological evaluation and structure–activity relationship studies of isoflavene based Mannich bases with potent anti-cancer activity. Bioorg. Med. Chem. Lett. 2015, 25, 5377–5383. [Google Scholar] [CrossRef]
- Szewczuk, N.A.; Duchowicz, P.R.; Pomilio, A.B.; Lobayan, R.M. Resonance structure contributions, flexibility, and frontier molecular orbitals (HOMO–LUMO) of pelargonidin, cyanidin, and delphinidin throughout the conformational space: Application to antioxidant and antimutagenic activities. J. Mol. Model. 2023, 29, 2. [Google Scholar] [CrossRef]
- Sharma, A.; Khanum, G.; Kumar, A.; Fatima, A.; Singh, M.; Abualnaja, K.M.; Althubeiti, K.; Muthu, S.; Siddiqui, N.; Javed, S. Conformational stability, quantum computational, spectroscopic, molecular docking and molecular dynamic simulation study of 2-hydroxy-1-naphthaldehyde. J. Mol. Struct. 2022, 1259, 132755. [Google Scholar] [CrossRef]
- Nazeer, U.; Rasool, N.; Mujahid, A.; Mansha, A.; Zubair, M.; Kosar, N.; Mahmood, T.; Raza Shah, A.; Shah, S.A.A.; Zakaria, Z.A. Selective arylation of 2-bromo-4-chlorophenyl-2-bromobutanoate via a Pd-catalyzed Suzuki cross-coupling reaction and its electronic and non-linear optical (NLO) properties via DFT studies. Molecules 2020, 25, 3521. [Google Scholar] [CrossRef]
- Aliveisi, R.; Taherpour, A.; Yavari, I. A DFT Study of Electronic Structures and Relative Stabilities of Isomeric n,m-Diazaphenanthrenes. Polycycl. Aromat. Compd. 2019, 39, 462–469. [Google Scholar] [CrossRef]
- Mebi, C.A. DFT study on structure, electronic properties, and reactivity of cis-isomers of [(NC5H4-S)2Fe(CO)2]. J. Chem. Sci. 2011, 123, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Khajehzadeh, M.; Moghadam, M.; Rahmaniasl, S. Structural, spectroscopic characterization (UV–vis, FT–IR and NMR) and TGA, TEM, FE–SEM, NBO and FMO analysis for (PdII–PNHC) n@ nSiO2. J. Mol. Struct. 2020, 1204, 127526. [Google Scholar] [CrossRef]
- Shafieyoon, P.; Mehdipour, E.; Mary, Y.S. Synthesis, characterization and biological investigation of glycine-based sulfonamide derivative and its complex: Vibration assignment, HOMO–LUMO analysis, MEP and molecular docking. J. Mol. Struct. 2019, 1181, 244–252. [Google Scholar] [CrossRef]
- Mumit, M.A.; Pal, T.K.; Alam, M.A.; Islam, M.A.-A.-A.-A.; Paul, S.; Sheikh, M.C. DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2, 4, 5-trimethoxyphenylmethylene) hydrazinecarbodithioate. J. Mol. Struct. 2020, 1220, 128715. [Google Scholar] [CrossRef]
- Celik, S. DFT investigations and molecular docking as potent inhibitors of SARS-CoV-2 main protease of 4-phenylpyrimidine. J. Mol. Struct. 2023, 1277, 134895. [Google Scholar] [CrossRef]
- El-Gammal, O.A.; El-Bindary, A.A.; Mohamed, F.S.; Rezk, G.N.; El-Bindary, M.A. Synthesis, characterization, design, molecular docking, anti COVID-19 activity, DFT calculations of novel Schiff base with some transition metal complexes. J. Mol. Liq. 2022, 346, 117850. [Google Scholar] [CrossRef]
- Yadav, R.; Hasan, S.; Mahato, S.; Celik, I.; Mary, Y.; Kumar, A.; Dhamija, P.; Sharma, A.; Choudhary, N.; Chaudhary, P.K. Molecular docking, DFT analysis, and dynamics simulation of natural bioactive compounds targeting ACE2 and TMPRSS2 dual binding sites of spike protein of SARS CoV-2. J. Mol. Liq. 2021, 342, 116942. [Google Scholar] [CrossRef]
- Honorio, K.M.; Moda, T.L.; Andricopulo, A.D. Pharmacokinetic properties and in silico ADME modeling in drug discovery. Med. Chem. 2013, 9, 163–176. [Google Scholar] [CrossRef]
- Alqahtani, S. In silico ADME-Tox modeling: Progress and prospects. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1147–1158. [Google Scholar] [CrossRef]
- Sancho-Garcia, J.C.; Bremond, E.; Ricci, G.; Pérez-Jiménez, A.; Olivier, Y.; Adamo, C. Violation of Hund’s rule in molecules: Predicting the excited-state energy inversion by TD-DFT with double-hybrid methods. J. Chem. Phys. 2022, 156, 034105. [Google Scholar] [CrossRef]
- Hussan, K.S.; Thayyil, M.S.; Rajan, V.K.; Muraleedharan, K. DFT studies on global parameters, antioxidant mechanism and molecular docking of amlodipine besylate. Comput. Biol. Chem. 2019, 80, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Nazir, Y.; Rafique, H.; Roshan, S.; Shamas, S.; Ashraf, Z.; Rafiq, M.; Tahir, T.; Qureshi, Z.-U.-R.; Aslam, A.; Asad, M.H.H.B. Molecular docking, synthesis, and tyrosinase inhibition activity of acetophenone amide: Potential inhibitor of melanogenesis. BioMed Res. Int. 2022, 2022, 1040693. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, Q.; Fardous, R.S.; Hazaymeh, R.; Alshmmari, S.; Zourob, M. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME. Adv. Biol. 2021, 5, 2100775. [Google Scholar] [CrossRef] [PubMed]
Ligand | ELUMO | EHOMO | ΔE (HOMO–LUMO) | Ionization Potential (I) | Electron Affinity (A) | Chemical Hardness (η) | Chemical Softness (ζ) | Electronegativity (χ) | Chemical Potential (μ) | Electrophilicity Index (ω) |
---|---|---|---|---|---|---|---|---|---|---|
1 | −0.0365 | −0.2470 | 0.2106 | 0.2470 | 0.0365 | 0.1053 | 4.7495 | 0.1418 | −0.1418 | 0.0955 |
2 | −0.0364 | −0.2331 | 0.1968 | 0.2331 | 0.0364 | 0.0984 | 5.0826 | 0.1347 | −0.1347 | 0.0923 |
3 | −0.0332 | −0.2168 | 0.1836 | 0.2168 | 0.0332 | 0.0918 | 5.4481 | 0.1250 | −0.1250 | 0.0851 |
4 | −0.0331 | −0.2506 | 0.2175 | 0.2506 | 0.0331 | 0.1087 | 4.5983 | 0.1418 | −0.1418 | 0.0925 |
5 | −0.0360 | −0.2332 | 0.1972 | 0.2332 | 0.0360 | 0.0986 | 5.0720 | 0.1346 | −0.1346 | 0.0919 |
6 | −0.0335 | −0.1941 | 0.1607 | 0.1941 | 0.0335 | 0.0803 | 6.2243 | 0.1138 | −0.1138 | 0.0806 |
7 | −0.0374 | −0.2160 | 0.1786 | 0.2160 | 0.0374 | 0.0893 | 5.6004 | 0.1267 | −0.1267 | 0.0899 |
8 | −0.0378 | −0.2277 | 0.1899 | 0.2277 | 0.0378 | 0.0949 | 5.2670 | 0.1328 | −0.1328 | 0.0928 |
9 | −0.0340 | −0.2554 | 0.2214 | 0.2554 | 0.0340 | 0.1107 | 4.5171 | 0.1447 | −0.1447 | 0.0946 |
10 | −0.0376 | −0.2547 | 0.2172 | 0.2547 | 0.0376 | 0.1086 | 4.6047 | 0.1462 | −0.1462 | 0.0984 |
11 | −0.0379 | −0.2291 | 0.1912 | 0.2291 | 0.0379 | 0.0956 | 5.2312 | 0.1335 | −0.1335 | 0.0933 |
12 | −0.0386 | −0.1826 | 0.1441 | 0.1826 | 0.0386 | 0.0720 | 6.9401 | 0.1106 | −0.1106 | 0.0849 |
13 | −0.0382 | −0.2172 | 0.1789 | 0.2172 | 0.0382 | 0.0895 | 5.5888 | 0.1277 | −0.1277 | 0.0911 |
14 | −0.0356 | −0.2543 | 0.2188 | 0.2543 | 0.0356 | 0.1094 | 4.5714 | 0.1449 | −0.1449 | 0.0960 |
15 | −0.0323 | −0.2109 | 0.1786 | 0.2109 | 0.0323 | 0.0893 | 5.6000 | 0.1216 | −0.1216 | 0.0828 |
16 | −0.0294 | −0.1725 | 0.1431 | 0.1725 | 0.0294 | 0.0716 | 6.9876 | 0.1010 | −0.1010 | 0.0712 |
17 | −0.0372 | −0.2553 | 0.2181 | 0.2553 | 0.0372 | 0.1091 | 4.5842 | 0.1462 | −0.1462 | 0.0980 |
Ligand | 5GTY | 3RHK | 7JXH | 6PL2 | ||||
---|---|---|---|---|---|---|---|---|
Docking Score | ∆G Energy | Docking Score | ∆G Energy | Docking Score | ∆G Energy | Docking Score | ∆G Energy | |
1 | −2.639 | −21.582 | −9.893 | −47.312 | −8.369 | −52.438 | −8.159 | −42.346 |
2 | −3.158 | −20.367 | −6.533 | −39.419 | −5.368 | −36.954 | −9.41 | −44.915 |
3 | −3.631 | −29.513 | −7.456 | −40.587 | −6.119 | −40.41 | −8.346 | −46.414 |
4 | −3.101 | −31.338 | −8.082 | −45.912 | −5.261 | −43.998 | −8.798 | −48.525 |
5 | −3.434 | −31.106 | −9.242 | −46.18 | −6.805 | −45.557 | −10.655 | −51.955 |
6 | −3.482 | −33.296 | −7.627 | −48.438 | −6.633 | −49.132 | −9.343 | −49.977 |
7 | −3.6 | −34.043 | −7.044 | −43.11 | −8.019 | −47.516 | −6.088 | −43.757 |
8 | −3.216 | −21.266 | −6.932 | −36.14 | −4.942 | −32.092 | −8.756 | −37.772 |
9 | −2.968 | −25.386 | −8.072 | −48.178 | −7.259 | −41.581 | −9.399 | −53.196 |
10 | −3.019 | −25.476 | −7.298 | −39.42 | −6.961 | −42.727 | −9.051 | −48.615 |
11 | −3.415 | −31.474 | −7.375 | −42.465 | −6.388 | −45.133 | −8.175 | −46.66 |
12 | −4.127 | −26.422 | −7.163 | −41.041 | −7.055 | −40.526 | −8.883 | −42.716 |
13 | −3.303 | −29.724 | −6.464 | −44.688 | −5.524 | −44.233 | −8.583 | −46.07 |
14 | −3.332 | −27.856 | −7.602 | −42.318 | −5.324 | −40.358 | −9.083 | −48.238 |
15 | −3.734 | −39.888 | −7.207 | −53.081 | −8.567 | −53.848 | −9.447 | −56.381 |
16 | −3.625 | −24.368 | −6.725 | −40.05 | −5.982 | −42.368 | −7.891 | −58.708 |
17 | −4.093 | −30.532 | −5.953 | −39.325 | −5.687 | −39.352 | −7.22 | −44.929 |
Erlotinib | −7.629 | −54.808 | −4.143 | −32.362 | −6.327 | −52.283 | −2.279 | −31.124 |
Neratinib | −5.674 | −58.645 | −2.894 | −36.451 | −4.009 | −52.789 | −0.676 | −28.228 |
Tepotinib | −9.029 | −66.287 | −2.811 | −36.912 | −7.204 | −59.378 | −3.339 | −47.78 |
Title | mol MW | Donor HB | Accpt HB | QP logPo/w | QP logS | QPP Caco | Metab | Qplog Khsa | Human Oral Absorption | Percent Human Oral Absorption | Rule of Five | Rule of Three |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 359.424 | 3 | 3.75 | 3.959 | −4.675 | 247.33 | 6 | 0.638 | 3 | 92.961 | 0 | 0 |
2 | 311.38 | 3 | 3.75 | 2.94 | −3.605 | 247.961 | 5 | 0.359 | 3 | 87.013 | 0 | 0 |
3 | 367.487 | 3 | 3.75 | 4.408 | −5.09 | 247.015 | 5 | 0.76 | 3 | 95.582 | 0 | 0 |
4 | 325.407 | 3 | 3.75 | 3.367 | −4.016 | 262.972 | 5 | 0.439 | 3 | 89.974 | 0 | 0 |
5 | 373.451 | 3 | 3.75 | 4.305 | −5.109 | 227.501 | 6 | 0.753 | 3 | 94.34 | 0 | 0 |
6 | 337.418 | 2 | 4.25 | 3.402 | −4.218 | 320.009 | 5 | 0.574 | 3 | 91.702 | 0 | 0 |
7 | 434.577 | 2 | 6.25 | 4.176 | −4.827 | 116.591 | 7 | 0.983 | 3 | 88.384 | 0 | 1 |
8 | 325.407 | 2 | 4.25 | 3.222 | −3.524 | 320.281 | 5 | 0.424 | 3 | 90.655 | 0 | 0 |
9 | 410.555 | 2 | 6.25 | 3.845 | −3.484 | 129.428 | 7 | 0.67 | 3 | 87.259 | 0 | 1 |
10 | 339.39 | 2 | 5.95 | 2.475 | −3.198 | 317.19 | 6 | 0.182 | 3 | 86.203 | 0 | 0 |
11 | 379.498 | 1 | 4.25 | 4.955 | −5.619 | 664.12 | 4 | 0.994 | 3 | 100 | 0 | 0 |
12 | 323.391 | 1 | 4.25 | 3.387 | −3.927 | 674.659 | 4 | 0.54 | 3 | 100 | 0 | 0 |
13 | 295.337 | 1 | 4.25 | 2.695 | −3.187 | 608.761 | 4 | 0.304 | 3 | 92.559 | 0 | 0 |
14 | 337.418 | 1 | 4.25 | 3.824 | −4.387 | 654.841 | 4 | 0.642 | 3 | 100 | 0 | 0 |
15 | 321.375 | 1 | 4.25 | 3.378 | −3.745 | 679.875 | 5 | 0.469 | 3 | 100 | 0 | 0 |
16 | 371.435 | 1 | 4.25 | 4.423 | −4.847 | 722.099 | 5 | 0.836 | 3 | 100 | 0 | 0 |
17 | 325.363 | 2 | 5.95 | 2.253 | −3.563 | 194.899 | 5 | 0.136 | 3 | 81.119 | 0 | 0 |
18 | 385.462 | 1 | 4.25 | 4.719 | −5.091 | 720.681 | 5 | 0.926 | 3 | 100 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutahir, S.; Khan, M.A.; Mushtaq, M.; Deng, H.; Naglah, A.M.; Almehizia, A.A.; Al-Omar, M.A.; Alrayes, F.I.; Kalmouch, A.; El-Mowafi, S.A.; et al. Investigations of Electronic, Structural, and In Silico Anticancer Potential of Persuasive Phytoestrogenic Isoflavene-Based Mannich Bases. Molecules 2023, 28, 5911. https://doi.org/10.3390/molecules28155911
Mutahir S, Khan MA, Mushtaq M, Deng H, Naglah AM, Almehizia AA, Al-Omar MA, Alrayes FI, Kalmouch A, El-Mowafi SA, et al. Investigations of Electronic, Structural, and In Silico Anticancer Potential of Persuasive Phytoestrogenic Isoflavene-Based Mannich Bases. Molecules. 2023; 28(15):5911. https://doi.org/10.3390/molecules28155911
Chicago/Turabian StyleMutahir, Sadaf, Muhammad Asim Khan, Maryam Mushtaq, Haishan Deng, Ahmed M. Naglah, Abdulrahman A. Almehizia, Mohamed A. Al-Omar, Faris Ibrahim Alrayes, Atef Kalmouch, Shaima A. El-Mowafi, and et al. 2023. "Investigations of Electronic, Structural, and In Silico Anticancer Potential of Persuasive Phytoestrogenic Isoflavene-Based Mannich Bases" Molecules 28, no. 15: 5911. https://doi.org/10.3390/molecules28155911
APA StyleMutahir, S., Khan, M. A., Mushtaq, M., Deng, H., Naglah, A. M., Almehizia, A. A., Al-Omar, M. A., Alrayes, F. I., Kalmouch, A., El-Mowafi, S. A., & Refat, M. S. (2023). Investigations of Electronic, Structural, and In Silico Anticancer Potential of Persuasive Phytoestrogenic Isoflavene-Based Mannich Bases. Molecules, 28(15), 5911. https://doi.org/10.3390/molecules28155911