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Abstract: This study aims to explore the potential use of low-cost ultraviolet-visible-near infrared (UV-
Vis-NIR) spectroscopy to quantify adulteration content of soybean, rapeseed, corn and peanut oils in
Camellia oil. To attain this aim, test oil samples were firstly prepared with different adulterant ratios
ranging from 1% to 90% at varying intervals, and their spectra were collected by an in-house built
experimental platform. Next, the spectra were preprocessed using Savitzky–Golay (SG)–Continuous
Wavelet Transform (CWT) and the feature wavelengths were extracted using four different algorithms.
Finally, Support Vector Regression (SVR) and Random Forest (RF) models were developed to rapidly
predict adulteration content. The results indicated that SG–CWT with decomposition scale of 25 and
the Iterative Variable Subset Optimization (IVSO) algorithm can effectively improve the accuracy of
the models. Furthermore, the SVR model performed best for predicting adulteration of camellia oil
with soybean oil, while the RF models were optimal for camellia oil adulterated with rapeseed, corn,
or peanut oil. Additionally, we verified the models’ robustness by examining the correlation between
the absorbance and adulteration content at certain feature wavelengths screened by IVSO. This study
demonstrates the feasibility of using low-cost UV-Vis-NIR spectroscopy for the authentication of
Camellia oil.

Keywords: Camellia oil; UV-Vis-NIR spectroscopy; adulteration content prediction; chemometrics;
feature wavelength selection; absorbance; correlation analysis

1. Introduction

Camellia oil, as one of the most valuable edible oils [1,2], is highly sought after by
consumers because of its great potential in the health care, medical, beauty, and chemical
fields [3,4]. The superior physicochemical properties possessed by Camellia oil result in
its price being significantly higher (5–10 times) than that of common edible oils (such as
soybean and rapeseed oils) [5]. Due to the high demand, several fraudulent practices have
emerged in the Camellia oil industry. These involve illegal traders who blend low-priced
oils, such as soybean, corn, and rapeseed oils, into the genuine Camellia oil, as well as
falsely label their product to make illicit profits [6]. Such practices are serious violations
of regulations such as Chinese standard GB 2716-2018. It is therefore critical to develop a
rapid, effective and robust method for quantifying adulteration content in Camellia oil.

Traditional methods for detecting adulteration in Camellia oil based on visual or
odor assessments are often subjective, leading to unreliable results [7]. Recently, primary
methods for detecting edible oil adulteration have included chromatography [8], nuclear
magnetic resonance [9], electronic nose [10], and spectroscopy [11]. Among them, chro-
matography, nuclear magnetic resonance, and the electronic nose method have certain
drawbacks. For example, gas chromatography and liquid chromatography require complex
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chemical pretreatment, thus leading to extended detection periods [8,11]. Moreover, nu-
clear magnetic resonance needs expensive equipment and complex operation [9,12], while
electronic nose often faces the issue of unstable data acquisition [10]. Various spectroscopy
techniques have been applied to authenticate adulterated Camellia oil thanks to their direct
and non-destructive characteristics [13–15]. However, most studies in this field typically
involve the use of expensive near-infrared (NIR) spectrometers to acquire the data [5,11,16].
Moreover, the majority of studies have been performed by either using the entire spectrum
bands or solely relying on the feature wavelength bands [17,18]. Therefore, these have
led to issues such as high detection costs and a lack of ability to merge the rapidity and
robustness of model authentication.

Studies that examine the authentication of edible oil using UV-Vis spectroscopy, which
has significant cost advantages compared with NIR spectroscopy, have recently been in-
creasing. Su et al. [19] utilized an in-house built acquisition platform to collect reflectance
spectra of 110 samples of sesame and rapeseed oils adulterated with soybean oil, and de-
veloped the optimal models to predict their adulteration content. However, the developed
models were not effective for low percentage adulteration content (i.e., less than 10%) [19].
Wu et al. [20] utilized UV-Vis spectroscopy (350–800 nm) to create binary and ternary
quantitative models with weighted multiscale support vector regression (EMD-SVR) for
soybean, peanut, and sesame oils. This study demonstrates that UV-Vis spectroscopy could
be employed for efficient authentication of edible oils. Gong et al. [21] investigated the
qualitative detection of adulterated Camellia oil by utilizing UV-Vis-NIR transmission spec-
troscopy (200–1100 nm). They established an XGBoost model, which can identify Camellia
oil adulterated with sunflower, corn and peanut oils, respectively, with high accuracy
(98.18%), sensitivity (97.62%), and specificity (100%). Although the abovementioned study
elucidated that UV-Vis-NIR spectroscopy can be utilized for the authentication of edible
oils, quantitative detection of adulteration content in Camellia oil through this technique
has not yet been reported.

To fill this gap, this paper presented a study on quantitative evaluation of adulteration
content in Camellia oil using UV-Vis-NIR transmission spectroscopy (200–1100 nm). The
study involved the comparison of various spectrum preprocessing, feature wavelength
selection, and machine learning modeling methods to establish rapid and robust models
for quantifying the adulteration content of soybean, rapeseed, corn, and peanut oils,
respectively, in Camellia oil. In addition, the rationality of the obtained feature wavelengths
was verified through Poisson correlation analysis, further proving the reliability of the
established models. Consequently, this study lays a foundation to develop a low-cost, rapid
and robust quantification device for the authentication of Camellia oil.

2. Results and Discussion
2.1. Spectrum of the Oil Samples

The raw spectrum profiles of the prepared samples were presented in Figure 1. As
shown in Figure 1a, there were five absorption peaks in the 244 spectrum curves at around
250 nm (UV band), 430 and 660 nm (Vis band), and 930 and 1050 nm (NIR band), respec-
tively. Figure 1b illustrated that there were differences between the spectrum curves of
the five pure oils, particularly in some bands where Camellia oil differed from the four
lower-priced oils. Specifically, at the characteristic peak band near 430 nm, the largest
magnitude differences between Camellia oil and rapeseed, corn, and soybean oils were
observed. Additionally, a significant magnitude difference existed between Camellia oil and
peanut oil at the characteristic peak band around 660 nm. The observed differences between
the collected pure oil spectrum provided evidence of utilizing UV-Vis-NIR transmission
spectroscopy (200–1100 nm) as a feasible method to estimate adulterated content. However,
due to the similarity between spectra curves, it is necessary to employ chemometrics and
machine learning techniques to further analyze the data.
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Figure 1. Raw spectra of the samples: (a) all samples; (b) representative pure oil samples. 
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The raw spectra were preprocessed with SG, SG-1st, SG-2nd, and SG-CWT with 9 

decomposition scales (i.e., L1–L9), respectively (Figure 2). 
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2.2. Spectrum Preprocessing Results

The raw spectra were preprocessed with SG, SG-1st, SG-2nd, and SG-CWT with
9 decomposition scales (i.e., L1–L9), respectively (Figure 2).
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To determine the optimal preprocessing method, the SVR models were developed
using the full preprocessed spectral dataset, and then R2 and RMSE were evaluated. As
shown in Table 1, the optimal method was SG–CWT (L5) with an R2 of 0.9998 and RMSE of
0.0059. Moreover, compared to SG-2nd that was the second-best method, SG–CWT (L5) can
improve RMSE by 21.33% and R2 by 0.02%. In addition, the results verified that SG–CWT
(L1−L9) was able to gradually amplify the insignificant characteristic peaks and valleys
in the spectral curves at low decomposition scales, thus highlighting the local differences
(Figure 2). However, increasing decomposition scale led to too smooth spectral curves,
and hence, some inconspicuous feature peaks and valleys were gradually removed, which
increased the difficulty of capturing spectral feature information. It was demonstrated
that CWT can effectively smooth the data and reduce noise at low decomposition scales.
Therefore, SG–CWT (L5) was adopted to preprocess spectra for the following parts.

Table 1. Evaluation indicators of pre-processing results.

Pre-Processing Methods
Transmission Spectrum

R2 RMSE

FS 0.9913 0.0310
SG 0.9913 0.0310

SG-1st 0.9973 0.0173
SG-2nd 0.9996 0.0075

SG–CWT (L1) 0.9944 0.0249
SG–CWT (L2) 0.9974 0.0173
SG–CWT (L3) 0.9989 0.0117
SG–CWT (L4) 0.9995 0.0082
SG–CWT (L5) 0.9998 0.0059
SG–CWT (L6) 0.9923 0.0290
SG–CWT (L7) 0.9902 0.0328
SG–CWT (L8) 0.9888 0.0350
SG–CWT (L9) 0.9814 0.0452

2.3. Feature Wavelength Screening Results

Four kinds of wavelength screening methods, including CARS, SPA, BOSS, and IVSO,
were used to select the feature wavelengths from the full spectrum with SG–CWT (L5)
preprocessing. As a result, CARS, SPA, BOSS, and IVSO screened 27, 28, 30, and 48 feature
wavelengths, respectively, effectively reducing the number of wavelengths to 1.31%, 1.35%,
1.45%, and 2.32% of the full spectrum (2068 wavelengths).

To determine the optimal feature wavelength screening method, the SVR and RF-based
models were established using full spectrum (FS) and the feature wavelengths screened
by CARS, SPA, BOSS and IVSO, respectively. Then, the evaluation criteria of different
models were compared in Figure 3. The results demonstrated that the IVSO method was
the most appropriate for feature wavelength screening, trailed by BOSS and CARS, while
SPA was the least suitable. Furthermore, the results indicated that the use of IVSO-RF
provided the optimal performance for quantifying the percentage of adulterant in Camellia
oil adulterated with corn, peanut, or rapeseed oils. However, for Camellia oil adulterated
with soybean oil, the best performance was achieved using the IVSO-SVR combination.

To further clarify the advantages of IVSO compared to other methods, the distribution
characteristics of the screened wavelengths were analyzed (Figure 4). The wavelengths
extracted by CARS, BOSS, and IVSO were predominantly in the Vis band, while SPA had
comparable numbers of wavelengths among the UV, Vis and NIR bands. Specifically, CARS,
BOSS, and IVSO concentrated the feature wavelengths on two characteristic peak and val-
ley positions at approximately 510 nm and 660 nm. In contrast, the feature wavelengths
generated by SPA were primarily concentrated at both ends of the spectrum, where exces-
sive noise interference could render SPA a distinct disadvantage over the other methods.
In addition, IVSO showed better clustering characteristics than CARS and BOSS in the
Vis band.
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2.4. Model Development

In this study, we developed an SVR model to predict the adulteration content of
soybean oil mixed with Camellia oil, and three RF models to measure adulteration with
corn, peanut, and rapeseed oils, respectively, according to the results shown in Figure 3.

Moreover, to further enhance the prediction ability of the proposed models, the main
parameters in SVR and RF models, as presented in Table 2, were optimized. Specifically,
the SVR model determined the optimal penalty factor c and the kernel function γ by the
grid search method that minimized 10-fold cross-validation error. Moreover, the RF models
attained the optimal number of decision trees n by using the particle swarm optimization
algorithm, which was run with a particle dimension of 2, population size of 30, and
maximum 100 iterations. The performance of both SVR and RF models were also shown in
Table 2.

Table 2. The optimal parameters and evaluation criteria for SVR and RF models.

Model Adulteration Category Parameter Selection
Calibration Set Prediction Set

R2
c RMSEC R2

p RMSEp

IVSO-SVR soybean oil c = 9.1896; γ = 0.0039 0.9926 0.0261 0.9925 0.0325
IVSO-RF corn oil n = 17 0.9975 0.0171 0.9845 0.0398
IVSO-RF peanut oil n = 17 0.9927 0.0308 0.9674 0.0585
IVSO-RF rapeseed oil n = 14 0.9977 0.0164 0.9937 0.0267

As presented in Table 2, it was apparent that the parameter-optimized models signifi-
cantly outperformed their unoptimized counterparts (Figure 3). Additionally, the SVR and
RF models demonstrated no signs of underfitting or overfitting.

Next, a detailed analysis of each of the four models was presented. The analysis
utilized the evaluation criteria for prediction sets and provided insight into each model’s
performance. The R2

P values indicated that the parameter-optimized models performed
better in each of the four types of adulterated oils. Specifically, in the case of Camellia oil
adulterated with soybean oil, the parameter-optimized IVSO-SVR model achieved a higher
R2

P of 0.9925 (an improvement of 0.13%), and a lower RMSEP of 0.0325 (a decrease of 8.96%)
compared to the unoptimized IVSO-SVR model (0.9912 and 0.0357, respectively). The same
trend held true for the parameter-optimized IVSO-RF model in the other three types of
adulterated oils, exhibiting an increase in R2

P of 0.92% to 0.19% and a decrease in RMSEP
of 10.14% to 18.94% when compared to unoptimized models.

Figure 5 illustrates that the predicted adulteration content of soybean, corn, peanut
and rapeseed oils all agreed well with actual ones in terms of prediction sets. Therefore,
these results strongly indicated that the developed models can greatly assist in quantifying
the adulteration content in Camellia oil with high precision and reliability. Furthermore,
the performance of the developed models was compared with that of other spectroscopic
quantitative techniques including Vis-NIR [19], Fourier transform infrared (FTIR) [22] and
UV-Vis [15] (Table 3). It was observed that our models demonstrated comparable predictive
capabilities, while providing a broader range for adulteration ratios.

2.5. Wavelength Characteristics Study

In order to further emphasize the applicability of the models established in this study
and the rationality of the selected feature wavelengths, three representative wavelengths
among the feature wavelengths proposed by IVSO were analyzed by significance test and
Pearson correlation coefficient. They were 313.759 nm in the UV band, 486.401 nm in the
Vis band, and 929.144 nm in the NIR band. The significance coefficients ρ for these three
wavelengths were all less than 0.05, and therefore, possessed the significance of Pearson
correlation analysis for the study [23].
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Table 3. Comparison with relevant previous research results.

Authentication Categories Spectroscopy Range of Adulteration R2
P Refs

Sesame oil adulterated with soybean oil
Vis-NIR 10–90%

0.9966
[19]Rapeseed oil adulterated with soybean oil 0.9968

Camellia oil adulterated with rapeseed oil FTIR 0–50% 0.9805–0.9959 [22]

Extra virgin olive oil adulterated with
safflower, corn, soybean, canola,

sunflower and sesame oil
UV-Vis 1–20% 0.94–0.99 [15]

Camellia oil adulterated with soybean oil

UV-Vis-NIR 1–90%

0.9925

This studyCamellia oil adulterated with corn oil 0.9845
Camellia oil adulterated with peanut oil 0.9674

Camellia oil adulterated with rapeseed oil 0.9937

We compared the Pearson correlation coefficients across three bands for Camellia oil
adulterated with four oils (Figure 6). It was found that the absolute values of coefficients
|R| were all greater than 0.5. This suggested there were some correlations between the ab-
sorbance and adulteration content. Furthermore, Figure 6 displays the Pearson correlation
coefficient of absorbance and adulteration content in decreasing order of strength from Vis,
NIR, and UV. This supports the possibility that the inadequate number of Vis wavelengths
may have an adverse effect on the predictive capability of the SPA algorithm.
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Specifically, Camellia oil that is adulterated with soybean oil (Figure 6a–c) exhibited
negative correlation across all three wavelengths with an R value less than −0.94. This
implied that accurate prediction of the adulteration content of soybean oil can be made
in the wavelength bands of 200–1100 nm. Next, the Camellia oil adulterated with corn oil
(Figure 6d–f) displayed negative correlation in all three bands. The Vis and NIR bands
showed a high level of correlation (with R value less than −0.90), whereas the UV band
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demonstrated a moderate correlation with an R value of −0.671. This indicated that the
Vis and NIR bands contained more feature information than the UV band. In addition, the
adulteration of Camellia oil with peanut oil (Figure 6g–i) displayed positive correlation for
the UV and Vis wavelengths, but showed negative correlation in the NIR band. R values of
0.989 (very strong correlation), −0.759 (strong correlation), and 0.535 (moderate correlation)
were obtained for the Vis, NIR, and UV bands, respectively. This indicated that the Vis
wavelength contained more sensitive information in the adulteration of peanut oil. Last,
in the instance of Camellia oil that is adulterated with rapeseed oil (Figure 6j–l), negative
correlation was observed across all three bands, with Vis and NIR bands exhibiting very
strong correlation (R values less than −0.82), while a strong correlation (R value of 0.754)
was exhibited by the UV band. This demonstrated that the prediction ability of the Vis and
NIR bands was stronger than that of the UV band in the case of rapeseed oil adulteration.
In summary, the IVSO-based feature extraction method was demonstrated to be robust.

3. Materials and Methods

The overall research process diagram is shown in Figure S1 of Supplementary Material.

3.1. Samples Preparation

Five different types of oils were purchased from the local supermarkets in Changsha,
China, including Camellia, soybean, rapeseed, corn, and peanut oils. All oils used during
the test were within the shelf life.

Soybean, rapeseed, corn and peanut oils were blended into Camellia oil at different
blend ratios to prepare adulterated samples. The proportion of blend was 1%, 3%, 5%,
7%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% respectively. Four samples were
prepared for both each blend ratio of the adulterated samples and five kinds of pure oils.
Consequently, the number of test samples in each set of adulterated oil samples reached 64,
while the total number of samples in this study was 256. For preparation, the mixed oil
samples were placed in a magnetic mixer and stirred at 35 ◦C for 1 h, followed by a low
temperature resting period of 24 h.

3.2. Experimental Platform

An experimental platform (Figure 7) for collecting transmission spectra was composed
of a dark box, a cuvette holder, two probe holders, two optical fibers, a spectrometer
(OceanView Maya2000 pro, OceanView Company of the United States, Phoenix, AZ, USA),
and a light source (HL1000 tungsten halogen lamp, Wen Yi Optoelectronics Technology
Co., Shanghai, China). The spectra were collected by OceanView spectroscopy software.
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The spectrometer has a spectrum scan range of 200–1100 nm, and was configured
to the spectrum integration time of 32 ms and a number of scans of 100. Prior to the
experiment, the spectrometer was preheated for 40 min. The mean value was obtained by
measuring the same sample three times and calculating the average. The absorbance of the
samples was calculated by Equation (1).

Aλ = −Log10

(
Sλ−Dλ
Rλ−Dλ

)
(1)

where Aλ is the absorbance, Sλ is the intensity of the collected sample spectrum, Dλ is the
background intensity of the dark spectrum, and Rλ is the intensity of the empty cuvette
reference spectrum.

3.3. Spectrum Preprocessing

The spectrum acquisition process is highly susceptible to interference from the external
environment or its own internal instability, thus causing confusion and loss of valid infor-
mation in the spectrum data. To improve the model accuracy, Savitzky–Golay (SG), SG-1st,
SG-2nd, and SG-multi-decomposition scale Continuous Wavelet Transform (CWT) were
used to preprocess the raw spectra in this study. SG smoothing can effectively improve
the signal-to-noise ratio and also has a significant effect on reducing random noise. In this
study, the window size for the SG was set to 15 and the polynomial degree was set to 2.
Setting the window size too large would lead to excessive smoothing of the spectrum curve,
while setting it too small would result in ineffective noise removal [24]. First-order and
second-order derivative processing are effective methods for resolving overlapping peaks
and eliminating background noise [24]. CWT has the property of refining weak information
to highlight localization and can effectively enhance spectrum feature information, and
has been applied in noise reduction, de-contextualization, and compression of spectrum
data [25,26]. The decomposition scales in CWT were set to 2, 22, 23, 24, 25, 26, 27, 28, and
29, which were chosen as the mother wavelet functions for the identification of the dopant
content spectra. For simplification, the nine decomposition scales were designated as L1–L9,
respectively [25,26].

The preprocessed spectra were brought into the SVR prediction model, and then
the optimal preprocessing method was selected by comparing the evaluation criteria of
coefficient of determination (R2) and root mean square error (RMSE).

3.4. Feature Wavelength Selection Method

The full spectrum has 2068 wavelengths, and the number of redundant wavelengths
affects the accuracy and speed of model predictions. To simplify the prediction model,
the feature wavelengths of the preprocessed data were selected by Competitive Adaptive
Reweighted Sampling (CARS), Successive Projections Algorithm (SPA), Bootstrapping Soft
Shrinkage (BOSS), and Iteratively Variable Subset Optimization (IVSO), respectively.

CARS screens the subset of wavelengths with the smallest root mean square error
of cross-validation (RMSECV) as the feature wavelength set with a 10-fold interaction
validation cycle [27]. The number of Monte Carlo runs was set to 100 in this study, and 80%
of the samples were taken each time as the calibration set.

SPA minimizes the spectrum data dimensionality by reducing the number of input
features [28]. The range of the number of wavelengths after setting the SPA downscaling in
this study was from 1 to 40.

BOSS continuously adjusts the weights of each wavelength by weighted autonomous
sampling (WBS), which can achieve optimal shrinkage of wavelength space [29]. The
number of bootstrap samples was set to 1000 in this study.

IVSO simulates the competitive process by weighted binary matrix sampling (WBMS)
and sequential addition to progressively reduce the number of useless and interfering
information wavelengths [30]. The number of WBMS samples was set to 1000 in this study.
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3.5. Models

Support Vector Regression (SVR) and Random Forest (RF) algorithms were utilized to
develop the rapid quantitative model of adulterated Camellia oil based on extracted feature
wavelengths. Before constructing models, the Kennard–Stone (K–S) algorithm [31] was
used to divide the datasets into two segments in a 2:1 ratio, resulting in 43 samples in
calibration set and 21 samples in prediction set for each type of adulterated oil samples.
Furthermore, the model’s performance was improved through the use of a parameter
search method.

SVR constructs the optimal hyperplane to solve the optimal solution by selecting
different kernel functions so that the features are mapped to the high-dimensional space.
The radial basis function in the kernel function is a nonlinear projection that can cope better
with the nonlinear relationship between the label and the predictor variables [32]. In this
study, the radial basis function was chosen as the kernel function to develop the SVR model
for the fast prediction of adulteration content within Camellia oil. The penalty factor c and
kernel function γ within the SVR model were optimized using the grid search method [33]
to improve its ability to predict adulteration content within Camellia oil.

RF is an ensemble learning method that utilizes decision trees to make a collective
decision, where the majority vote determines the final results [34]. The number of decision
trees is a crucial parameter that influences the accuracy of RF. To improve the performance of
RF model in predicting the adulterated content of Camellia oil, a particle swarm optimization
algorithm [35] was utilized to determine the optimal number of decision trees.

3.6. Model Evaluation

This study evaluated the performance of the developed models by using the coefficient
of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) [36],
which were defined as Equations (2)–(4), respectively. The accuracy of the models was
measured by R2, which ranges from 0 to 1. A lower value of RMSE indicates a better agree-
ment between the predicted and actual adulteration content. Moreover, MAE is a better
measure than RMSE for evaluating model accuracy in the presence of outliers. In addition,
the calibration set results in the evaluation criteria are expressed as R2

C, RMSEC, MAEC, re-
spectively, while the prediction set results are expressed as R2

P, RMSEP, MAEP, respectively.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (2)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (4)

where, y and ŷ denote real and predicted adulteration content, respectively; y denotes the
corresponding average value.

In addition, to investigate the robustness of the extracted feature wavelengths, Pearson
correlation coefficient (R), defined as Equation (5) [37], was adopted to analyze the relation-
ships between the absorbance and adulteration content under certain feature wavelengths.
Herein, Pearson correlation coefficients ranging from−1 to 0 indicate a negative correlation
between adulteration content and absorbance, while the values from 0 to 1 denote a positive
correlation. Moreover, the coefficients closer to 1 or −1 demonstrate a strong correlation.

R =
∑n

i=1(x i − x)(y i − y)√
∑n

i=1 (x i − x)2
√

∑n
i=1 (y i − y)2

(5)

where x and y are the absorbance and adulteration content, respectively; x and y are the
corresponding average values.
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4. Conclusions

This study used UV-Vis-NIR transmission spectroscopy to quantitatively predict the
content of soybean, rapeseed, peanut, and corn oils blended into Camellia oil. A transmis-
sion spectroscopic test platform was built to collect the spectra of oil samples that consisted
of Camellia oil mixed with four different edible oils at varying ratios. First, we compared
the preprocessing results produced by SG–CWT at different decomposition scales (L1–L9)
and obtained SG–CWT (L5) as the best preprocessing method. After preprocessing the
full spectra, we used CARS, SPA, BOSS, and IVSO algorithms to obtain the feature wave-
lengths. Out of these, the IVSO algorithm extracted the most helpful feature wavelengths in
improving the model’s prediction accuracy. Notably, the Vis band had the largest number
of these feature wavelengths. Next, four distinct quantitative models using SVR or RF
models were established, respectively, for predicting the adulteration content of soybean,
corn, peanut and rapeseed oils in Camellia oil. The results showed that SVR model was
most suitable for Camellia oil mixed with soybean oil, while RF models were appropriate
for Camellia oil adulterated with corn, peanut and rapeseed oils, respectively. Specifically,
the SVR model for soybean oil adulteration had R2

p of 0.9925, RMSEp of 0.0324 and MAEp

of 0.0171. Similarly, the RF models had R2
p of 0.9845, RMSEp of 0.0398 and MAEp of 0.0282

for corn oil adulteration, R2
p of 0.9674, RMSEp of 0.0585 and MAEp of 0.0267 for peanut

oil adulteration, and R2
p of 0.9937, RMSEp of 0.0267 and MAEp of 0.0155 for rapeseed oil

adulteration. Finally, the feature wavelengths proposed by IVSO were subjected to both
a significance test and Pearson correlation analysis. The results showed that the correla-
tion between adulteration content and absorbance was strongest for the Vis wavelength,
followed by the NIR wavelength and then the UV wavelength. This order of correlation
strength indicates that the feature wavelengths extracted by IVSO are reliable. Overall,
this study provides valuable references for the development of a low-cost spectroscopic
quantification device for adulterated Camellia oil.
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