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Abstract: The adsorption behaviors of CO and H2 to FeO onto CaO surfaces have been studied
using the density functional theory (DFT) to determine the reactions of FeO by CO and H2. The
adsorption mechanisms of FeO clusters on the CaO(100) and CaO(110) surfaces were calculated first.
The structure of the Ca(110) surface renders it highly chemically reactive compared with the Ca(100)
surface because of low coordination. After gas adsorption, CO bonds to the O atom of FeO, forming
CO2 compounds in both configurations through the C atom. H2 favors the O atom of FeO, forming
H2O compounds and breaking the Fe-O bond. Comparing the adsorption behavior of two reducing
gases to FeO on the Ca surface, the reaction of the CO molecule being adsorbed to generate CO2

compounds is exothermic. The reaction of H2 molecule adsorption to generate H2O compounds is
endothermic. This property is essential for the inertial-collision stage of the reduction. However, the
dissociation of the CO2 compound from the reaction interface will overcome a high energy barrier
and slow down the reduction. The H2O compound dissociates from the surface more easily, which
can accelerate the reduction.

Keywords: density functional theory; adsorption; H2 and CO; FeO; CaO surface

1. Introduction

A large amount of carbon dioxide is emitted by the carbon reduction of iron ore in
the ironmaking process. The steel industry faces enormous environmental pressures. The
dominant blast furnace ironmaking process in the steel industry relies on carbon-based
fuels for energy and reducing agents, resulting in large amounts of CO2 emissions into the
environment. A key area for scientific research is the replacement of carbon with hydrogen
in green metallurgical technology. The hydrogen-enriched reduction process can use a
high percentage of hydrogen to reduce iron ore to metallic iron. The product is H2O,
which reduces the CO2 gas generated by carbon-based reduction [1–6]. The contradiction
between the increased requirements for iron ore quality and the deterioration of iron ore
quality in the hydrogen-enriched reduction process is becoming increasingly prominent.
This is a common problem that the current ironmaking process must face. An enhanced
understanding of iron oxides in the hydrogen-based reduction process is the basis for
solving this problem.

There are a wealth of studies dedicated to developing an experimental understanding
of the iron oxide reduction behaviors of CO and H2 [7,8]. Bahgat et al. [9] explored the
reduction of Fe3O4 single crystals by H2 and measured an activation energy of 99 kJ mol−1.
The reaction rate slowed down at 900 and 950 ◦C at 83% and 89% reduction, respectively,
indicating rate limitation by solid-state diffusion. Chen [10] demonstrated the isotherm
reduction of Fe2O3 with a fluidized bed and measured the activation energy required
for the reduction to FeO and Fe at 83.6 and 80.4 kJ mol−1, respectively. Bondale [11]
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explored the isotherm reduction of Fe2O3 pellets with H2/H2–CO mixtures. It was found
that the reduction with pure H2 was faster compared with CO and gas mixtures and
both the restrictions arising from the decrease in CO content as well as those related
to gas diffusivity were revealed. Kim et al. [12] investigated the kinetics of cylindrical
compacts of magnetite (Fe3O4) with H2 and H2–H2O (g) mixtures. The initial reduction
rate increases with H2 partial pressure. However, as the reduction proceeds, an iron
layer is formed and the rate decreases significantly. The thermodynamic analysis of the
reduction shows that hematite (Fe2O3) reduction by CO and H2 leads to microstructural
evolution [7,9]. Prior reports have indicated three steps: Fe2O3→Fe3O4→FeO→Fe. The
reduction process leads to the formation of several cracks and holes in the process of
microstructural transformation [13–15]. In addition, the control step of the generation of
iron whiskers is the reduction of FeO to Fe. Moreover, when comparing the reduction
behavior of CO and H2 gases on iron oxide, the reduction rate of H2 is higher than that of
CO. The smaller size of the hydrogen atom favors the diffusion of the reducing gas, leading
to a kinetically favorable reduction [16]. The current understanding of hydrogen-based
direct reduction is limited to the macroscopic description and rate analysis of the reduction
process. The microscopic reaction mechanism and electronic structure properties of iron
oxides still lack scientific knowledge and evaluation. The mechanism of the competitive
reduction of iron oxide by CO and H2 is not clear. Previous studies have demonstrated that
the addition of CaO can control the basicity of blast furnace slag [17]. Meanwhile, CaO
covers the surface of iron ore powder to increase the separation effect [18] and avoid the
sponge iron surface reduction generated by the iron whiskers and thus leads to the sticking
problem in the fluidized bed reduction process [19,20]. However, the conversion of the
CaO and Fe2O3/FeO phase to the CaO–FeO phase at their interface is confirmed using
SEM/EDS measurements. FeO is sensitive to CO and H2; therefore, the CaO–FeO phase
behavior and reduction is interesting. Zhao et al. [21] investigated the reduction properties
of Fe2O3 with different CaO contents in a CO atmosphere using thermogravimetric analysis.
This study suggested that the doped Ca catalyzes the reduction of Fe2O3 by destroying the
crystal structure and facilitating the diffusion of O2, especially as the decomposition of the
FeO phase into Fe occurs [22]. The protective effect of CaO is reduced.

The density functional theory (DFT) has been used to explore the reduction of iron
oxides. Zhong et al. [16] investigated the adsorption behavior of CO and H2 on the surface
of FeO using DFT calculations to explore the reduction mechanism. The CO molecule
binds to the O atom of the FeO surface to generate a C–O bond to produce CO2. When
H2 adsorbs to the surface of FeO(110), the H2 molecule dissociates, forming an O–H bond
and an Fe–H bond. For the adsorption of H2 onto the FeO(111) surface, H2 adsorbs to the
O top of the FeO(111) surface and H2O is generated. In addition, Zhong [23] used DFT
to show that CaO and MgO surfaces promote the binding of FeO to CO. Dong et al. [24]
used thermogravimetric analysis (TGA) experiments and DFT to investigate the reduction
of iron oxide, and the results indicate that the reduction of Fe2+ to Fe is the control step.
Sun et al. [25] studied the adsorption of H2 on the Fe3O4 surface and showed that H atoms
are more likely adsorb to the O atom on the surface of Fe3O4 rather than to Fe atoms.
Zhong used DFT theory to investigate the promotion of CaO and MgO surfaces due to
their relatively larger binding energies for the binding of CO to FeO.

The experimental results were used to study the thermodynamics and kinetics in-
volved in the reduction of iron oxide with CO and H2, explaining the limiting step in the
reaction. However, in practice, the competitive reduction mechanism of iron oxide by
CO and H2 is not clear. More than one single CaO surface can take part in the reduction
of iron oxide processes. An atomistic insight into reducing agents’ absorption and the
dissociation of product on the CaO surface is desirable. Here, theoretical work with the
DFT was dedicated to study the reactions of FeO by CO and H2 on CaO surfaces on the
atomic scale.
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2. Results and Discussion
2.1. Adsorptions of FeO to CaO Surfaces

Recent studies [26,27] have shown that iron oxide can be represented by clusters of
FeO, Fe2O2, Fe3O4, and Fe2O3 to study the mechanism of its reduction by CO. A single
Fe–O bond is the basic structure of complex iron oxides. Therefore, we use the FeO cluster
to illustrate the effect of CaO on the reduction of FeO by CO and H2.

The interaction of CO2 with the CaO(100) surface and the CaO(110) surface was
calculated by placing the FeO cluster onto three adsorption sites: O top, Ca top, hollow, and
bridge. The all-adsorption configurations were also tested. Considering the FeO clusters
and the CaO surface structure, the Fe atom prefers to approach the O top site on the CaO
surface, while the O atom of FeO is the most energetically favorable binding partner for
the Ca atom. The optimized geometry of FeO adsorption onto the CaO surface is shown
in Figure 1. At the interface, the bond distances of Fe–O and O–Ca are 2.30 Å and 1.90 Å,
respectively. The binding energy of these configurations is −2.32 eV, respectively. Zhong
showed that the bond lengths of the FeO clusters adsorbed on CaO(100) are 2.36 Å and
1.83 Å, with a binding energy of 2.58 eV. These values are comparable to those reported by
Zhong [23]. The calculated Fe–O bond length on the CaO(100) and Ca(110) surfaces are
1.74 Å and 1.86 Å, respectively, which are longer than the Fe–O bond length (1.70 Å) in
the free FeO cluster. The binding energy of B is −5.91 eV. Large negative binding energies
were obtained for the Ca(110) surface indicating more stable complexes because of the low
coordination of the top adsorption site.
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Figure 1. Top and side views of the optimized structure of FeO on the Ca(100) surface (A) and Ca(110)
surface (B),where yellow, red, and blue balls represent the Fe, O, and Ca atoms, respectively.

2.2. Adsorptions of CO and H2 to FeO onto the CaO Surfaces

Stable adsorption configurations and the corresponding adsorption energies of CO
and H2 to FeO onto the CaO surfaces are shown in Figure 2. In configuration A in Figure 3,
the CO is captured by the FeO cluster, breaking the Fe–O bond and forming a new C–O
bond (1.23 Å). The O of the CO adsorbs to the Fe atom (1.97 Å). For structure B, the C
atom can move closer to the O and Fe atoms, forming new C–O and C–Fe bonds with
bond lengths of 1.91 Å and 1.20 Å, respectively. At the same time, the O–Fe bond is broken
and the C−O bond length of the CO is stretched to 1.28 Å. Our calculations predict that
configurations A and B of the binding energies are −1.32 eV and −1.63 eV, respectively,
which indicates considerable interaction between CO and FeO. The bonding of H2 to FeO
on the surface of CaO(100) is illustrated in Figure 2C,D. In configuration A, adsorption of
the H2 molecule leads to a non-negligible change in the FeO geometry, that is, the O–Fe
bond of the FeO molecule is broken and the O atom is bound to two H atoms to form H2O
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compounds. The bond length between H and O, 0.98 Å, is similar to the distance between
two atoms in a free water molecule (0.96 Å). For structure D, the H2 is dissociated and
adsorbed to form a new H–O bond and H–Fe bond with bond lengths of 0.97 Å and 1.65 Å,
respectively. The O–Fe bond is extended to 1.92 Å. The binding energies of configuration
C and D are −0.74 eV and −2.03 eV. Figure 2E,F shows the binding of CO and H2 with
FeO on the CaO(110) surface. In configuration E, CO molecules are adsorbed to form a
C–O bond (1.36 Å) and C–Fe bond (2.06 Å), in which the adsorption energy is −0.70 eV.
The distance between the O and Fe atoms extended to 2.78 Å and the O–Fe bond is broken.
The adsorption of H2 to FeO on CaO(110) surface is illustrated in Figure 2F. H2 adsorbs to
FeO, breaking the H–H bond and forming a new H–O bond (0.97 Å) and a new H–Fe bond
(1.75 Å). The binding energy is −1.31 eV.
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Figure 3. PDOS of adsorption configurations A, B, C, and E in Figure 2. The Fermi level is
located at 0 eV.

2.3. Partial Density of States

The adsorption of CO/H2 onto FeO to generate surface active compounds is the crucial
step for reduction. Considering the structures of adsorbate and adsorbent, three CO–FeO
configurations (C bond to the O atom of FeO forming CO2 compounds) and one H2–FeO
configuration (H bond to the O atom of FeO forming H2O compounds) were explored to
investigate the interaction mechanism. The partial state density (PDOS) of configurations
A, B, C, and E were calculated, as shown in Figure 3.

In configurations A, B, and D of Figure 3, after the adsorption of CO on the FeO
configuration, C 2s, C2p, O 2s, and O 2p of FeO shift to lower energies below the Fermi
energy level and overlap in the range of −5 eV to −0.04 eV, indicating stronger interactions
between them. The appearance of these overlapping peaks is related to the formation of the
CO2 compound. In addition, it is clear that a strong resonance between the Fe 3d orbital
peak and the C 2s and 2p orbital peaks is related to the formation of the C–Fe bond in
configuration B and E. In configuration C, H 1s and O 2p overlap at energies near −1.9 and
−1.6 eV, suggesting that s–p hybridization forms covalent bonds. In addition, there are
some resonance peaks, which occur at energies above the Fermi level, between the C 2p
and the O 2p for all these configurations, indicating the antibonding interactions between
the C atoms and the O atoms. Combining structural analysis and electronic properties, CO
and H2 is chemisorbed on O of FeO.

2.4. Charge Transfer

Figure 4 shows that the Löwdin charge analysis of CO molecules or H2 molecules
bond to FeO on the Ca(100) surface. For configuration A, the Löwdin populations for O(1),
C, Fe, and O(2) are 2s1.622p4.72, 2s0.992p2.50, 4p0.513d6.584s0.67, and 2s1.64 2p4.70, respectively,
while the atomic population distribution before CO adsorption are 2s1.642p4.45, 2s1.642p2.10,
4p0.663d6.384s0.51, and 2s1.742p4.91, respectively. Changes in population for the 3d orbital
and 4s orbital of Fe enable the acceptance of electrons after adsorption, which shows that
there are interactions between CO and Fe atoms. For configuration A and similarly for
configuration B, the Löwdin population for Fe is 4p0.793d6.464s0.59, which shows that Fe
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accepts electrons after adsorption. In configuration D in Figure 4, the Löwdin populations
for O(1), C, Fe, and O(2) are 2s1.672p4.68, 2s0.992p2.64, 4p0.863d6.334s0.54, and 2s1.672p4.68,
respectively, while the atomic population distributions before CO adsorption are 2s1.642p4.45,
2s1.642p2.10, 4p0.833d6.304s0.46, and 2s1.732p5.12, respectively. The 4p orbital, 3d orbital, and
4s orbital of Fe accept electrons after adsorption, while the populations of the C 2s orbital
and the 2p orbital are decreased. Therefore, FeO and CO act as electron acceptors and
electron donors in the FeO-CO bond system, respectively. The rearrangement of electrons
after adsorption indicates that a covalent bond is formed between CO and FeO.
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For the H2–FeO system (configuration C), the population of H and O is 1s0.62. The
rearrangement of electrons is due to the transfer of electrons from the H atom to the O
atom, forming two H–O bonds. This chemical adsorption of the O atom by H2 produces
compounds of H2O.

2.5. Reaction Path of FeO by CO and H2 Molecule

The reaction path of FeO by CO and H2 molecule on the CaO(100) surface can be
described as the following process, involving sequential steps: firstly, FeO clusters are
adsorbed on the Ca(100) surface to form new Fe–O bonds and O–Ca bonds (S–FeO+ CO/H2
state) with a binding energy of 2.32 eV (Figure 5). In the process of the reduction of FeO
by CO, the CO molecule is adsorbed to generate CO2 compounds (S–FeO–CO state). The
reduction process of FeO is similar to the ones reported for the FeO cluster on the CaO(100).
Subsequently, The S–FeO–CO (IS) needs to cross through the 0.63 eV barrier to S–FeO–
CO2(TS), and CO2 gas is then dissociated in an exothermic process (0.40 eV), as shown
in Figure 6. In the reduction of FeO by H2 (Figure 5), the O–Fe bond of the FeO cluster is
broken and the O atom is bound to two H atoms, crossing the energy barrier of 1.63 eV to
experience an endothermic process to form the H2O compounds (S–Fe–H2O state). Finally,
the H2O compound experiences an endothermic process (0.36 eV) to form the H2O gas
(S–Fe+ H2O state).

Comparing the adsorption behavior of two reducing gases with FeO on the CaO(100)
surface, the binding energy of the CO molecule is more negative and H2 needs to cross
through a barrier to absorb FeO. The CO molecule is adsorbed to generate CO2 compounds
in an exothermic reaction. The H2 molecule is adsorbed to generate H2O compounds in
an endothermic reaction, indicating that the CO molecule is more easily captured than
the H2 molecule. This property is essential for the inertial–collision stage of the reduction.
Secondly, the energy barrier for the CO2 compound’s dissociation from the substrate
indicates the greater difficult posed by dissociation. In the later stage of the reduction,
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the reaction is limited by both interfacial chemical reactions and gas diffusion. H2 has an
advantage at this stage because the product of H2 dissociates from the FeO more easily
than that of CO. In addition, the reduction of iron oxide by CO and H2 is the gas–solid
heterogeneous reaction. Initially, the reactant gas reacts with the external surface and
moves progressively inside incrementally. Compared with CO2 molecules, the smaller
diameter of H2O molecules enhances diffusion and separation towards the interior of iron
oxide, thereby accelerating the reaction. Our results reveal that the reduction of FeO by H2
is controlled by adsorption steps. High temperature has a positive effect on the adsorption
of H2. In addition, the separation of CO2 and H2O from the reaction interface leads to the
conversion from FeO to metallic iron, which is the final step of the iron oxide reduction
reaction. CaO promotes the reduction of FeO into Fe by H2 at high temperatures, and then
metallic iron accumulates to form iron whiskers.
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3. Materials and Methods

Our first principles calculations were performed using the Quantum ESPRESSO
package, adopting the spin–polarized plane-wave density functional theory [28]. The
electronic structure was modeled by Generalized Gradient Approximation (GGA) with
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the Perdew–Burke–Ernzerhof (PBE) functional. Projector Augmented Wave (PAW) was
employed to represent the interactions between the electrons and the ions. The cutoff
energy was 50 Ry for the wavefunction and 500 Ry for the charge density [29]. The
4 × 4 × 1 Monkhorst–Pack grid was used for sampling the Brillouin zone. In order to
realize the effect of the 3d state of Fe [30], the GGA + U method with U = 4.2 eV was used
in all adsorption configurations [31,32]. For the FeO cluster, CO, and H2 optimization, the
periodic slabs were decoupled using a vacuum layer (15 Å) to relax. The Ca(100) surface
and the Ca(110) surface were modeled using periodic slabs of about five atomic layers with
a 2 × 2 supercell, as shown in Figure 6. During optimization, the atoms in the bottom three
layers of the CaO(100) surface and the CaO(110) surface were fixed, whereas the other
layers and adsorbates were allowed to relax. The periodic slabs were decoupled using a
vacuum layer (15 Å) to eliminate interaction between two adjacent slabs. The three bottom
CaO(100) layers were fixed during relaxation. The optimized Ca–O bond length between
the top two layers was 2.33 Å, which is approximately smaller than the experimental value
of about 0.01%. Both configurations resulted in negligible changes in the geometry of the
CaO(100) surface. The configuration of the fixed bottom three layers was reliable.

The following formula was used to calculate the adsorption energy of all possible
configurations:

Ead = Esys − Esurf − Emol (1)

where Esys, Emol, and Esurf are the energy of the system, the isolated molecule, and the
clean surface, respectively. All the computations were performed using the GPC su-
percomputer at the SciNet HPC Consortium on the Compute/Calcul Canada national
computing platform.

4. Conclusions

The adsorption behaviors of CO and H2 to FeO onto the CaO surfaces have been
determined using density functional theory to study the reactions of FeO with CO and H2.
For the adsorption of FeO onto CaO surfaces, the energy of the adsorption of FeO onto
the CaO(110) surface is higher than that onto the CaO(100) surface. After CO adsorption,
CO bonds to the O atom of FeO, forming CO2 compounds in both configurations through
the C atom. In the adsorption of H2, the H2 adsorbs to FeO, breaking the H–H bond and
forming a new H–O bond and a new H–Fe bond. In addition, H2 favors the O atom of FeO,
forming an H2O compound on CaO surfaces and the Fe–O bond is broken.

Our results reveal the competitive adsorption behavior of FeO by CO and H2 on the
CaO surface. The CO molecule is adsorbed to generate CO2 compounds in an exothermic
reaction. The H2 molecule is adsorbed to generate H2O compounds in an endothermic
reaction. The results indicate that CO is more easily and stably adsorbed on the FeO
than H2, which is essential for the inertial-collision stage of the reduction. However, the
dissociation energy of the CO2 compound from the reaction interface will overcome a
higher energy barrier than that of H2O. In the later stage of the reduction, the reaction is
limited by both interfacial chemical reactions and gas diffusion. H2 has an advantage at
this stage. Therefore, the reduction of FeO by H2 is controlled by adsorption steps. High
temperature has a positive effect on the adsorption of H2. In addition, the separation of
CO2 and H2O from the reaction interface leads to the conversion from FeO to metallic iron,
which is the final step of the iron oxide reduction reaction. CaO promotes the reduction of
FeO into Fe by H2 at high temperatures, and then metallic iron accumulates to form iron
whiskers. Sticking can easily occur in the high temperature ironmaking reduction of fine
iron ore, thereby decreasing the reduction efficiency.
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