Comprehensive Extraction and Chemical Characterization of Bioactive Compounds in Tepals of Crocus sativus L.
Abstract
:1. Introduction
2. Phenolic Compounds
2.1. Flavonoids
2.2. Anthocyanins
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Aleali, A.M.; Amani, R.; Shahbazian, H.; Namjooyan, F.; Latifi, S.M.; Cheraghian, B. The Effect of Hydroalcoholic Saffron (Crocus sativus L.) Extract on Fasting Plasma Glucose, HbA1c, Lipid Profile, Liver, and Renal Function Tests in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Clinical Trial. Phyther. Res. 2019, 33, 1648–1657. [Google Scholar] [CrossRef]
- Broadhead, G.K.; Grigg, J.R.; McCluskey, P.; Hong, T.; Schlub, T.E.; Chang, A.A. Saffron Therapy for the Treatment of Mild/Moderate Age-Related Macular Degeneration: A Randomised Clinical Trial. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 31–40. [Google Scholar] [CrossRef]
- Falsini, B.; Piccardi, M.; Minnella, A.; Savastano, C.; Capoluongo, E.; Fadda, A.; Balestrazzi, E.; Maccarone, R.; Bisti, S. Influence of Saffron Supplementation on Retinal Flicker Sensitivity in Early Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6118–6124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsolaki, M.; Karathanasi, E.; Lazarou, I.; Dovas, K.; Verykouki, E.; Karacostas, A.; Georgiadis, K.; Tsolaki, A.; Adam, K.; Kompatsiaris, I.; et al. Efficacy and Safety of Crocus sativus L. in Patients with Mild Cognitive Impairment: One Year Single-Blind Randomized, with Parallel Groups, Clinical Trial. J. Alzheimer’s Dis. 2016, 54, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Akhondzadeh, S.; Shafiee Sabet, M.; Harirchian, M.H.; Togha, M.; Cheraghmakani, H.; Razeghi, S.; Hejazi, S.S.; Yousefi, M.H.; Alimardani, R.; Jamshidi, A.; et al. A 22-Week, Multicenter, Randomized, Double-Blind Controlled Trial of Crocus sativus in the Treatment of Mild-to-Moderate Alzheimer’s Disease. Psychopharmacology 2010, 207, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Akhondzadeh, S.; Sabet, M.S.; Harirchian, M.H.; Togha, M.; Cheraghmakani, H.; Razeghi, S.; Hejazi, S.S.; Yousefi, M.H.; Alimardani, R.; Jamshidi, A.; et al. Saffron in the Treatment of Patients with Mild to Moderate Alzheimer’s Disease: A 16-Week, Randomized and Placebo-Controlled Trial. J. Clin. Pharm. Ther. 2010, 35, 581–588. [Google Scholar] [CrossRef]
- Farokhnia, M.; Sabet, M.S.; Iranpour, N.; Gougol, A.; Yekehtaz, H.; Roozbeh, A.F.F.; Kamalipour, M.; Akhondzadeh, S. Comparing the Efficacy and Safety of Crocus sativus L. with Memantine in Patients with Moderate to Severe Alzheimer’s Disease: A Double-Blind Randomized Clinical Trial. Hum. Psychopharmacol. 2014, 29, 351–359. [Google Scholar] [CrossRef]
- Bonyadi, M.H.J.; Yazdani, S.; Saadat, S. The Ocular Hypotensive Effect of Saffron Extract in Primary Open Angle Glaucoma: A Pilot Study. BMC Complement. Altern. Med. 2014, 14, 399. [Google Scholar] [CrossRef] [Green Version]
- Kashani, L.; Raisi, F.; Saroukhani, S.; Sohrabi, H.; Modabbernia, A.; Nasehi, A.A.; Jamshidi, A.; Ashrafi, M.; Mansouri, P.; Ghaeli, P.; et al. Saffron for Treatment of Fluoxetine-Induced Sexual Dysfunction in Women: Randomized Double-Blind Placebo-Controlled Study. Hum. Psychopharmacol. 2013, 28, 54–60. [Google Scholar] [CrossRef]
- Modabbernia, A.; Sohrabi, H.; Nasehi, A.-A.; Raisi, F.; Saroukhani, S.; Jamshidi, A.; Tabrizi, M.; Ashrafi, M.; Akhondzadeh, S. Effect of Saffron on Fluoxetine-Induced Sexual Impairment in Men: Randomized Double-Blind Placebo-Controlled Trial. Psychopharmacology 2012, 223, 381–388. [Google Scholar] [CrossRef]
- Agha-Hosseini, M.; Kashani, L.; Aleyaseen, A.; Ghoreishi, A.; Rahmanpour, H.; Zarrinara, A.R.; Akhondzadeh, S. Crocus sativus L. (Saffron) in the Treatment of Premenstrual Syndrome: A Double-Blind, Randomised and Placebo-Controlled Trial. BJOG Int. J. Obstet. Gynaecol. 2008, 115, 515–519. [Google Scholar] [CrossRef]
- Ghaderi, A.; Asbaghi, O.; Reiner, Ž.; Kolahdooz, F.; Amirani, E.; Mirzaei, H.; Banafshe, H.R.; Maleki Dana, P.; Asemi, Z. The Effects of Saffron (Crocus sativus L.) on Mental Health Parameters and C-Reactive Protein: A Meta-Analysis of Randomized Clinical Trials. Complement. Ther. Med. 2020, 48, 102250. [Google Scholar] [CrossRef] [PubMed]
- Fahim, N.K.; Sadat, S.; Janati, F.; Feizy, J.; Branch, Q. Chemical Composition of Agriproduct Saffron (Crocus sativus L.) Petals and Its Safran (Crocus sativus) considerations as animal feed. Gida 2012, 37, 197–201. [Google Scholar]
- Ghanbari, J.; Khajoei-Nejad, G.; van Ruth, S.M.; Aghighi, S. The Possibility for Improvement of Flowering, Corm Properties, Bioactive Compounds, and Antioxidant Activity in Saffron (Crocus sativus L.) by Different Nutritional Regimes. Ind. Crops Prod. 2019, 135, 301–310. [Google Scholar] [CrossRef]
- Jami, N.; Rahimi, A.; Naghizadeh, M.; Sedaghati, E. Investigating the Use of Different Levels of Mycorrhiza and Vermicompost on Quantitative and Qualitative Yield of Saffron (Crocus sativus L.). Sci. Hortic. 2020, 262, 109027. [Google Scholar] [CrossRef]
- Bellachioma, L.; Rocchetti, G.; Morresi, C.; Martinelli, E.; Lucini, L.; Ferretti, G.; Damiani, E.; Bacchetti, T. Valorisation of Crocus sativus Flower Parts for Herbal Infusions: Impact of Brewing Conditions on Phenolic Profiling, Antioxidant Capacity and Sensory Traits. Int. J. Food Sci. Technol. 2022, 57, 3838–3849. [Google Scholar] [CrossRef]
- Jadouali, S.M.; Bouzoubaâ, Z.; Majourhat, K.; Mamouni, R.; Gharby, S.; Atifi, H. Polyphenols Content, Flavonoids and Antioxidant Activity of Petals, Stamens, Styles and Whole Flower of Crocus sativus of Taliouine. Acta Hortic. 2017, 1184, 301–308. [Google Scholar] [CrossRef]
- Andersen, Ø.M. Chemistry, Biochemistry and Applications; Andersen, Ø.M., Markham, K.R., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2006; ISBN 9780849320217. [Google Scholar]
- Tanaka, Y.; Brugliera, F. Flower Colour. In Annual Plant Reviews Volume 20: Flowering and its Manipulation; Blackwell Publishing Ltd.: Oxford, UK, 2007; pp. 199–239. [Google Scholar] [CrossRef]
- Bowles, D.; Lim, E.K.; Poppenberger, B.; Vaistij, F.E. Glycosyltransferases of Lipophilic Small Molecules. Annu. Rev. Plant Biol. 2006, 57, 567–597. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [Green Version]
- Tattini, M.; Remorini, D.; Pinelli, P.; Agati, G.; Saracini, E.; Traversi, M.L.; Massai, R. Morpho-Anatomical, Physiological and Biochemical Adjustments in Response to Root Zone Salinity Stress and High Solar Radiation in Two Mediterranean Evergreen Shrubs, Myrtus communis and Pistacia lentiscus. New Phytol. 2006, 170, 779–794. [Google Scholar] [CrossRef]
- Agati, G.; Cerovic, Z.G.; Pinelli, P.; Tattini, M. Light-Induced Accumulation of Ortho-Dihydroxylated Flavonoids as Non-Destructively Monitored by Chlorophyll Fluorescence Excitation Techniques. Environ. Exp. Bot. 2011, 73, 3–9. [Google Scholar] [CrossRef]
- Orlando, M.; Trivellini, A.; Puccinelli, M.; Ferrante, A.; Incrocci, L.; Mensuali-Sodi, A. Increasing the Functional Quality of Crocus sativus L. by-Product (Tepals) by Controlling Spectral Composition. Hortic. Environ. Biotechnol. 2022, 63, 363–373. [Google Scholar] [CrossRef]
- Li, C.Y.; Lee, E.J.; Wu, T.S. Antityrosinase Principles and Constituents of the Petals of Crocus sativus. J. Nat. Prod. 2004, 67, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Díaz, J.; Estevan, C.; Sogorb, M.Á.; Carmona, M.; Alonso, G.L.; Vilanova, E. Cytotoxic Effect against 3T3 Fibroblasts Cells of Saffron Floral Bio-Residues Extracts. Food Chem. 2014, 147, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian-Kouchaksaraie, Z.; Niazmand, R.; Najafi, M.N. Optimization of the Subcritical Water Extraction of Phenolic Antioxidants from Crocus sativus Petals of Saffron Industry Residues: Box-Behnken Design and Principal Component Analysis. Innov. Food Sci. Emerg. Technol. 2016, 36, 234–244. [Google Scholar] [CrossRef]
- Ahmadian-Kouchaksaraie, Z.; Niazmand, R. Supercritical Carbon Dioxide Extraction of Antioxidants from Crocus sativus Petals of Saffron Industry Residues: Optimization Using Response Surface Methodology. J. Supercrit. Fluids 2017, 121, 19–31. [Google Scholar] [CrossRef]
- Gahruie, H.H.; Parastouei, K.; Mokhtarian, M.; Rostami, H.; Niakousari, M.; Mohsenpour, Z. Application of Innovative Processing Methods for the Extraction of Bioactive Compounds from Saffron (Crocus sativus) Petals. J. Appl. Res. Med. Aromat. Plants 2020, 19, 100264. [Google Scholar] [CrossRef]
- Serrano-Díaz, J.; Sánchez, A.M.; Martínez-Tomé, M.; Winterhalter, P.; Alonso, G.L. Flavonoid Determination in the Quality Control of Floral Bioresidues from Crocus sativus L. J. Agric. Food Chem. 2014, 62, 3125–3133. [Google Scholar] [CrossRef]
- Termentzi, A.; Kokkalou, E. LC-DAD-MS (ESI+) Analysis and Antioxidant Capacity of Crocus sativus Petal Extracts. Planta Med. 2008, 74, 573–581. [Google Scholar] [CrossRef]
- Vignolini, P.; Heimler, D.; Patrizia, P.; Ieri, F.; Sciullo, A.; Romani, A. Characterization of by-products of saffron (Crocus sativus L.) production. Nat. Prod. Commun. 2008, 3, 2061–2064. [Google Scholar] [CrossRef] [Green Version]
- Montoro, P.; Tuberoso, C.I.G.; Maldini, M.; Cabras, P.; Pizza, C. Qualitative Profile and Quantitative Determination of flavonoids from Crocus sativus L. petals by LC-MS/MS. Nat. Prod. Commun. 2008, 3, 1934578X0800301215. [Google Scholar] [CrossRef] [Green Version]
- De Vries, J.H.M.; Hollman, P.C.H.; Meyboom, S.; Buysman, M.N.C.P.; Zock, P.L.; Van Staveren, W.A.; Katan, M.B. Plasma Concentrations and Urinary Excretion of the Antioxidant Flavonols Quercetin and Kaempferol as Biomarkers for Dietary Intake. Am. J. Clin. Nutr. 1998, 68, 60–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, S.E.; Kall, M.; Justesen, U.; Schou, A.; Dragsted, L.O. Human Absorption and Excretion of Flavonoids after Broccoli Consumption. Cancer Lett. 1997, 114, 173–174. [Google Scholar] [CrossRef] [PubMed]
- DuPont, M.S.; Day, A.J.; Bennett, R.N.; Mellon, F.A.; Kroon, P.A. Absorption of Kaempferol from Endive, a Source of Kaempferol-3-Glucuronide, in Humans. Eur. J. Clin. Nutr. 2004, 58, 947–954. [Google Scholar] [CrossRef] [Green Version]
- Nørbæk, R.; Brandt, K.; Nielsen, J.K.; Ørgaard, M.; Jacobsen, N. Flower Pigment Composition of Crocus Species and Cultivars Used for a Chemotaxonomic Investigation. Biochem. Syst. Ecol. 2002, 30, 763–791. [Google Scholar] [CrossRef]
- Goupy, P.; Vian, M.A.; Chemat, F.; Caris-Veyrat, C. Identification and Quantification of Flavonols, Anthocyanins and Lutein Diesters in Tepals of Crocus sativus by Ultra Performance Liquid Chromatography Coupled to Diode Array and Ion Trap Mass Spectrometry Detections. Ind. Crops Prod. 2013, 44, 496–510. [Google Scholar] [CrossRef]
- Righi, V.; Parenti, F.; Tugnoli, V.; Schenetti, L.; Mucci, A. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance. J. Agric. Food Chem. 2015, 63, 8439–8444. [Google Scholar] [CrossRef]
- Zeka, K.; Ruparelia, K.C.; Continenza, M.A.; Stagos, D.; Vegliò, F.; Arroo, R.R.J. Petals of Crocus sativus L. as a Potential Source of the Antioxidants Crocin and Kaempferol. Fitoterapia 2015, 107, 128–134. [Google Scholar] [CrossRef]
- Cusano, E.; Consonni, R.; Petrakis, E.A.; Astraka, K.; Cagliani, L.R.; Polissiou, M.G. Integrated Analytical Methodology to Investigate Bioactive Compounds in Crocus sativus L. Flowers. Phytochem. Anal. 2018, 29, 476–486. [Google Scholar] [CrossRef]
- Lahmass, I.; Lamkami, T.; Delporte, C.; Sikdar, S.; Van Antwerpen, P.; Saalaoui, E.; Megalizzi, V. The Waste of Saffron Crop, a Cheap Source of Bioactive Compounds. J. Funct. Foods 2017, 35, 341–351. [Google Scholar] [CrossRef]
- Xu, S.; Ge, X.; Li, S.; Guo, X.; Dai, D.; Yang, T. Discrimination of Different Parts of Saffron by Metabolomic-Based Ultra-Performance Liquid Chromatography Coupled with High-Definition Mass Spectrometry. Chem. Biodivers. 2019, 16, e1900363. [Google Scholar] [CrossRef]
- Mottaghipisheh, J.; Sourestani, M.M.; Kiss, T.; Horváth, A.; Tóth, B.; Ayanmanesh, M.; Khamushi, A.; Csupor, D. Comprehensive Chemotaxonomic Analysis of Saffron Crocus Tepal and Stamen Samples, as Raw Materials with Potential Antidepressant Activity. J. Pharm. Biomed. Anal. 2020, 184, 113183. [Google Scholar] [CrossRef] [PubMed]
- Caser, M.; Demasi, S.; Stelluti, S.; Donno, D.; Scariot, V. Crocus sativus L. Cultivation in Alpine Environments: Stigmas and Tepals as Source of Bioactive Compounds. Agronomy 2020, 10, 1473. [Google Scholar] [CrossRef]
- Pappas, V.M.; Athanasiadis, V.; Palaiogiannis, D.; Poulianiti, K.; Bozinou, E.; Lalas, S.I.; Makris, D.P. Pressurized Liquid Extraction of Polyphenols and Anthocyanins from Saffron Processing Waste with Aqueous Organic Acid Solutions: Comparison with Stirred-Tank and Ultrasound-Assisted Techniques. Sustainability 2021, 13, 12578. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron Processing Wastes as a Bioresource of High-Value Added Compounds: Development of a Green Extraction Process for Polyphenol Recovery Using a Natural Deep Eutectic Solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Stelluti, S.; Caser, M.; Demasi, S.; Scariot, V. Sustainable Processing of Floral Bio-Residues of Saffron (Crocus sativus L.) for Valuable Biorefinery Products. Plants 2021, 10, 523. [Google Scholar] [CrossRef]
- Gigliobianco, M.R.; Cortese, M.; Peregrina, D.V.; Villa, C.; Lupidi, G.; Pruccoli, L.; Angeloni, C.; Tarozzi, A.; Censi, R.; Di Martino, P. Development of New Extracts of Crocus sativus L. By-Product from Two Different Italian Regions as New Potential Active Ingredient in Cosmetic Formulations. Cosmetics 2021, 8, 51. [Google Scholar] [CrossRef]
- Ouahhoud, S.; Khoulati, A.; Kadda, S.; Bencheikh, N.; Mamri, S.; Ziani, A.; Baddaoui, S.; Eddabbeh, F.E.; Lahmass, I.; Benabbes, R.; et al. Antioxidant Activity, Metal Chelating Ability and DNA Protective Effect of the Hydroethanolic Extracts of Crocus sativus Stigmas, Tepals and Leaves. Antioxidants 2022, 11, 932. [Google Scholar] [CrossRef]
- Bellachioma, L.; Marini, E.; Magi, G.; Pugnaloni, A.; Facinelli, B.; Rocchetti, G.; Martinelli, E.; Lucini, L.; Morresi, C.; Bacchetti, T.; et al. Phytochemical Profiling, Antibacterial and Antioxidant Properties of Crocus sativus Flower: A Comparison between Tepals and Stigmas. Open Chem. 2022, 20, 431–443. [Google Scholar] [CrossRef]
- Kakouri, E.; Daferera, D.; Paramithiotis, S.; Astraka, K.; Drosinos, E.H.; Polissiou, M.G. Crocus sativus L. Tepals: The Natural Source of Antioxidant and Antimicrobial Factors. J. Appl. Res. Med. Aromat. Plants 2017, 4, 66–74. [Google Scholar] [CrossRef]
- Jacotet-Navarro, M.; Rombaut, N.; Fabiano-Tixier, A.S.; Danguien, M.; Bily, A.; Chemat, F. Ultrasound versus Microwave as Green Processes for Extraction of Rosmarinic, Carnosic and Ursolic Acids from Rosemary. Ultrason. Sonochem. 2015, 27, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varo, M.A.; Jacotet-Navarro, M.; Serratosa, M.P.; Mérida, J.; Fabiano-Tixier, A.S.; Bily, A.; Chemat, F. Green Ultrasound-Assisted Extraction of Antioxidant Phenolic Compounds Determined by High Performance Liquid Chromatography from Bilberry (Vaccinium myrtillus L.) Juice By-Products. Waste Biomass Valorization 2019, 10, 1945–1955. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A Clean, Green Extraction Technology. TrAC—Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Espino, M.; Fernández, M.; de los, Á.; Gomez, F.J.V.; Boiteux, J.; Silva, M.F. Green Analytical Chemistry Metrics: Towards a Sustainable Phenolics Extraction from Medicinal Plants. Microchem. J. 2018, 141, 438–443. [Google Scholar] [CrossRef]
- Donno, D.; Turrini, F.; Boggia, R.; Guido, M.; Gamba, G.; Mellano, M.G.; Riondato, I.; Beccaro, G.L. Sustainable Extraction and Use of Natural Bioactive Compounds from the Waste Management Process of Castanea Spp. Bud-Derivatives: The Finnover Project. Sustainability 2020, 12, 10640. [Google Scholar] [CrossRef]
- Hurst, W.J. (Ed.) Methods of Analysis for Functional Foods and Nutraceuticals; Taylor & Francis Group: Boca Raton, FL, USA, 2008; ISBN 9780333227794. [Google Scholar]
- Albuquerque, T.G.; Silva, M.A.; Oliveira, M.B.P.P.; Costa, H.S. Analysis, Identification, and Quantification of Anthocyanins in Fruit Juices. In Fruit Juices; Academic Press: London, UK, 2018; ISBN 9780128024911. [Google Scholar]
- Burton-Freeman, B.; Sandhu, A.; Edirisinghe, I. Anthocyanins. In Nutraceuticals: Efficacy, Safety and Toxicity; Academic Press: Cambridge, MA, USA, 2016; pp. 489–500. [Google Scholar] [CrossRef]
- Pietta, P.; Minoggio, M.; Bramati, L. Plant Polyphenols: Structure, Occurrence and Bioactivity. Stud. Nat. Prod. Chem. 2003, 28, 257–312. [Google Scholar] [CrossRef]
- Hayashi, K.; Ohara, N.; Tsukui, A. Stability of Anthocyanins in Various Vegetables and Fruits. Food Sci. Technol. Int. Tokyo 1996, 2, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, P.; Yuan, C.; Wang, H.; Han, F.; Liu, Y.; Wang, L. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal PH and Temperature Conditions. Molecules 2018, 23, 354. [Google Scholar] [CrossRef] [Green Version]
- Fleschhut, J.; Kratzer, F.; Rechkemmer, G.; Kulling, S.E. Stability and Biotransformation of Various Dietary Anthocyanins in Vitro. Eur. J. Nutr. 2006, 45, 7–18. [Google Scholar] [CrossRef]
- De Ferrars, R.M.; Czank, C.; Zhang, Q.; Botting, N.P.; Kroon, P.A.; Cassidy, A.; Kay, C.D. The Pharmacokinetics of Anthocyanins and Their Metabolites in Humans. Br. J. Pharmacol. 2014, 171, 3268–3282. [Google Scholar] [CrossRef] [Green Version]
- Aura, A.M.; Mattila, I.; Hyötyläinen, T.; Gopalacharyulu, P.; Cheynier, V.; Souquet, J.M.; Bes, M.; Le Bourvellec, C.; Guyot, S.; Orešič, M. Characterization of Microbial Metabolism of Syrah Grape Products in an in Vitro Colon Model Using Targeted and Non-Targeted Analytical Approaches. Eur. J. Nutr. 2013, 52, 833–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moratalla-López, N.; Sánchez, A.M.; Campayo, A.; Salinas, M.R.; Alonso, G.L. Effect of Different Storage Conditions on the Stability of the Polyphenolic Content in Bio-Residues Obtained from Saffron Spice Production. Acta Hortic. 2017, 1184, 159–164. [Google Scholar] [CrossRef]
- Lotfi, L.; Kalbasi-Ashtari, A.; Hamedi, M.; Ghorbani, F. Effects of Enzymatic Extraction on Anthocyanins Yield of Saffron Tepals (Crocos sativus) along with Its Color Properties and Structural Stability. J. Food Drug Anal. 2015, 23, 210–218. [Google Scholar] [CrossRef]
- Lotfi, L.; Kalbasi-Ashtari, A.; Hamedi, M.; Ghorbani, F. Effects of Sulfur Water Extraction on Anthocyanins Properties of Tepals in Flower of Saffron (Crocus sativus L). J. Food Sci. Technol. 2015, 52, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Cerdá-Bernad, D.; Baixinho, J.P.; Fernández, N.; Frutos, M.J. Evaluation of Microwave-Assisted Extraction as a Potential Green Technology for the Isolation of Bioactive Compounds from Saffron (Crocus sativus L.) Floral By-Products. Foods 2022, 11, 2335. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, A.; Vassilev, K.; Nenov, N.; Passon, M.; Shikov, V.; Schieber, A.; Mihalev, K. Combining Enzymatic and Subcritical Water Treatments for Green Extraction of Polyphenolic Co-Pigments from Saffron Tepals. Waste Biomass Valorization 2023, 1–11. [Google Scholar] [CrossRef]
- Nørbæk, R.; Kondo, T. Further Anthocyanins from Flowers of Crocus antalyensis (Iridaceae). Phytochemistry 1999, 50, 325–328. [Google Scholar] [CrossRef]
- Shipp, J.; Abdel-Aal, E.-S.M. Food Applications and Physiological Effects of Anthocyanins as Functional Food Ingredients. Open Food Sci. J. 2010, 4, 7–22. [Google Scholar] [CrossRef]
- Nichenametla, S.N.; Taruscio, T.G.; Barney, D.L.; Exon, J.H. A Review of the Effects and Mechanisms of Polyphenolics in Cancer. Crit. Rev. Food Sci. Nutr. 2006, 46, 161–183. [Google Scholar] [CrossRef]
- Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The Case for Anthocyanin Consumption to Promote Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 483–508. [Google Scholar] [CrossRef]
- Côté, J.; Caillet, S.; Doyon, G.; Dussault, D.; Sylvain, J.F.; Lacroix, M. Antimicrobial Effect of Cranberry Juice and Extracts. Food Control. 2011, 22, 1413–1418. [Google Scholar] [CrossRef]
- Cisowska, A.; Wojnicz, D.; Hendrich, A.B. Anthocyanins as Antimicrobial Agents of Natural Plant Origin. Nat. Prod. Commun. 2011, 6, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Bower, K.A.; Wang, S.; Frank, J.A.; Chen, G.; Ding, M.; Wang, S.; Shi, X.; Ke, Z.; Luo, J. Cyanidin-3-Glucoside Inhibits Ethanol-Induced Invasion of Breast Cancer Cells Overexpressing ErbB2. Mol. Cancer 2010, 9, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, C.; Bin, Y.; Xiaoping, Y.; Long, Y.; Chunye, C.; Mantian, M.; Wenhua, L. Anticancer Activities of an Anthocyanin-Rich Extract from Black Rice against Breast Cancer Cells in Vitro and in Vivo. Nutr. Cancer 2010, 62, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- Belwal, T.; Nabavi, S.F.; Nabavi, S.M.; Habtemariam, S. Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine. Nutrients 2017, 9, 1111. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, H.; Fernandes, A.; Brás, N.F.; Mateus, N.; de Freitas, V.; Fernandes, I. Anthocyanins as Antidiabetic Agents—In Vitro and in Silico Approaches of Preventive and Therapeutic Effects. Molecules 2020, 25, 3813. [Google Scholar] [CrossRef]
- Maggi, M.A.; Bisti, S.; Picco, C. Saffron: Chemical Composition and Neuroprotective Activity. Molecules 2020, 25, 5618. [Google Scholar] [CrossRef]
- Maggi, M.A.; Consonni, R.; Cagliani, L.R.; Prestipino, G.; Bisti, S.; Picco, C. Saffron and Retinal Neurodegenerative Diseases: Relevance of Chemical Composition. J. Anat. 2022, 243, 265–273. [Google Scholar] [CrossRef]
- Ali, T.; Kim, M.J.; Rehman, S.U.; Ahmad, A.; Kim, M.O. Anthocyanin-Loaded PEG-Gold Nanoparticles Enhanced the Neuroprotection of Anthocyanins in an Aβ1–42 Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2017, 54, 6490–6506. [Google Scholar] [CrossRef]
- Batista, Â.G.; Soares, E.S.; Mendonça, M.C.P.; da Silva, J.K.; Dionísio, A.P.; Sartori, C.R.; da Cruz-Höfling, M.A.; Júnior, M.R.M. Jaboticaba Berry Peel Intake Prevents Insulin-Resistance-Induced Tau Phosphorylation in Mice. Mol. Nutr. Food Res. 2017, 61, 1600952. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, R.; Jiang, Y.; Xu, Y.; Zhao, H.; Lyu, X.; Wu, T. Bilberry Anthocyanins Improve Neuroinflammation and Cognitive Dysfunction in APP/PSEN1 Mice: Via the CD33/TREM2/TYROBP Signaling Pathway in Microglia. Food Funct. 2020, 11, 1572–1584. [Google Scholar] [CrossRef] [PubMed]
- Batista, G.; Mendonça, M.C.P.; Soares, E.S.; da Silva-Maia, J.K.; Dionísio, A.P.; Sartori, C.R.; da Cruz-Höfling, M.A.; Júnior, M.R.M. Syzygium Malaccense Fruit Supplementation Protects Mice Brain against High-Fat Diet Impairment and Improves Cognitive Functions. J. Funct. Foods 2020, 65, 103745. [Google Scholar] [CrossRef]
- Bensalem, J.; Dudonné, S.; Gaudout, D.; Servant, L.; Calon, F.; Desjardins, Y.; Layé, S.; Lafenetre, P.; Pallet, V. Polyphenol-Rich Extract from Grape and Blueberry Attenuates Cognitive Decline and Improves Neuronal Function in Aged Mice. J. Nutr. Sci. 2018, 7, e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukitt-Hale, B.; Cheng, V.; Joseph, J.A. Effects of Blackberries on Motor and Cognitive Function in Aged Rats. Nutr. Neurosci. 2009, 12, 135–140. [Google Scholar] [CrossRef]
- Whyte, A.R.; Williams, C.M. Effects of a Single Dose of a Flavonoid-Rich Blueberry Drink on Memory in 8 to 10y Old Children. Nutrition 2015, 31, 531–534. [Google Scholar] [CrossRef]
- Whyte, A.R.; Schafer, G.; Williams, C.M. Cognitive Effects Following Acute Wild Blueberry Supplementation in 7- to 10-Year-Old Children. Eur. J. Nutr. 2016, 55, 2151–2162. [Google Scholar] [CrossRef]
Antioxidant Activity | Flavonols | Benzoic Acids | Catechins | ||||||
---|---|---|---|---|---|---|---|---|---|
Extraction Method | TPC | Anthocyanins | FRAP | DPPH | ABTS | Hyperoside | Rutin | Ellagic Acid | Epicatechin |
M | 465.7 ± 36.4 | 119.7 ± 15.6 | 167.3 ± 10.2 | 5.53 ± 0.79 | 5.84 ± 1.1 | 2.00 ± 0.72 | 0.15 ± 0.04 | 1.63 ± 0.35 | 3.13 ± 0.72 |
UA | 486.9 ± 41.8 | 119.3 ± 12.8 | 141.1 ± 7.3 | 6.06 ± 1.12 | 8.88 ± 0.97 | 2.42 ± 0.37 | 0.13 ± 0.05 | 3.06 ± 0.66 | 5.27 ± 0.42 |
p | ns | ns | ** | ns | *** | ns | ns | *** | * |
Solvent (% methanol) | |||||||||
0% | 449.8 ± 35.5 b | 142.5 ± 23.5 a,b | 253.5 ± 5.3 a | 4.61 ± 1.27 | 5.56 ± 1.03 b | 2.96 ± 0.64 a | 0.16 ± 0.07 | 1.42 ± 0.35 b | 0.00 ± 0.00 b |
20% | 374.8 ± 47.2 b | 103.3 ± 18.9 a,b | 108.8 ± 11.7 c | 4.82 ± 1.86 | 6.45 ± 0.98 b | 2.98 ± 0.59 a | 0.09 ± 0.02 | 2.52 ± 0.18 a | 0.00 ± 0.00 b |
50% | 402.9 ± 28.0 b | 88.8 ± 15.9 b | 105.9 ± 15.2 c | 6.99 ± 1.43 | 10.53 ± 1.23 a | 1.34 ± 0.79 b | 0.16 ± 0.10 | 2.71 ± 0.31 a | 9.18 ± 0.97 a |
80% | 677.7 ± 23.4 a | 143.3 ± 22.3 a | 148.6 ± 10.4 b | 6.77 ± 1.76 | 6.79 ± 0.72 b | 1.53 ± 0.68 b | 0.21 ± 0.09 | 2.72 ± 0.22 a | 7.62 ± 1.65 a |
p | *** | * | *** | ns | *** | *** | ns | ** | *** |
Interaction | |||||||||
Extraction × Solvent | ns | ns | ** | ns | *** | *** | ns | ns | * |
Extractions | Cinnamic Acids | Benzoic Acids | Flavonols | Catechins | Vitamin C | ||||
---|---|---|---|---|---|---|---|---|---|
Ferulic Acid | Ellagic Acid | Hyperoside | Isoquercitrin | Quercitrin | Rutin | Epicatechin | |||
M | Water | 0.00 ± 0.00 b | 7.67 ± 3.69 a,b,c | 4.35 ± 1.04 c | 0.31 ± 0.22 c,d | 0.00 ± 0.00 b | 8.52 ± 3.91 c | 0.00 ± 0.00 b | 29.61 ± 6.05 a |
M | Met20 | 1.83 ± 0.31 a | 4.43 ± 4.15 c,d | 5.61 ± 0.52 a,b,c | 0.22 ± 0.12 c,d | 6.33 ± 5.27 a | 0.32 ± 0.31 d | 0.00 ± 0.00 b | 33.72 ± 0.89 a |
M | Met50 | 9.65 ± 2.62 a | 0.00 ± 0.00 e | 5.85 ± 4.31 b,c | 4.36 ± 3.49 a,b,c | 9.27 ± 3.47 a | 0.00 ± 0.00 d | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
M | Met80 | 0.00 ± 0.00 b | 1.32 ± 0.33 d,e | 23.93 ± 15.51 a,b,c | 7.82 ± 3.09 a | 6.53 ± 0.29 a | 37.61 ± 2.22 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
UAE | Water | 0.00 ± 0.00 b | 8.53 ± 8.45 b,c,d | 11.58 ± 4.09 a,b,c | 0.00 ± 0.00 d | 0.00 ± 0.00 b | 28.24 ± 4.83 a,b | 0.00 ± 0.00 b | 26.68 ± 4.71 a |
UAE | Met20 | 0.00 ± 0.00 b | 26.74 ± 10.80 a,b | 9.68 ± 6.77 a,b,c | 6.46 ± 5.03 a,b | 0.00 ± 0.00 b | 13.46 ± 10.25 b,c | 16.62 ± 15.89 a | 29.17 ± 2.31 a |
UAE | Met50 | 0.00 ± 0.00 b | 28.39 ± 4.32 a | 27.26 ± 4.29 a | 5.57 ± 1.90 a,b,c | 7.07 ± 5.12 a | 7.24 ± 1.35 c | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
UAE | Met80 | 0.00 ± 0.00 b | 23.51 ± 5.11 a,b | 24.77 ± 2.25 a,b | 0.00 ± 0.00 d | 0.00 ± 0.00 b | 9.10 ± 2.17 c | 4.22 ± 2.90 a | 0.00 ± 0.00 b |
p | 0.001802 ** | 2.235 × 10−7 *** | 0.004662 ** | 0.005466 ** | 0.005407 ** | 1.452 × 10−10 *** | 0.001995 ** | 0.003143 ** |
Sample | Polyphenol Content (µg GA eq/mg Extract) |
---|---|
STG | (34.41 ± 1.09) |
TPL | (64.66 ± 0.20) |
LV | (38.56 ± 0.34) |
Extraction Method | Pre-Status | Main Compounds | Reference | Ref. N°. |
acidified methanol 80%, sonicated for 30 min in ice bath | frozen | flavonol glycosides and anthocianis | Orlando et al., 2022 | [24] |
Subcritical water | dried | phenolic compounds | Ahmadian-Kouchaksaraie et al., 2016 | [27] |
Supercritical Carbon Dioxide | dried | phenolic compounds, anthocyanins, flavonoids | Ahmadian-Kouchaksaraie et al., 2017 | [28] |
(a) hot water, (b) ohmic heating assisted extraction, (c) ultrasound assisted extraction, (d) microwave assisted extraction | dried | kaempferol derivatives and anthocyanins | Hashemi Gahruiea et al., 2020 | [29] |
(a) water/HCl 100:1 at 40 °C by stirring for 1h. (b) water/ACN/TFA (47:50:3). (c) water/ACN/HCl (50:50:1). (d) water/ethanol/HCl (50:50:1). (e) water/acetone/HCl (50:50:1) | frozen | kaempferol 3-O-sophoroside, kaempferol 3-O-glucoside, kaempferol, delphinidin 3,5-O-diglucoside, petunidin 3,5-O-diglucoside | Serrano-Diaz et al., 2014 | [30] |
(a) diethyl ether, (b) ethyl acetate, (c) aqueous | - | kaempferol, quercetin, naringenin, flavanone and flavanol derivatives glycosylated and esterified with phenylpropanoic acids. | Termentzi et al., 2008 | [31] |
methanol | - | flavonoids, glycosidic derivatives of quercetin and kaempferol | Montoro et al., 2008 | [33] |
dichloromethane, methanol, acetonitrile, diethyl ether, n-hexane and ethyl acetate | vacuum freeze drying | glycosilated forms of kaempferol, isorhamnetin, quercetin, glycolilated forms of anthocyanins | Goupy et al., 2013 | [38] |
ethanol | fresh | kinsenoside, goodyeroside, 3-hydroxy-γ-butyrolactone, kaempferol 3-O-sophoroside | Righi et al., 2015 | [39] |
methanol/HCL 9:1 | dried | kaempferol 3-O-sophoroside-7-O-glucoside, quercetin 3,4′-di-O-glucoside, delphinidin 3,5-di-O-β-glucoside, petunidin 3,5-di-O-β-glucoside, delphinidin 3-O-β-glucoside, petunidin 3-O-β-glucoside kaempferol 3,7′-di-O-glucoside, | Cusano et al., 2018 | [41] |
methanol/water 1:1 with ultrasonication | dried | astragalin, 1-monopalmitin, kaempferol-3,7-di-O-β-d-glucoside | Xu et al., 2019 | [43] |
ethanol/water 1:1 with ultrasonication | dired | kaempferol-3-O-sophoroside, quercetin-3-O-sophoroside, kaempferol-3-O-glucoside; | Mottaghipisheh et al., 2020 | [44] |
deionised water; deionized water:methanol (80:20 v/v); deionised water:methanol (50:50 v/v); deionised water:methanol (20:80 v/v). assisted extraction | fresh | hyperoside, rutin, ellagic acid, epicatechin, flavonols | Caser et al., 2020 | [45] |
Pressurized-Liquid Extraction | freeze dried | kaempferol 3-O-sophoroside, kaempferol 3-O-sophoroside 7-O-glucoside, quercetin 3-O-sophoroside, kaempferol 3-O-glucoside,. Delphinidin 3,5-di-O-glucoside, delphinidin 3-O-glucoside, petunidin 3,5-di-O-glucoside, delphinidin 3,5-di-O-glucoside | Pappas et al., 2021 | [46] |
Deep eutectic solvent (lactate and glycine) | dried | kaempferol 3-O-sophoroside 7-O-glucoside, quercetin 3-O-sophoroside, kaepferol 3-O-sophoroside, kaempferol 3-O-glucoside, delphinidin 3,5-di-O-glucoside, petunidin 3,5-di-O-glucoside, delphinidin 3-O-glucoside | Lakka et al., 2009 | [47] |
Ultrasound Assisted Extraction, using different water and methanol ratios like 20%, 50%, and 80% | ferulic acid (cinnamic acid); ellagic acid; hyperoside, isoquercitrin, quercitrin, rutin, epicatechin (catechin), vitamin C | Stelluti et al., 2021 | [48] | |
ultrasound assisted extractio of 4.5 g with 20 mL ethanol at 70 °C for 20 min | dried | kaempferol 3-O-glucoside, isorhamnetin 3-O-glucoside, kaempferol 3,7,4′-O-triglucoside, delphinidin 3,5-di-O-glucoside, myricetin-di-glucoside, primflasine | Gigliobianco et al., 2021 | [49] |
80/20 ethanol/water for 24 H | dried | kaempferol-3-O-sophoroside, quercetin and isorhamnetin glucosides. | Ouahhoud et al., 2022 | [50] |
methanol/MTBE 1:1 | freeze dried | several compounds divided into chemical classes | Bellachioma et al., 2022 | [51] |
water/HCl (100:1 v/v) | dried | delphinidin 3,5-di-O-β-glucoside, petunidin 3,5-di-O-β-glucoside, delphinidin 3-O-β-glucoside, malvidin 3,5-di-O-β-glucoside and petunidin 3-O-β-glucoside | Moratalla-López et al., 2017 | [67] |
ethanol/HCl (85:15 v/v) | freeze dried | Pelargonidin 3-glycosides,Pelargonidin 3,5-glycosides, Petunidin, 3,5 Cyanidin-diglycosides, Delphinidin 3-glycosides | Lofti et al., 2015 | [68] |
1 g extracted with 13 mL acetonitrile/water 1:1 containing 3.0% trifluoroacetic acid | freeze dried | several compounds divided into chemical classes | Nørbæk 2002 | [37] |
50 g extracted with acetonitrile/water 1:1 containing 0.5% trifluoroacetic acid | freeze dried | delphinidin 3-glucoside-5-(6-malonyl)glucoside, delphinidin 3,7-diglucosides, petunidin 3,7-diglucosides, delphinidin 3,5-diglucosides, petunidin 3,5-diglucosides | Nørbæk 1999 | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggieri, F.; Maggi, M.A.; Rossi, M.; Consonni, R. Comprehensive Extraction and Chemical Characterization of Bioactive Compounds in Tepals of Crocus sativus L. Molecules 2023, 28, 5976. https://doi.org/10.3390/molecules28165976
Ruggieri F, Maggi MA, Rossi M, Consonni R. Comprehensive Extraction and Chemical Characterization of Bioactive Compounds in Tepals of Crocus sativus L. Molecules. 2023; 28(16):5976. https://doi.org/10.3390/molecules28165976
Chicago/Turabian StyleRuggieri, Fabrizio, Maria Anna Maggi, Michela Rossi, and Roberto Consonni. 2023. "Comprehensive Extraction and Chemical Characterization of Bioactive Compounds in Tepals of Crocus sativus L." Molecules 28, no. 16: 5976. https://doi.org/10.3390/molecules28165976
APA StyleRuggieri, F., Maggi, M. A., Rossi, M., & Consonni, R. (2023). Comprehensive Extraction and Chemical Characterization of Bioactive Compounds in Tepals of Crocus sativus L. Molecules, 28(16), 5976. https://doi.org/10.3390/molecules28165976