Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update
Abstract
:1. Introduction
1.1. Generalities
1.2. Lipid Peroxidation and MDA Formation
1.3. The Role of Oxidative Stress in Allergic Diseases
2. Results and Discussion
2.1. Respiratory
2.1.1. Blood
- (a)
- Allergic Rhinitis and Asthma
- (b)
- Allergic Asthma
- (c)
- Non-Allergic Asthma and mixed cohort
- (d)
- Phenotype not specified
2.1.2. Bronchoalveolar Lavage (BAL)
2.1.3. Exhaled Breath Condensate (EBC)
2.2. Cutaneous
2.2.1. Urticaria
2.2.2. Atopic Dermatitis
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, L.; Moldovan, N.I. Oxygen Free Radicals and Redox Biology of Organelles. Histochem. Cell Biol. 2004, 122, 395–412. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.V.; Bartosch, B.; Isaguliants, M.G. Oxidative Stress in Infection and Consequent Disease. Oxid. Med. Cell. Longev. 2017, 2017, 3496043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubczyk, K.; Dec, K.; Kałduńska, J.; Kawczuga, D.; Kochman, J.; Janda, K. Reactive Oxygen Species-Sources, Functions, Oxidative Damage. Pol. Merkur. Lekarski. 2020, 48, 124–127. [Google Scholar]
- Sun, Y.; Oberley, L.W. Redox Regulation of Transcriptional Activators. Free Radic. Biol. Med. 1996, 21, 335–348. [Google Scholar] [CrossRef]
- Thannickal, V.J.; Fanburg, B.L. Reactive Oxygen Species in Cell Signaling. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2000, 279, L1005–L1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Luo, J.; Mills, K.; Le Cessie, S.; Noordam, R.; Van Heemst, D. Ageing, Age-Related Diseases and Oxidative Stress: What to Do Next? Ageing. Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef] [PubMed]
- Imbesi, S.; Musolino, C.; Allegra, A.; Saija, A.; Morabito, F.; Calapai, G.; Gangemi, S. Oxidative Stress in Oncohematologic Diseases: An Update. Expert Rev. Hematol. 2013, 6, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristani, M.; Speciale, A.; Saija, A.; Gangemi, S.; Minciullo, P.; Cimino, F. Circulating Advanced Oxidation Protein Products as Oxidative Stress Biomarkers and Progression Mediators in Pathological Conditions Related to Inflammation and Immune Dysregulation. Curr. Med. Chem. 2016, 23, 3862–3882. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A Review of Recent Studies on Malondialdehyde as Toxic Molecule and Biological Marker of Oxidative Stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [Green Version]
- Esterbauer, H.; Eckl, P.; Ortner, A. Possible Mutagens Derived from Lipids and Lipid Precursors. Mutat. Res./Rev. Genet. Toxicol. 1990, 238, 223–233. [Google Scholar] [CrossRef]
- Sharma, R.A. Cyclooxygenase-2, Malondialdehyde and Pyrimidopurinone Adducts of Deoxyguanosine in Human Colon Cells. Carcinogenesis 2001, 22, 1557–1560. [Google Scholar] [CrossRef]
- Marnett, L.J. Lipid Peroxidation—DNA Damage by Malondialdehyde. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1999, 424, 83–95. [Google Scholar] [CrossRef]
- Voitkun, V.; Zhitkovich, A. Analysis of DNA–Protein Crosslinking Activity of Malondialdehyde in Vitro. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1999, 424, 97–106. [Google Scholar] [CrossRef]
- Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and Biochemistry of 4-Hydroxynonenal, Malonaldehyde and Related Aldehydes. Free Radic Biol. Med. 1991, 11, 81–128. [Google Scholar] [CrossRef] [PubMed]
- Busch, C.J.; Binder, C.J. Malondialdehyde Epitopes as Mediators of Sterile Inflammation. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2017, 1862, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Merendino, R.A.; Salvo, F.; Saija, A.; Di Pasquale, G.; Tomaino, A.; Minciullo, P.L.; Fraccica, G.; Gangemi, S. Malondialdehyde in Benign Prostate Hypertrophy: A Useful Marker? Mediat. Inflamm. 2003, 12, 127–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, G.P. Oxidative Stress in Asthma: A Distinct Clinical and Pathologic Feature? J. Biol. Regul. Homeost Agents 2016, 30, 1053–1057. [Google Scholar]
- Okayama, Y. Oxidative Stress in Allergic and Inflammatory Skin Diseases. Curr. Drug Targets Inflamm. Allergy 2005, 4, 517–519. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Tsai, M.; Piliponsky, A.M. The Development of Allergic Inflammation. Nature 2008, 454, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Li, Y.; Zhong, W.; Gao, P.; Hu, C. Recent Developments in the Role of Reactive Oxygen Species in Allergic Asthma. J. Thorac. Dis. 2017, 9, E32–E43. [Google Scholar] [CrossRef] [Green Version]
- Emin, O.; Hasan, A.; Aysegul, D.; Rusen, D. Total Antioxidant Status and Oxidative Stress and Their Relationship to Total IgE Levels and Eosinophil Counts in Children with Allergic Rhinitis. J. Investig. Allergol. Clin. Immunol. 2012, 22, 188–192. [Google Scholar]
- Bowler, R.P.; Crapo, J.D. Oxidative Stress in Allergic Respiratory Diseases. J. Allergy Clin. Immunol. 2002, 110, 349–356. [Google Scholar] [CrossRef]
- Han, M.; Lee, D.; Lee, S.H.; Kim, T.H. Oxidative Stress and Antioxidant Pathway in Allergic Rhinitis. Antioxidants 2021, 10, 1266. [Google Scholar] [CrossRef]
- Nadeem, A.; Chhabra, S.K.; Masood, A.; Raj, H.G. Increased Oxidative Stress and Altered Levels of Antioxidants in Asthma. J. Allergy Clin. Immunol. 2003, 111, 72–78. [Google Scholar] [CrossRef]
- Groot, L.E.S.; Sabogal Piñeros, Y.S.; Bal, S.M.; Pol, M.A.; Hamann, J.; Sterk, P.J.; Kulik, W.; Lutter, R. Do Eosinophils Contribute to Oxidative Stress in Mild Asthma? Clin. Exp. Allergy 2019, 49, 929–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldakheel, F.M.; Thomas, P.S.; Bourke, J.E.; Matheson, M.C.; Dharmage, S.C.; Lowe, A.J. Relationships between Adult Asthma and Oxidative Stress Markers and PH in Exhaled Breath Condensate: A Systematic Review. Allergy 2016, 71, 741–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, H.; Li, X.-K. Oxidative Stress in Atopic Dermatitis. Oxid. Med. Cell. Longev. 2016, 2016, 2721469. [Google Scholar] [CrossRef] [PubMed]
- Cannavò, S.P. Oxidative Stress Involvement in Urticaria. J. Biol. Regul. Homeost Agents 2020, 34, 675–678. [Google Scholar] [CrossRef]
- Han, H.; Roan, F.; Ziegler, S.F. The Atopic March: Current Insights into Skin Barrier Dysfunction and Epithelial Cell-Derived Cytokines. Immunol. Rev. 2017, 278, 116–130. [Google Scholar] [CrossRef]
- Bertino, L.; Guarneri, F.; Cannavò, S.P.; Casciaro, M.; Pioggia, G.; Gangemi, S. Oxidative Stress and Atopic Dermatitis. Antioxidants 2020, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, K.; Mathialagan, G.D.; Raghavan, S.; Shanmugam, N. The Advanced Lipoxidation End Product Precursor Malondialdehyde Induces IL-17E Expression and Skews Lymphocytes to the Th17 Subset. Cell Mol. Biol. Lett. 2015, 20, 647–662. [Google Scholar] [CrossRef]
- Raghavan, S.; Subramaniyam, G.; Shanmugam, N. Proinflammatory Effects of Malondialdehyde in Lymphocytes. J. Leukoc. Biol. 2012, 92, 1055–1067. [Google Scholar] [CrossRef]
- Zuberbier, T.; Abdul Latiff, A.H.; Abuzakouk, M.; Aquilina, S.; Asero, R.; Baker, D.; Ballmer-Weber, B.; Bangert, C.; Ben-Shoshan, M.; Bernstein, J.A.; et al. The International EAACI/GA2LEN/EuroGuiDerm/APAAACI Guideline for the Definition, Classification, Diagnosis, and Management of Urticaria. Allergy 2022, 77, 734–766. [Google Scholar] [CrossRef]
- Yoshimaru, T.; Suzuki, Y.; Matsui, T.; Yamashita, K.; Ochiai, T.; Yamaki, M.; Shimizu, K. Blockade of Superoxide Generation Prevents High-Affinity Immunoglobulin E Receptor-Mediated Release of Allergic Mediators by Rat Mast Cell Line and Human Basophils. Clin. Exp. Allergy 2002, 32, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Nettis, E.; Distaso, M.; Saitta, S.; Casciaro, M.; Cristani, M.; Saija, A.; Vacca, A.; Gangemi, S.; Minciullo, P.L. Involvement of New Oxidative Stress Markers in Chronic Spontaneous Urticaria. Adv. Dermatol. Allergol. 2017, 5, 448–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef] [Green Version]
- Alpsoy, L.; Akcayoglu, G.; Sahin, H. Anti-Oxidative and Anti-Genotoxic Effects of Carnosine on Human Lymphocyte Culture. Hum. Exp. Toxicol. 2011, 30, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, A.; Gurel, M.; Ulukanligil, M. Erythrocyte Antioxidative Enzyme Activities and Lipid Peroxidation Levels in Patients with Cutaneous Leishmaniasis. Parasite 2003, 10, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Dilber, B.; Akbulut, U.E.; Serin, H.M.; Alver, A.; Menteşe, A.; Kolaylı, C.C.; Cansu, A. Plasma and Erytrocyte Oxidative Stress Markers in Children with Frequent Breath-Holding Spells. Klin. Padiatr. 2021, 233, 173–180. [Google Scholar] [CrossRef]
- Aguilar Diaz De Leon, J.; Borges, C.R. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J. Vis. Exp. 2020, 159, e61122. [Google Scholar] [CrossRef]
- Srour, M.A.; Bilto, Y.Y.; Juma, M. Evaluation of Different Methods Used to Measure Malonyldialdehyde in Human Erythrocytes. Clin. Hemorheol. Microcirc. 2000, 23, 23–30. [Google Scholar]
- Tsikas, D. Assessment of Lipid Peroxidation by Measuring Malondialdehyde (MDA) and Relatives in Biological Samples: Analytical and Biological Challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Mylnikov, P.Y.; Shchulkin, A.V.; Abalenikhina, Y.V.; Yakusheva, E.N. Development and Validation of a Methodology for Quantitative Determination of Malondialdehyde by HPLC-MC/MS. Russ. Clin. Lab. Diagn. 2022, 67, 369–373. [Google Scholar] [CrossRef]
- Giera, M.; Lingeman, H.; Niessen, W.M.A. Recent Advancements in the LC- and GC-Based Analysis of Malondialdehyde (MDA): A Brief Overview. Chromatographia 2012, 75, 433–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevan, R.J.; Durand, M.F.; Hickenbotham, P.T.; Kitas, G.D.; Patel, P.R.; Podmore, I.D.; Griffiths, H.R.; Waller, H.L.; Lunec, J. Validation of a Novel ELISA for Measurement of MDA-LDL in Human Plasma. Free Radic. Biol. Med. 2003, 35, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Alsamarai, A.M.; Alwan, A.M.; Ahmad, A.H.; Salih, M.A.; Salih, J.A.; Aldabagh, M.A.; Alturaihi, S.; Abdulaziz, Z.H.; Salih, A.A.; Salih, S.K.; et al. The Relationship between Asthma and Allergic Rhinitis in the Iraqi Population. Allergol. Int. 2009, 58, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atambay, M.; Karabulut, A.B.; Aycan, O.M.; Kilic, E.; Yazar, S.; Saraymen, R.; Karaman, U.; Daldal, N. Dust-Mites: Effect on Lipid Peroxidation. Natl. Med. J. India 2006, 19, 75–77. [Google Scholar]
- Sagdic, A.; Sener, O.; Bulucu, F.; Karadurmus, N.; Özel, H.E.; Yamanel, L.; Tasci, C.; Naharci, I.; Ocal, R.; Aydin, A. Oxidative Stress Status and Plasma Trace Elements in Patients with Asthma or Allergic Rhinitis. Allergol. Immunopathol. (Madr.) 2011, 39, 200–205. [Google Scholar] [CrossRef]
- Sadowska-Woda, I.; Bieszczad-Bedrejczuk, E.; Rachel, M. Influence of Desloratadine on Selected Oxidative Stress Markers in Patients between 3 and 10years of Age with Allergic Perennial Rhinitis. Eur. J. Pharmacol. 2010, 640, 197–201. [Google Scholar] [CrossRef]
- Houssen, M.E.; Ragab, A.; Mesbah, A.; El-Samanoudy, A.Z.; Othman, G.; Moustafa, A.F.; Badria, F.A. Natural Anti-Inflammatory Products and Leukotriene Inhibitors as Complementary Therapy for Bronchial Asthma. Clin. Biochem. 2010, 43, 887–890. [Google Scholar] [CrossRef]
- Yalcin, A.D.; Gorczynski, R.M.; Parlak, G.E.; Kargi, A.; Bisgin, A.; Sahin, E.; Kose, S.; Gumuslu, S. Total Antioxidant Capacity, Hydrogen Peroxide, Malondialdehyde and Total Nitric Oxide Concentrations in Patients with Severe Persistent Allergic Asthma: Its Relation to Omalizumab Treatment. Clin. Lab. 2012, 58, 89–96. [Google Scholar] [CrossRef]
- Onur, E.; Kabaroğlu, C.; Günay, Ö.; Var, A.; Yilmaz, Ö.; Dündar, P.; Tikiz, C.; Güvenç, Y.; Yüksel, H. The Beneficial Effects of Physical Exercise on Antioxidant Status in Asthmatic Children. Allergol. Immunopathol. (Madr.) 2011, 39, 90–95. [Google Scholar] [CrossRef]
- Fabian, E.; Pölöskey, P.; Kósa, L.; Elmadfa, I.; Réthy, L.A. Activities of Antioxidant Enzymes in Relation to Oxidative and Nitrosative Challenges in Childhood Asthma. J. Asthma 2011, 48, 351–357. [Google Scholar] [CrossRef]
- Petlevski, R.; Zuntar, I.; Dodig, S.; Turkalj, M.; Cepelak, I.; Vojvodić, J.; Sicaja, M.; Missoni, S. Malonaldehyde and Erythrocyte Antioxidant Status in Children with Controlled Asthma. Coll Antropol. 2009, 33, 1251–1254. [Google Scholar]
- Al Obaidi, A.H.; Al Samarai, A.M. Biochemical Markers as a Response Guide for Steroid Therapy in Asthma. J. Asthma 2008, 45, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Karadogan, B.; Beyaz, S.; Gelincik, A.; Buyukozturk, S.; Arda, N. Evaluation of Oxidative Stress Biomarkers and Antioxidant Parameters in Allergic Asthma Patients with Different Level of Asthma Control. J. Asthma 2022, 59, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Ben Anes, A.; Ben Nasr, H.; Fetoui, H.; Bchir, S.; Chahdoura, H.; Yacoub, S.; Garrouch, A.; Benzarti, M.; Tabka, Z.; Chahed, K. Alteration in Systemic Markers of Oxidative and Antioxidative Status in Tunisian Patients with Asthma: Relationships with Clinical Severity and Airflow Limitation. J. Asthma 2016, 53, 227–237. [Google Scholar] [CrossRef]
- Ercan, H.; Birben, E.; Dizdar, E.; Keskin, O.; Karaaslan, C.; Soyer, O.; Dut, R.; Sackesen, C.; Besler, T.; Kalayci, O. Oxidative Stress and Genetic and Epidemiologic Determinants of Oxidant Injury in Childhood Asthma. J. Allergy Clin. Immunol. 2006, 118, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Ammar, M.; Bahloul, N.; Amri, O.; Omri, R.; Ghozzi, H.; Kammoun, S.; Zeghal, K.; Ben Mahmoud, L. Oxidative Stress in Patients with Asthma and Its Relation to Uncontrolled Asthma. J. Clin. Lab. Anal. 2022, 36, e24345. [Google Scholar] [CrossRef]
- Ceylan, E.; Aksoy, N.; Gencer, M.; Vural, H.; Keles, H.; Selek, S. Evaluation of Oxidative–Antioxidative Status and the l-Arginine–Nitric Oxide Pathway in Asthmatic Patients. Respir. Med. 2005, 99, 871–876. [Google Scholar] [CrossRef] [Green Version]
- Tug, T.; Godekmerdan, A.; Sari, N.; Karatas, F.; Erdem, E.S. Effects of Supportive Treatment Such as Antioxidant or Leukotriene Receptor Antagonist Drugs on Inflammatory and Respiratory Parameters in Asthma Patients. Clin. Pharmacol. Ther. 2007, 81, 371–376. [Google Scholar] [CrossRef]
- Cheng, Q.; Yang, C.-Y.; Guo, B.-Y.; Wei, X.; Liu, M. Analysis of Mechanism of PM2.5 and House Dust Mite Antigen Der P1 in Attack Stage of Child Asthma. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2458–2462. [Google Scholar] [PubMed]
- Biesiadecki, M.; Galiniak, S.; Rachel, M.; Bożek, A.; Aebisher, D. A Comparative Study of Oxidative Stress Biomarker Levels in Asthmatic and Non-Asthmatic Children. Biointerface Res. Appl. Chem. 2022, 13, 280. [Google Scholar] [CrossRef]
- Ozaras, R.; Tahan, V.; Turkmen, S.; Talay, F.; Besirli, K.; Aydin, S.; Uzun, H.; Cetinkaya, A. Changes in Malondialdehyde Levels in Bronchoalveolar Fluid and Serum by the Treatment of Asthma with Inhaled Steroid and Beta_2-agonist. Respirology 2000, 5, 289–292. [Google Scholar] [CrossRef]
- Narula, M.K.; Ahuja, G.K.; Whig, J.; Narang, A.P.S.; Soni, R.K. Status of Lipid Peroxidation and Plasma Iron Level in Bronchial Asthmatic Patients. Indian J. Physiol. Pharmacol. 2007, 51, 289–292. [Google Scholar]
- Jacobson, G.A.; Yee, K.C.; Ng, C.H. Elevated Plasma Glutathione Peroxidase Concentration in Acute Severe Asthma: Comparison with Plasma Glutathione Peroxidase Activity, Selenium and Malondialdehyde. Scand. J. Clin. Lab. Investig. 2007, 67, 423–430. [Google Scholar] [CrossRef] [PubMed]
- To, M.; Kono, Y.; Ogura, N.; Mikami, S.; Honda, N.; Hitani, A.; Kano, I.; Haruki, K.; To, Y. Obesity-Related Systemic Oxidative Stress: An Important Factor of Poor Asthma Control. Allergol. Int. 2018, 67, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Al-Abdulla, N.O.; Al Naama, L.M.; Hassan, M.K. Antioxidant Status in Acute Asthmatic Attack in Children. J. Pak. Med. Assoc. 2010, 60, 1023–1027. [Google Scholar]
- Owayed, A.; Dhaunsi, G.S.; Al-Mukhaizeem, F. Nitric Oxide-mediated Activation of NADPH Oxidase by Salbutamol during Acute Asthma in Children. Cell Biochem. Funct. 2008, 26, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Fatani, S.H. Biomarkers of Oxidative Stress in Acute and Chronic Bronchial Asthma. J. Asthma 2014, 51, 578–584. [Google Scholar] [CrossRef]
- Gumral, N.; Nazıroglu, M.; Ongel, K.; Beydilli, E.D.; Ozguner, F.; Sutcu, R.; Calıskan, S.; Akkaya, A. Antioxidant Enzymes and Melatonin Levels in Patients with Bronchial Asthma and Chronic Obstructive Pulmonary Disease during Stable and Exacerbation Periods. Cell Biochem. Funct. 2009, 27, 276–283. [Google Scholar] [CrossRef]
- Leem, J.H.; Kim, J.H.; Lee, K.H.; Hong, Y.C.; Lee, K.H.; Kang, D.; Kwon, H.J. Asthma Attack Associated with Oxidative Stress by Exposure to ETS and PAH. J. Asthma 2005, 42, 463–467. [Google Scholar] [CrossRef]
- Abboud, M.M.; Al-Rawashde, F.A.; Al-Zayadneh, E.M. Alterations of Serum and Saliva Oxidative Markers in Patients with Bronchial Asthma. J. Asthma 2022, 59, 2154–2161. [Google Scholar] [CrossRef]
- Ruprai, R.K. Plasma Oxidant-Antioxidants Status in Asthma and Its Correlation with Pulmonary Function Tests. Indian J. Physiol. Pharmacol. 2011, 55, 281–287. [Google Scholar]
- Shabestari, A.A.; Imanparast, F.; Mohaghegh, P.; Kiyanrad, H. The Effects of Asthma on the Oxidative Stress, Inflammation, and Endothelial Dysfunction in Children with Pneumonia. BMC Pediatr. 2022, 22, 534. [Google Scholar] [CrossRef]
- Reynolds, H.Y. Use of Bronchoalveolar Lavage in Humans—Past Necessity and Future Imperative. Lung 2000, 178, 271–293. [Google Scholar] [CrossRef]
- Jackson, A.S.; Sandrini, A.; Campbell, C.; Chow, S.; Thomas, P.S.; Yates, D.H. Comparison of Biomarkers in Exhaled Breath Condensate and Bronchoalveolar Lavage. Am. J. Respir. Crit. Care Med. 2007, 175, 222–227. [Google Scholar] [CrossRef]
- Brown, S.D.; Baxter, K.M.; Stephenson, S.T.; Esper, A.M.; Brown, L.A.S.; Fitzpatrick, A.M. Airway TGF-Β1 and Oxidant Stress in Children with Severe Asthma: Association with Airflow Limitation. J. Allergy Clin. Immunol. 2012, 129, 388–396.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, A.M.; Teague, W.G.; Holguin, F.; Yeh, M.; Brown, L.A.S.; Program, S.A.R. Airway Glutathione Homeostasis Is Altered in Children with Severe Asthma: Evidence for Oxidant Stress. J. Allergy Clin. Immunol. 2009, 123, 146–152.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schock, B.C.; Young, I.S.; Brown, V.; Fitch, P.S.; Shields, M.D.; Ennis, M. Antioxidants and Oxidative Stress in BAL Fluid of Atopic Asthmatic Children. Pediatr. Res. 2003, 53, 375–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horváth, I.; Hunt, J.; Barnes, P.J. Exhaled Breath Condensate: Methodological Recommendations and Unresolved Questions. Eur. Respir. J. 2005, 26, 523–548. [Google Scholar] [CrossRef] [Green Version]
- Montuschi, P. Review: Analysis of Exhaled Breath Condensate in Respiratory Medicine: Methodological Aspects and Potential Clinical Applications. Ther. Adv. Respir. Dis. 2007, 1, 5–23. [Google Scholar] [CrossRef]
- Rosias, P.P.R.; Dompeling, E.; Hendriks, H.J.E.; Heijnens, J.W.C.M.; Donckerwolcke, R.A.M.G.; Jobsis, Q. Exhaled Breath Condensate in Children: Pearls and Pitfalls. Pediatr. Allergy Immunol. 2004, 15, 4–19. [Google Scholar] [CrossRef]
- Aksu, K.; Kurt, H.; Gündüz, E.; Değirmenci, İ.; Kurt, E. Inflammatory Markers in Exhaled Breath Condensate in Patients with Asthma and Rhinitis. Tuberk Toraks 2012, 60, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celik, M.; Tuncer, A.; Soyer, O.U.; Saçkesen, C.; Tanju Besler, H.; Kalayci, O. Oxidative Stress in the Airways of Children with Asthma and Allergic Rhinitis. Pediatr. Allergy Immunol. 2012, 23, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Dut, R.; Dizdar, E.A.; Birben, E.; Sackesen, C.; Soyer, O.U.; Besler, T.; Kalayci, O. Oxidative Stress and Its Determinants in the Airways of Children with Asthma. Allergy 2008, 63, 1605–1609. [Google Scholar] [CrossRef] [PubMed]
- Lärstad, M.; Ljungkvist, G.; Olin, A.-C.; Torén, K. Determination of Malondialdehyde in Breath Condensate by High-Performance Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 766, 107–114. [Google Scholar] [CrossRef]
- Corradi, M.; Folesani, G.; Andreoli, R.; Manini, P.; Bodini, A.; Piacentini, G.; Carraro, S.; Zanconato, S.; Baraldi, E. Aldehydes and Glutathione in Exhaled Breath Condensate of Children with Asthma Exacerbation. Am. J. Respir. Crit. Care Med. 2003, 167, 395–399. [Google Scholar] [CrossRef]
- Romieu, I.; Barraza-Villarreal, A.; Escamilla-Nuñez, C.; Almstrand, A.-C.; Diaz-Sanchez, D.; Sly, P.D.; Olin, A.-C. Exhaled Breath Malondialdehyde as a Marker of Effect of Exposure to Air Pollution in Children with Asthma. J. Allergy Clin. Immunol. 2008, 121, 903–909.e6. [Google Scholar] [CrossRef]
- Bartoli, M.L.; Novelli, F.; Costa, F.; Malagrinò, L.; Melosini, L.; Bacci, E.; Cianchetti, S.; Dente, F.L.; Di Franco, A.; Vagaggini, B.; et al. Malondialdehyde in Exhaled Breath Condensate as a Marker of Oxidative Stress in Different Pulmonary Diseases. Mediat. Inflamm. 2011, 2011, 891752. [Google Scholar] [CrossRef]
- Zuberbier, T.; Aberer, W.; Asero, R.; Abdul Latiff, A.H.; Baker, D.; Ballmer-Weber, B.; Bernstein, J.A.; Bindslev-Jensen, C.; Brzoza, Z.; Buense Bedrikow, R.; et al. The EAACI/GA2LEN/EDF/WAO Guideline for the Definition, Classification, Diagnosis and Management of Urticaria. Allergy 2018, 73, 1393–1414. [Google Scholar] [CrossRef]
- Altrichter, S.; Fok, J.S.; Jiao, Q.; Kolkhir, P.; Pyatilova, P.; Romero, S.M.; Scheffel, J.; Siebenhaar, F.; Steinert, C.; Terhorst-Molawi, D.; et al. Total IgE as a Marker for Chronic Spontaneous Urticaria. Allergy Asthma Immunol. Res. 2021, 13, 206. [Google Scholar] [CrossRef]
- Galiniak, S.; Mołoń, M.; Biesiadecki, M.; Bożek, A.; Rachel, M. The Role of Oxidative Stress in Atopic Dermatitis and Chronic Urticaria. Antioxidants 2022, 11, 1590. [Google Scholar] [CrossRef]
- Kasperska-Zajac, A.; Brzoza, Z.; Polaniak, R.; Rogala, B.; Birkner, E. Markers of Antioxidant Defence System and Lipid Peroxidation in Peripheral Blood of Female Patients with Chronic Idiopathic Urticaria. Arch. Dermatol. Res. 2007, 298, 499–503. [Google Scholar] [CrossRef]
- Sagdic, A.; Sener, O.; Bulucu, F.; Karadurmus, N.; Yamanel, L.; Tasci, C.; Naharci, I.; Ocal, R.; Aydin, A. Oxidative Stress Status in Patients with Chronic Idiopathic Urticaria. Allergol. Immunopathol. (Madr.) 2011, 39, 150–153. [Google Scholar] [CrossRef]
- Rajappa, M.; Chandrashekar, L.; Sundar, I.; Munisamy, M.; Ananthanarayanan, P.H.; Thappa, D.M.; Toi, P.C. Platelet Oxidative Stress and Systemic Inflammation in Chronic Spontaneous Urticaria. Clin. Chem. Lab. Med. 2013, 51, 1789–1794. [Google Scholar] [CrossRef]
- Raho, G.; Cassano, N.; D’Argento, V.; Vena, G.A.; Zanotti, F. Over-Expression of Mn-Superoxide Dismutase as a Marker of Oxidative Stress in Lesional Skin of Chronic Idiopathic Urticaria. Clin. Exp. Dermatol. 2003, 28, 318–320. [Google Scholar] [CrossRef]
- Verma, P.; Banerjee, B.; Bhattacharya, S.; Khanna, N. Oxidative Stress and Leukocyte Migration Inhibition Response in Cutaneous Adverse Drug Reactions. Indian J. Dermatol. Venereol. Leprol. 2012, 78, 664. [Google Scholar] [CrossRef]
- Kalkan, G.; Seçkin, H.Y.; Duygu, F.; Akbaş, A.; Özyurt, H.; Şahin, M. Oxidative Stress Status in Patients with Acute Urticaria. Cutan Ocul. Toxicol. 2014, 33, 109–114. [Google Scholar] [CrossRef]
- Kasperska-Zajac, A.; Brzoza, Z.; Rogala, B.; Polaniak, R.; Birkner, E. Antioxidant Enzyme Activity and Malondialdehyde Concentration in the Plasma and Erythrocytes of Patients with Urticaria Induced by Nonsteroidal Anti-Inflammatory Drugs. J. Investig. Allergol. Clin. Immunol. 2008, 18, 372–375. [Google Scholar] [PubMed]
- Tokura, Y.; Hayano, S. Subtypes of Atopic Dermatitis: From Phenotype to Endotype. Allergol. Int. 2022, 71, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.N.; Liza, K.F.; Sarwar, M.S.; Ahmed, J.; Adnan, M.T.; Chowdhury, M.I.; Hossain, M.Z.; Islam, M.S. Effect of Lipid Peroxidation, Antioxidants, Macro Minerals and Trace Elements on Eczema. Arch. Dermatol. Res. 2015, 307, 617–623. [Google Scholar] [CrossRef]
- Chung, J.; Oh, S.-Y.; Shin, Y.-K. Association of Glutathione-S-Transferase Polymorphisms with Atopic Dermatitis Risk in Preschool Age Children. Clin. Chem. Lab. Med. 2009, 47, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Uysal, P.; Avcil, S.; Abas, B.İ.; Yenisey, Ç. Evaluation of Oxidant-Antioxidant Balance in Children with Atopic Dermatitis: A Case-Control Study. Am. J. Clin. Dermatol. 2016, 17, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Hanusch, B.; Sinningen, K.; Brinkmann, F.; Dillenhöfer, S.; Frank, M.; Jöckel, K.-H.; Koerner-Rettberg, C.; Holtmann, M.; Legenbauer, T.; Langrock, C.; et al. Characterization of the L-Arginine/Nitric Oxide Pathway and Oxidative Stress in Pediatric Patients with Atopic Diseases. Int. J. Mol. Sci. 2022, 23, 2136. [Google Scholar] [CrossRef] [PubMed]
- Nakai, K.; Yoneda, K.; Maeda, R.; Munehiro, A.; Fujita, N.; Yokoi, I.; Moriue, J.; Moriue, T.; Kosaka, H.; Kubota, Y. Urinary Biomarker of Oxidative Stress in Patients with Psoriasis Vulgaris and Atopic Dermatitis. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 1405–1408. [Google Scholar] [CrossRef] [PubMed]
- Peroni, D.G.; Bodini, A.; Corradi, M.; Coghi, A.; Boner, A.L.; Piacentini, G.L. Markers of Oxidative Stress Are Increased in Exhaled Breath Condensates of Children with Atopic Dermatitis. Br. J. Dermatol. 2012, 166, 839–843. [Google Scholar] [CrossRef] [PubMed]
BLOOD | |||||||
---|---|---|---|---|---|---|---|
Diseases | Authors | Population | Cohort (Controls) | Baseline Treatment | Outcomes | Findings | Methods of MDA Detection |
Allergic Rhinitis and/or Asthma | |||||||
Alsamarai AM et al. [53] | All | 16,636 (14,414) | NS | Association between AR and asthma | ↑ S-MDA levels (p < 0.0001 in all patients vs. CS; p < 0.0001 in A + AR vs. AR or A); no differences in MDA levels between A and AR | Spectrophotometry | |
Atambay et al. [54] | All | 90 (30) | Not on medication | Assessment of the relation between cellular enzymatic antioxidant capacity and the degree of membrane lipid peroxidation | ↑ E-MDA levels (p < 0.05 in DM+/SPT+ vs. DM-/SPT+ and CS); ↑ L-MDA levels (p < 0.05 in DM+/SPT+ and DM-/SPT+ vs. CS) | Spectrophotometry | |
Sagdic et al. [55] | Adults | 94 (36) | On medication with ICS | Role of oxidative stress in etiopathogenesis of allergic diseases | No differences in E-MDA levels | Spectrophotometry | |
Sadowska-Woda et al. [56] | Children | 50 (11) | Not on medication for at least 1 month | Evaluation of oxidative stress parameters before and after 2-month treatment with systemic desloratadine | Before treatment: ↑ E-MDA levels (p < 0.001 in UnTxAR vs. CS) After treatment: ↓ E-MDA levels (p < 0.001 in TxAR vs. UnTxAR) | Spectrophotometry | |
Allergic Asthma | |||||||
Stable | Houseen et al. [57] | Adults | 63 (24) | On medication with ICS and B2 agonists | Efficacy of 4-week treatment with boswellic acid, curcumin and liquorice in asthma management | ↓ S-MDA levels (p < 0.001 in TxA vs. PlA) | Spectrophotometry |
Yalcin et al. [58] | Adults | 42 (14) | On medication with biological drug | Evaluation of the effect of omalizumab treatment on oxidative stress status | Before treatment: ↑ S-MDA levels (p < 0.0001 in CS vs. A); after treatment: ↓ S-MDA levels (p < 0.0001 in TxA vs. UnTxA and CS) | Spectrophotometry | |
Onur et al. [59] | Children | 43 (13) | Not on medication for at least 1 month | Beneficial effect of exercise in addition to inhaled fluticasone treatment for 2 months on antioxidant status | Before treatment: ↑ S-MDA levels (p = 0.0001 in A vs. CS); after treatment: ↓ S-MDA levels (p < 0.001 in PTxA and P + ExTxA vs. pre-TxA values); no differences in S-MDA levels (p > 0.05 in PTxA vs. P + ExTxA vs. post-TxA) | Spectrophotometry | |
Fabian et al. [60] | Children | 56 (21) | Not on medication for at least 1 month | Assessment of the relationship between antioxidant enzyme activities, airway inflammation and systemic oxidative stress | ↑ S-MDA and ↑ IL-6 levels (p < 0.001 in A vs. CS); Positive correlation between S-MDA levels, IL-6 levels and FENO values (p = 0.002; p = 0.001); negative correlation between S-MDA and FEV1 values (p = 0.005) | HPLC | |
Petlevski et al. [61] | Children | 81 (37) | On medication with ICS or ICS plus long-acting b2-agonists | Comparison of oxidative stress and lipid peroxidation markers | No differences in S-MDA and GSH levels | Spectrophotometry | |
Stable/poorly controlled based on symptoms, bronchodilator use and FEV1 levels | Al Obaidi et al. [62] | Adults | 153 | Not on medication | Evaluation of oxidative stress parameters to assess the effectiveness of ICS and salbutamol therapy for 4 weeks | ↑ S-MDA (95% CI 6.98–7.88 in PoCA vs. 4.03–4.23 in StA) | Spectrophotometry |
Controlled/uncontrolled based on ACT | Karadogan et al. [63] | Adults | 240 (120) | Not/on medication with ICS | Evaluation of oxidant/antioxidant status and the relation with the level of asthma control | ↑ S-MDA, ↓ GSH levels (p < 0.001 in A vs. CS); ↑ S-MDA levels (p < 0.01 in UnCA vs. CA; p < 0.05 in UnCA vs. PCA); negative correlation between S-MDA levels, ACT scores and FEV1 values (p = 0.002; p = 0.017) | Spectrophotometry |
Allergic/Non-Allergic Asthma | |||||||
Stable | Anes et al. [64] | Adults | 329 (178) | On medication with ICS and/or inhaled beta-2 agonist | Assessment of oxidant/antioxidant status and its relation to disease progression and decline in lung function | ↑ S-MDA and ↓ GSH levels (p < 0.001 in A vs. CS) | Spectrophotometry |
Ercan et al. [65] | Children | 567 (255) | Not on medication | Definition of the factors affecting oxidative stress levels | ↑ S-MDA and ↓ GSH levels (p < 0.001 in MA vs. CS and in MSA vs. MA); asthma severity influences MDA and GSH levels (p < 0.001) | HPLC | |
Controlled/uncontrolled based on ACT | Ammar et al. [66] | Adults | 108 (48) | On medication with ICS and oral or inhaled beta2-agonist | Evaluation of oxidant/antioxidant status and its relation to the level of asthma control | ↑ S-MDA, ↑ AOPP, ↓ GSH levels (p < 0.001 in A vs. CS); ↑ S-MDA (p < 0.001 in UnCA vs. CA) | Spectrophotometry |
Non-Allergic Asthma | |||||||
Stable | Ceylan et al. [67] | Adults | 60 (30) | On medication with ICS and short-acting b2 agonist | Correlation between L-arginine–NO pathway, asthma and oxidative stress | ↑ E-MDA levels (p < 0.001 in A vs. CS); ↓ E-GSH levels (p < 0.01 in A vs. CS) | Spectrophotometry |
Tug et al. [68] | Adults | 41 (10) | Not on medication | Effect of different treatment regimens on oxidative stress markers and inflammation | Before treatment: ↑ S-MDA levels (p < 0.005 in all patients vs. CS); after treatment: ↓ S-MDA levels (p < 0.005; p < 0.01; p < 0.05 in Groups I, II and III, respectively) | HPLC | |
Exacerbations | Cheng et al. [69] | Children | 96 (24) | NS | Assessment of the influence of PM2.5 and Der p1 on the treatment of asthma attacks | ↑ S-MDA, IL-25 and TSLP levels (p < 0.001 in ExAE vs. CAE after the treatment) | ELISA |
Phenotype Not Specified | |||||||
Stable | Ozaras et al. [71] | Adults | 38 (24) | Not on medication for at least 6 months | Evaluation of respiratory function and lipid peroxidation markers before and after 1 month of steroid and beta2-agonist inhaler therapy | Before treatment: ↑ S-MDA levels (p < 0.001 in A vs. CS) After treatment: ↓ S-MDA levels (p < 0.001 in TxA vs. baseline); ↑ S-MDA levels (p < 0.0001 TxA vs. CS) | HPLC |
Narula et al. [72] | Children | 311 (156) | NS | Identification of the extent of lipid peroxidation with asthmatic severity | ↑ S-MDA levels (p < 0.01 in A vs. CS) | Data not available | |
Exacerbations | Jacobson et al. [73] | Adults | 30 (15) | On medication with ICS and/or other controller drugs for at least 24 h | Evaluation of plasmatic oxidative stress in acute severe asthma patients | ↑ S-MDA levels (p < 0.05 in AE vs. CS) | Spectrophotometry |
To et al. [74] | Adults | 49 | On medication | Evaluation of the potential effect of systemic oxidative stress on acute exacerbations in obese asthmatic patients | ↑ S-MDA levels (p < 0.05 in OA vs. NOA); positive correlation between S-MDA levels and frequency of severe acute exacerbations in OA | Spectrophotometry | |
Al-Abdulla et al. [75] | Children | 219 (121) | Not on medication | Assessment of oxidative stress state during asthma exacerbations and its possible correlation with attack severity | ↑ S-MDA levels (p < 0.001 in AE vs. CS); correlation between S-MDA levels and severe asthma exacerbations (p < 0.001) | Spectrophotometry | |
Owayed et al. [76] | Children | 35 (18) | Not on medication | Evaluation of the effect of salbutamol and NO on the NADPH oxidase system of PBL | ↑ S-MDA levels (p < 0.05 in AE vs. CS); ↓ L-MDA levels (p < 0.01 in STxPBL vs. UnTxPBL) | Spectrophotometry | |
Stable/exacerbations | Fatani et al. [77] | Adults | 90 (30) | NS | Assessment of the oxidant/antioxidant balance between asthmatic patients (during acute attacks and stable period) and control subjects | ↑ S-MDA levels (p < 0.001 in AE vs. CS and in AE vs. StA; p < 0.01 in male StA vs. male CS; p < 0.001 in female StA vs. female CS) | Spectrophotometry |
Gumral et al. [78] | Adults | 32 | NS | Assessment of the oxidant–antioxidant status during the exacerbation and the stable period in patients with asthma or COPD | ↑ S-MDA levels (p < 0.01 in AE vs. StA) | Spectrophotometry | |
Leem et al. [79] | Children | 16 | Not/on medication with ICS | Association between pulmonary inflammation and environmental oxidants and tobacco smoke | ↑ S-MDA levels (p = 0.006 in AE vs. StA) | HPLC | |
Not specified | Abboud et al. [80] | All | 205 (102) | NS | Investigation of the pathogenicity of a group of oxidative stress by-products in asthmatic disease | ↑ S-MDA levels (p < 0.05 in A vs. CS) In saliva: ↑ MDA levels (p < 0.05 in A vs. CS) | NS |
Ruprai et al. [81] | Adults | 80 (40) | On medication | Assessment of oxidants/antioxidants and their correlation with pulmonary function | ↑ S-MDA levels (p < 0.001 in A vs. CS); no correlation between S-MDA levels and pulmonary function test | Spectrophotometry | |
Shabestari et al. [82] | Children | 75 (25) | NS | Comparison of the oxidative stress markers in asthmatic + CAP and CAP only in children | ↑ S-MDA levels (p < 0.001 in A + CAP vs. CAP and CS) | Spectrophotometry |
BAL | |||||||
---|---|---|---|---|---|---|---|
Diseases | Authors | Population | Cohort (Controls) | Baseline Treatment | Outcomes | Findings | Methods of MDA Detection |
Allergic Asthma | |||||||
Stable | Brown et al. [85] | Children | 80 (12 atopic adults) | On medication for at least 6 weeks with ICS or systemic corticosteroids and/or other additional controller drugs | Evaluation of lipid peroxidation markers, pro-inflammatory cytokine and airflow limitation | ↑ MDA (p < 0.01 in SA vs. CS; p < 0.05 in SA vs. MMA), IL-13 (p < 0.01 in SA vs. CS; p < 0.05 in MMA vs. CS) and 8-isoprostane levels (p < 0.001 in SA vs. CS; p < 0.001 in MMA vs. CS) | Spectrophotometry |
Fitzpatrick et al. [86] | Children | 106 (6 children and 35 adults) | On medication for at least 8 weeks with ICS or systemic corticosteroids and/or other additional controller drugs | Assessment of airway oxidative stress status | ↑ MDA, 8-isoprostanes and H2O2 levels (p < 0.05 in A vs. CS) | Spectrophotometry | |
Schock et al. [87] | Children | 202 (83 non-atopic and 41 atopic children) | On medication with ICS or systemic corticosteroids and/or other additional controller drugs | Assessment of the antioxidants and oxidated protein concentration | No differences in MDA levels, antioxidants, and oxidated protein concentration | HPLC | |
Phenotype Not Specified | |||||||
Stable | Ozaras et al. [71] | Adults | 14 | Not on medication for at least 6 months | Correlation with respiratory function and lipid peroxidation markers before and after 1 month of ICS and beta2-agonist inhalers therapy | Before treatment: negative correlation between MDA and FEV1 levels (p < 0.05 in A); after treatment: ↓ MDA levels (p < 0.001 in TxA vs. baseline) | HPLC |
EBC | |||||||
Diseases | Authors | Population | Cohort (Controls) | Baseline Treatment | Outcomes | Findings | Methods of MDA Detection |
Asthma and/or Rhinitis | |||||||
A (atopic and non-atopic—stable) and/or Rhinitis | Aksu et al. [91] | Adults | 94 (13) | Not on medication | Evaluation of lower airway inflammation status and the influence of atopy and eosinophilia on MDA levels | No differences in MDA levels | Spectrophotometry |
A (atopic—stable) and/or AR | Celik et al. [92] | Children | 219 (74) | Not on medication for at least 1 week with antihistamines, 4 weeks with systemic corticosteroids and 3 days with antileukotrienes | Determination of oxidative stress levels in nasal and oral EBC | ↑ MDA levels and ↓ GSH levels in both oral and nasal EBC (p < 0.01 in MMA + AR, AR, MMA vs. CS); ↑ MDA levels (p < 0.01 in A vs. MMA + AR) | HPLC |
Allergic Asthma | |||||||
Stable | Dut et al. [93] | Children | 331 (191) | Not on medication | Characterization of the oxidant/antioxidant imbalance | ↑ MDA levels (p < 0.01 in MoA vs. CS); ↓ GSH levels (p < 0.001 in MoA vs. CS) | HPLC |
Not specified | Lärstad et al. [94] | Adults | 44 (15 atopic adults) | NS | Determination of MDA levels | No differences in MDA levels | HPLC |
Allergic/Non-Allergic Asthma | |||||||
Exacerbations | Corradi et al. [95] | Children | 22 (10) | On medication for at least 2 months with ICS (n = 10); not on medication (n = 2) | Determination of oxidant/antioxidant levels at exacerbation and after 5 days of oral prednisone therapy | Before treatment (AE vs. CS): ↑ MDA levels (p = 0.002); ↓ GSH levels (p < 0.001); after treatment: ↓ MDA levels (p = 0.001 in TxAE vs. AE); ↑ GSH (p = 0.04 in TxAE vs. AE); ↓ GSH (p < 0.001 in TxAE vs. CS) | HPLC |
Not specified | Romieu et al. [96] | Children | 107 | NS | Assessment of biomarkers of traffic-related pollution exposure in EBC and nasal lavage | Higher MDA levels in EBC correlates with greater exposure to traffic-related pollutants; MDA levels are inversely related to FVC and FEV1 and directly related to IL-8 in nasal lavage | HPLC |
Phenotype Not Specified | |||||||
Stable | Bartoli et al. [97] | Adults | 198 (14) | On medication with ICS (n = 41); not on medication (n = 23) | Evaluation of MDA levels in EBC in different pulmonary diseases | ↑ MDA levels (p < 0.001 in A vs. CS); ↑ MDA levels (p < 0.05 in UnTxA vs. TxA); | HPLC |
URTICARIA | ||||||||
---|---|---|---|---|---|---|---|---|
Disease | Sample | Authors | Population | Cohort (Controls) | Treatment Regimens | Outcomes | Findings | Methods of MDA Detection |
Chronic Urticaria | ||||||||
Blood | Galiniak et al. [100] | All | 33 (14) | Not on medication | Comparison of markers of oxidative stress | ↑ S-MDA levels (p < 0.05 in CIU vs. CS) | Spectrophotometry | |
Blood | Kasperka-Zajac et al. [101] | Adults | 64 (19) | Not on medication | Determination of oxidative/antioxidative stress status in CIU patients in the presence or absence of positive response to autologous serum skin test (ASST) | No differences in S- and E-MDA levels, S-CuZn/SOD and S-Mn/SOD activities and E-CuZn/SOD, E-GSH/Px and E-CAT activities | Spectrophotometry | |
Blood | Sagdic et al. [102] | Adults | 61 (36) | Not on medication | Assessment of the role of the oxidative stress in CIU patients | No differences in E-MDA levels; ↑ E-CuZn/SOD (p < 0.001 in CIU vs. CS) | Spectrophotometry | |
Blood | Rajappa et al. [103] | Adults | 90 (45) | Not on medication | Determination of platelet oxidative stress andsystemic inflammatory markers | ↑ P-MDA and ↓ P-SOD and P-GPx levels (p < 0.0001 in CIU vs. CS); positive correlation between USS and P-MDA levels (p = 0.001) | HPLC | |
Skin | Raho et al. [104] | Adults | 26 (10) | Not on medication | Evaluation of oxidative stress involvement in CIU | ↑ MDA levels and SOD and GSH activities (p < 0.005 in CIUASS vs. CIUNASS and CSSS) | Spectrophotometry | |
Acute Urticaria | ||||||||
Blood | Verma et al. [105] | All | 66 (33) | Not on medication | Characterization of oxidative stress status in CADR patients | ↑ S-MDA and ↓ S-GSH levels (p < 0.001 in CADRs vs. CS) | Spectrophotometry | |
Blood | Kalkan et al. [106] | Adults | 80 (30) | Not on medication | Evaluation of oxidative stress status in AU patients and its clinical significance | ↑ S-MDA (p < 0.001 in AU vs. CS) | Spectrophotometry | |
Blood | Kasperka-Zajac et al. [107] | Adults | 31 (19) | Not on medication | Evaluation of oxidant/antioxidant profile in NSAID-induced urticaria patients | No differences in S- and E-MDA levels | Spectrophotometry |
ATOPIC DERMATITIS | |||||||
---|---|---|---|---|---|---|---|
Sample | Authors | Population | Cohort (Controls) | Treatment Regimens | Outcomes | Findings | Methods of MDA Detection |
Blood | Amin et al. [109] | All | 130 (65) | Not on medication | Determination of the extent of lipid peroxidation and antioxidants status | ↑ S-MDA levels (p < 0.001 in AD vs. CS); ↓ Vit. A, Vit. C (p < 0.05 in AD vs. CS) and Vit. E levels (p < 0.001 in AD vs. CS) | Spectrophotometry |
Blood | Galiniak et al. [100] | All | 35 (14) | Not on medication | Comparison of markers of oxidative stress | No differences in S-MDA levels | Spectrophotometry |
Blood | Chung et al. [110] | Children | 384 (260) | Not on medication | Assessment of genetic polymorphisms on the risk of AD, and biomarkers analysis | High S-MDA levels in AD. vs. CS (not statistically significant) and ↓ TAC (p < 0.001 in AD vs. CS) | Spectrophotometry |
Blood | Uysal et al. [111] | Children | 140 (67) | Not on medication | Evaluation of oxidant/antioxidant balance and its correlation with AD severity | No differences in S-MDA levels; positive correlation between MDA/melatonin ratio and SCORAD index in AD vs. CS | ELISA |
Blood and urine | Hanusch et al. [112] | Children | 53 | NS | Oxidant/antioxidant imbalance and determination of MDA levels | No differences in U- and S-MDA levels | GC-MS |
Urine | Nakai et al. [113] | Adults | 70 (20) | On medication with topical corticosteroid and vitamin D3 analogues | Determination of MDA levels | No differences in U-MDA levels; Positive correlation between U-MDA and EASI score (p < 0.05) | NS |
EBC | Peroni et al. [114] | Children | 56 (23) | NS | Assessment of inflammatory markers in EBC | High MDA levels in CS vs. AD. (not statistically significant) | LC-MS-MS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordiano, R.; Di Gioacchino, M.; Mangifesta, R.; Panzera, C.; Gangemi, S.; Minciullo, P.L. Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update. Molecules 2023, 28, 5979. https://doi.org/10.3390/molecules28165979
Cordiano R, Di Gioacchino M, Mangifesta R, Panzera C, Gangemi S, Minciullo PL. Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update. Molecules. 2023; 28(16):5979. https://doi.org/10.3390/molecules28165979
Chicago/Turabian StyleCordiano, Raffaele, Mario Di Gioacchino, Rocco Mangifesta, Claudia Panzera, Sebastiano Gangemi, and Paola Lucia Minciullo. 2023. "Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update" Molecules 28, no. 16: 5979. https://doi.org/10.3390/molecules28165979
APA StyleCordiano, R., Di Gioacchino, M., Mangifesta, R., Panzera, C., Gangemi, S., & Minciullo, P. L. (2023). Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update. Molecules, 28(16), 5979. https://doi.org/10.3390/molecules28165979