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Abstract: The paper discussed the use of machine learning (ML) and quantum chemistry calculations
to predict the transition state and yield of copper-catalyzed P–H insertion reactions. By analyzing
a dataset of 120 experimental data points, the transition state was determined using density func-
tional theory (DFT). ML algorithms were then applied to analyze 16 descriptors derived from the
quantum chemical transition state to predict the product yield. Among the algorithms studied, the
Support Vector Machine (SVM) achieved the highest prediction accuracy of 97%, with over 80%
correlation in Leave-One-Out Cross-Validation (LOOCV). Sensitivity analysis was performed on
each descriptor, and a comprehensive investigation of the reaction mechanism was conducted to
better understand the transition state characteristics. Finally, the ML model was used to predict
reaction plans for experimental design, demonstrating strong predictive performance in subsequent
experimental validation.

Keywords: machine learning; quantum chemistry; SVM; transition state; copper catalysts

1. Introduction

Catalysts play an essential role in various chemical transformations. However, the
search for highly efficient catalysts for specific reactions remains a challenging task due to
the complexity of catalytic processes [1–3]. One effective strategy for constructing C–C and
C–heteroatom bonds is the insertion reaction of α-azido carbonyl compounds catalyzed by
transition metals [4–8]. Another significant method for synthesizing organic phosphine
compounds is the P–H insertion reaction [9]. However, there is relatively little research on
P–H insertion reactions in comparison to other X–H insertion reactions, and the range of
applicable metal catalysts is limited. The weak nucleophilic ability of phosphorus, along
with its high susceptibility to coordination bonding with metals due to the presence of lone
pair electrons in its outermost shell, poses challenges in the formation of metal carbene
intermediates and the occurrence of P–H insertion reactions. Copper has emerged as a
crucial catalyst in facilitating P–H insertion reactions [10–13]. Nonetheless, the complexity
of the reaction, involving numerous catalysts and substrates, requires scientists to rely on
their expertise and intuition, conducting trial and error experiments to identify suitable
reaction conditions. Despite significant efforts and resources invested, the outcomes often
prove unsatisfactory.

In the field of catalyst design and optimization, computational chemistry has become
increasingly important [14]. One strategy involves using quantum chemical methods to
simulate reaction transition states [15–23]. However, the vast space of catalytic materi-
als and the diversity of reaction conditions make traditional quantum mechanical-based
computational chemistry inefficient for catalyst screening [24–26]. Fortunately, artificial
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intelligence (AI) technology based on machine learning algorithms can overcome these
barriers, significantly accelerating the catalyst design process [27–29]. Integrating quantum
chemistry transition-state models with machine learning in catalyst design workflows can
provide valuable information, including experimental yield predictions and transition-state
characteristics that may not be easily obtained through other means.

While there has been growing interest in using machine learning and quantum chem-
istry calculations to parameterize experimental data and predict optimal catalytic con-
ditions [29–34], examples of using machine learning to analyze experimental data and
predict results under new reaction conditions are still limited. The combination of these
two approaches to predict product yields in copper-catalyzed P–H insertion reactions is a
novel application.

In this study, we employ quantum chemical calculations to elucidate the transition
state of the copper-catalyzed P–H insertion reaction (Figure 1). Subsequently, we integrate
the quantum chemical transition state model with machine learning to predict the final
outcomes of the reaction. Through quantum chemical calculations of the reaction mech-
anism and sensitivity analysis of important descriptors, we identify the transition state
features of this reaction, which can aid future in-depth investigations. Our optimal machine
learning model, the Support Vector Machine (SVM) [35,36], exhibits the highest predictive
accuracy and demonstrates excellent precision and performance through subsequent exper-
imental validation. This approach provides accurate guidance for scientists in designing
and selecting optimal reaction conditions and holds promise for identifying other optimal
reaction catalysts.
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2. Results and Discussion

A total of 110 experimental data on copper-catalyzed P–H insertion reactions were
initially obtained from relevant literature. However, before extracting descriptors that
accurately summarize catalyst performance, it is necessary to utilize density functional
theory (DFT) to calculate and determine the transition state and reaction mechanism.
Specifically, in the X–H insertion reaction of α-imino copper carbenes, it is important to
understand why the reaction pathway is more inclined towards the 1,3-insertion pathway
rather than the 1,1-insertion pathway. The literature extensively reports the DFT study
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of the reaction process, where diazo compounds are converted to metal carbenes under a
metal catalyst [37–41].

In this study, we utilized our newly synthesized catalyst, Cu(CH3CN)4PF6, as an
example. As depicted in Figure 2a, the reaction barrier of this process aligns with the
optimal reaction temperature of 50 ◦C, further confirming that the intermediate state of the
reaction is the α-imino copper carbene.
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Figure 2. (a) (1) Gibbs free energy (in kcal/mol) profile obtained at the SMDCHCl3/M06/6–
311++G(d,p)-LANL2DZ//B3LYP-D3/6-31G(d)-LANL2DZ level of theory for the formation of the
α-imino copper carbene from 3-diazoindolin-2-imine catalyzed by Cu(CH3CN)4PF6. (2) Distance
was given in Å. (3) Temperature of 323.15 K and a pressure of 1 atm. (b) (1) Gibbs free energy
(in kcal/mol) profile obtained at the SMDCHCl3/M06/6–311++G(d,p)-LANL2DZ//B3LYP-D3/6-
31G(d)-LANL2DZ level of theory for the formation of the 3-phosphonylindole product from α-imino
copper carbene and H–phosphine oxides. The pathways shown in black and blue were 1,1-insertion
reactions followed by hydrogen transfer processes, and the red pathway was a 1,3-insertion pathway.
(2) Important intermediates and transition states considered in the computation of the energetic span
for the catalytic cycle. (3) Distances were given in Å. (4) Temperature of 323.15 K and a pressure of
1 atm.

To gain a better understanding of the reaction mechanism, we performed Density
Functional Theory (DFT) calculations on three hypothetical pathways, as depicted in
Figure 2b. In PATH 1A (represented by the blue line in Figure 2b), the interaction between
diphenylphosphinic acid and copper carbene intermediate IM1 leads to the formation
of intermediate IM1′. Subsequently, IM1′ proceeds to the copper-related intermediate
IM2 via transition state TS2 with an activation energy barrier of only 3.3 kcal/mol. Once
IM2 is formed, the copper catalyst dissociates through transition state TS3′ with a ∆G of
4.4 kcal/mol, resulting in the production of the free ylide IM3. This indicates a high
likelihood of the copper catalyst departure. In TS3′, the β-C–Cu distance changes from
2.14 Å in IM2 to 2.53 Å, while the β-C–Cu distance in IM3 is 5.50 Å, indicating complete
dissociation of the copper catalyst upon formation of IM3. Next, the proton migrates
from diphenylphosphinic acid 2-2a’ to the β-C position of IM3 via transition state TS4,
resulting in the formation of IM4 with an energy barrier of 38.8 kcal/mol. Subsequently,
IM4 undergoes transformation into IM5 through intramolecular proton transfer, with an
energy barrier of 47.6 kcal/mol, via TS5 from β-C to α-C. Finally, the proton is transferred
from the α-C position of IM5 to the N atom of the Schiff base group, leading to the formation
of the 3-phosphorylindole product (PD),with an energy barrier of 19.7 kcal/mol.

Compared to PATH 1A, PATH 1B (indicated by the black line in Figure 2b) differs only
in the simultaneous occurrence of proton transfer between diphenylphosphinic acid 2-2a’
and β-C and the dissociation of the copper catalyst after the formation of IM2 via transition
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state TS3. This results in the formation of IM4 with an energy barrier of 41.3 kcal/mol.
PATH 1A and 1B explore the 1,1-insertion pathway of α-imino carbenes in P–H insertion
reactions. However, the high activation energy barrier (47.6 kcal/mol) observed during
the proton transfer process indicates that the 1,1-insertion pathway is unfavorable for the
reaction. Additionally, this high activation energy barrier contradicts the reported reaction
temperature of 50 ◦C in the literature. Thus, there must be another more reasonable reaction
pathway for the P–H insertion reaction of α-imino carbenes.

On the other hand, PATH 2 (represented by the red line in Figure 2b) corresponds
to the 1,3-insertion pathway for the copper-catalyzed P–H insertion reaction of α-imino
carbenes. The process of forming the copper-related intermediate IM3 in PATH 2 is similar
to that in PATH 1A. Through transition state TS2, diphenylphosphinic acid 2-2a’ inter-
acts with copper carbene intermediate IM1 to yield the copper-related intermediate IM2
(∆G = 3.3 kcal/mol). Once IM2 is formed, the copper catalyst dissociates through transition
state TS3′ with a ∆G = 4.4 kcal/mol, producing the free ylide IM3. In IM3, there exists a
strong hydrogen bond interaction (1.57 Å) between the hydroxyl group of the phosphinic
acid and the oxygen atom of the sulfonyl group. Subsequently, in the presence of the Schiff
base group, the hydroxyl group of the phosphinic acid forms a hydrogen bond (1.59 Å) with
the nitrogen atom of the Schiff base group on the α-imino carbene through transition state
TS5′ (5.2 kcal/mol). In the case of the existing Schiff base, the O–H group of phosphinous
acid tended to form a hydrogen bond with the N atom of the Schiff base group in IM5′ via
transition state TS5′ (5.2 kcal/mol). Consequently, the proton of the phosphinous acid could
be captured by the Schiff base through transition state TS6′ (−1.1 kcal/mol) and finally
generate 3-phosphonylindole (PD). This step played a key role in the 1,3-insertion pathway.
This reaction pathway is deemed the most probable mechanism for the copper-catalyzed
P–H insertion reaction of α-imino carbenes.

Although the DFT model for transition states is accurate, it remains a challenging
task to determine the yield of catalytic reactions solely based on this model. Consequently,
we have decided to integrate the transition state model with AI methods to facilitate the
determination of the transition state characteristics and the prediction of the reaction yield.
Previous reports combining quantum chemical transition state models with machine learn-
ing analysis to predict the yield of copper-catalyzed P–H insertion reactions are scarce.
One important clarification needs to be made: the descriptors we obtained were based
on calculations performed using α-amino copper carbenes as the transition state, as the
various indices in this step are crucial in determining the feasibility of the reaction. After
identifying the reactive transition state, we extracted 16 atomic and molecular descriptors
from the transition state model using quantum chemical calculations. It is worth noting that
in order to obtain more accurate calculations and more persuasive results, the experimental
impact brought by solvent effects was taken into consideration during the establishment
of the transition state model. However, in the subsequent machine learning modeling
process, it was found that the solvent effects had little influence on the final prediction
results. Moreover, considering the computational cost and time consumption in quanti-
fying parameters, it was ultimately decided not to further consider solvent effects. These
descriptors, along with the reaction yield, were utilized as the input and output datasets
for our machine learning model. These descriptors, which may potentially impact the
experimental catalytic yield, encompass the catalyst and reaction molecular mass (Mass),
lipophilicity (Log P), water solubility (Log S), transition state energy (E-RB3LYP), dipole
moment, polarizability, heat of formation (E (Thermal)), heat capacity, entropy, lowest
occupied molecular orbital (LUMO), highest occupied molecular orbital (HOMO), length
of Cu–C bond (Length (Cu–C)), length of P–C bond (Length (P–C)), Mulliken charge of Cu
(Mulliken (Cu)), Mulliken charge of P (Mulliken (P)), and Mulliken charge of C (Mulliken
(C)). Detailed calculation results for all data descriptors can be found in SI 1. To predict the
performance and transition state characteristics of Cu catalysts, we employed five machine
learning models: Partial Least Squares Regression (PLSR); Multiple Linear Regression
(MLR); Stepwise Multiple Linear Regression (SMLR); Artificial Neural Networks (ANN);
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and Support Vector Machine Regression (SVM). Each machine learning model provides
prediction results based on its inherent algorithm, and comprehending the differences
among them is crucial for selecting the most appropriate model for practical applications.
In the field of computational chemistry and cheminformatics, the SVM is widely used for
identifying new active compounds. Additionally, Support Vector Regression (SVR) has
emerged as the preferred method for modeling non-linear structure–activity relationships
and predicting compound potencies [42–46]. In our study, the SVM demonstrated the
highest prediction accuracy among the five tested machine learning models, as well as the
best performance in cross-validation (Figure 3). Therefore, we opted to utilize the SVM for
further analysis.
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After selecting the Support Vector Machine (SVM) as the optimal model, we further
investigated the critical features that significantly affect the catalytic efficiency using the
Principal Component Analysis (PCA) method, as illustrated in Figure 4. PCA is a multivari-
ate statistical technique [47] that examines the correlations among multiple variables and
explores how to reveal the internal structure of these variables by deriving a few principal
components. These components preserve as much information as possible from the original
variables while being uncorrelated. The identified descriptors, including length (Cu-C),
Mass, Log P, and E (Thermal), align with expert chemists’ intuitions regarding the relative
importance of catalyzing P–H insertion reactions. The graph in Figure 4 clearly demon-
strates that these descriptors have regression coefficients exceeding 1. Traditional analytical
methods face challenges in quantifying these parameters accurately, but the combination
of quantum chemistry calculations and machine learning provides a straightforward and
direct approach.
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To investigate the effect of the number of descriptors on predictive performance, we
trained SVM models based on the top 16, 13, 10, and 7 descriptors shown in Figure 5.
This demonstrated that reducing the number of descriptors from 16 to 13 has a negligible
impact on predictive accuracy, and it further suggests that even when considering only the
top 13 descriptors, the SVM model can provide satisfactory predictive results. Moreover,
this indicates that the initially considered and selected descriptors are representative and
accurately capture the factors influencing catalytic reaction outcomes.

The descriptors were obtained from quantitative calculations, which encompass a
wide range of categories necessary for predicting the yield of the P–H insertion reaction.
However, this also increases the complexity and computational time of the calculations.
Additionally, due to the “black-box” nature of machine learning algorithms, we aim to estab-
lish a connection between this work and practical applications by providing interpretability
rather than just predictive capabilities. Therefore, we conducted an importance analysis
of these descriptors, gradually reducing their number and sequentially modeling them to
observe their impact on prediction accuracy in order to gain a deeper understanding of
these descriptors.
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It can be observed that although the top four important descriptors contribute signifi-
cantly to the overall importance, the prediction accuracy of the model gradually decreases
as the number of descriptors is reduced. Even when only the top seven descriptors are used,
the model can still achieve a cross-validation regression coefficient close to 0.8. However,
this does not imply that descriptors other than the top-ranked ones are unimportant; their
combination provides higher predictive accuracy. Our work offers a choice for situations
where extensive calculations are not feasible, but an approximate estimation of reaction
yield is needed. In such cases, only the top few important descriptors can be selected
for modeling.

Further examination of Figure 6 reveals that length (Cu–C), Mass, Log P, E (Thermal),
LOMO, and Mulliken (P) are the most influential factors affecting catalytic yield. To gain
additional chemical insights, we obtained sensitivity plots for these descriptors from the
SVM model, as shown in Figure 6. These plots display the catalytic yield as a function of
descriptor variation. The results indicate that the reaction yield increases with the increase
in Log P, E (Thermal), LOMO, and Mulliken (P) descriptors, while it decreases with the in-
crease in length (Cu–C) of the molecule. The highest yield is observed at a molecular weight
of approximately 500, which aligns with the expected trends and insights of chemists. The
purpose of conducting sensitivity analyses is to establish a connection with real-world
experiments, enhancing interpretability and providing guidance for the further exploration
of reactions. For instance, in the P–H insertion reaction, an increase in Cu–C distance
implies a decrease in the likelihood of the reaction occurrence. The molecular weight of
the transition state should fall within an appropriate range to facilitate the reaction, as
deviations towards larger or smaller values can lead to a decrease in yield. Given that
most reactions occur in organic solvents, a stronger lipophilicity is associated with higher
yields. Hence, it is important to consider the lipophilicity of reactants in subsequent exper-
imental processes. However, despite the intuitive nature of variables such as molecular
weight and lipophilicity, other descriptors, though informative in understanding their
significance and impact on yield variations, are not easily controlled, posing limitations in
experimental design.
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To demonstrate the reliability of the constructed model in a more intuitive manner, we
conducted experiments on 26 synthetic design schemes, and the final experimental results
and model prediction curves are shown in SI 2 and Figure 7. Among these schemes, the
pink squares and blue circles represent samples with yields >80% and ≤80%, respectively,
collected from other literature sources. The red inverted triangles and blue triangles
represent 26 samples with yields >80% and≤80%, respectively, obtained in this experiment.
Although slight discrepancies exist between the experimental and calculated values, mainly
due to differences in experimental conditions and idealization of the simulation model,
Figure 7 demonstrates that the accuracy and reliability of our established prediction model
can be further verified through experiments.
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3. Experimental Section
3.1. Data Source

All the data used for modeling in this paper were sourced from five publicly available
literature publications that discuss copper-catalyzed P–H insertion reactions [48–52].

3.2. Quantum Chemistry Calculations and Descriptor Acquisition

All theoretical calculations in this chapter were conducted using the Gaussian 16
software package [53] based on density functional theory (DFT). The B3LYP-D3 density
functional [54–58] was employed for geometry optimization of all reaction stationary points.
The metal copper atoms were modeled using the LANL2DZ [59,60] pseudo-potential basis
set, while the 6-31G(d) basis set [61] was used for all other atoms. Frequency calculations
were performed to determine whether the stationary points corresponded to minimum val-
ues or first-order saddle points. In addition, intrinsic reaction coordinate (IRC) calculations
were carried out at the same theoretical level [62–64] to confirm the connectivity between
the relevant reactants and products, thereby verifying the accuracy of the transition state.

For all single-point energy calculations, the optimized structures obtained from the
geometry optimization were used as a basis at the B3LYP-D3/6-31G(d)-LANL2DZ level.
Furthermore, the 6-311++G(d,p) basis set [65,66] was utilized for all atoms except copper,
and the M06 algorithm [67] was employed for these calculations. To account for solvent
effects, the Truhlar and Cramer-developed SMD solvent model [68] was employed. The
solvent correction was performed using the SMDCHCl3/M06/6-311++G(d,p)-LANL2DZ
theoretical level. The Gibbs free energy was calculated at a temperature of 323.15 K and a
pressure of 1 atm, based on the actual reaction temperature of 50 ◦C.

3.3. Machine Learning Models

The model construction and testing in this study were carried out using analytical
software (ExMiner 1.8.7.8) developed by our laboratory [69]. The ML predictions rely on
the selection of algorithms, and even experienced data scientists cannot determine the
best-performing algorithm without experimenting with different ones. Hence, in this study,
five ML models were established utilizing preprocessed datasets.

3.3.1. Partial Least Squares Regression (PLSR)

The principle behind PLSR [70] is to find a linear regression model by projecting the
predictor variables and the observed variables onto a new space through.

3.3.2. Multiple Linear Regression (MLR)

The basic principle of MLR [71] is similar to that of simple linear regression, with the
difference being the involvement of two or more independent variables.

3.3.3. Stepwise Multiple Linear Regression (SMLR)

SMLR [72] analysis involves the gradual introduction of variables, with each new
variable being tested against the previously selected variables to ensure that each variable
in the resulting subset is significant. The process is repeated until no further variables can
be added.

3.3.4. Artificial Neural Networks (ANN)

ANN [73] is a computational model composed of a large number of interconnected
nodes (or neurons). Each node represents a specific output function, known as an activation
function. The connection between any two nodes represents a weighted value for the
signal passing through that connection, known as a weight. Artificial Neural Networks
simulate human memory through this mechanism. The output of the network depends on
its structure, connection pattern, weights, and activation functions.
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3.3.5. Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a powerful machine learning algorithm that is
widely used in classification and regression tasks. The core concept of the SVM is to find a
hyperplane that maximizes the margin between two classes of data, allowing for effective
classification. The choice of kernel function is crucial in the SVM, as it determines how the
data are transformed and classified [74].

In regression tasks, Support Vector Machine Regression (SVR) is a significant applica-
tion of the SVM. SVR aims to find a regression plane that minimizes the distance between all
data points and the plane. This approach allows for the accurate prediction and modeling
of continuous variables.

To apply the SVM to regression, an alternative loss function is introduced. The results
obtained via SVR have shown promising performance. The key idea behind SVR is to map
the input data X into a higher-dimensional feature space F using a non-linear mapping
function Φ. Regression is then performed in this transformed space, enabling the modeling
of complex relationships between variables.

In practical applications, non-linear models are often necessary for better data fitting.
Similar to the non-linear support vector classification approach, non-linear mapping can be
employed to transform the data into a higher-dimensional feature space. In this transformed
space, linear regression can be applied to accurately model the data.

The complete SVM algorithm can be described in terms of dot products between data
points. The dot product measures the similarity between two data points and is used to
determine the position of the hyperplane that separates the different classes. By maximizing
the margin between classes, the SVM ensures robust classification and regression results.

In conclusion, the Support Vector Machine is a versatile algorithm that can be used for
both classification and regression tasks. SVM regression (or SVR) allows for the accurate
prediction of continuous variables by finding a regression plane that minimizes the distance
to the data points. Non-linear models can be achieved through the use of kernel functions
and by mapping the data into a higher-dimensional feature space. The dot product between
data points plays a crucial role in determining the position of the hyperplane and achieving
optimal classification and regression results.

3.4. Synthesis

Based on previous research conducted in our laboratory, a reaction scheme for copper-
catalyzed P–H insertion was devised, as depicted in Schemes 1–4. The design and discus-
sion encompassed the substitution of both the 1st and 5th positions of the indole substrate,
along with various sulfonyl groups. Moreover, the different types of H-type phosphine
oxides and the subsequent modifications in experimental outcomes resulting from the
addition of chiral reagents were taken into consideration. To begin the experiment, a
mixture of 3-azidoindole-2-imine (0.2 mmol) and 0.4 mL of CHCl3 was gradually added to
a mixed solution containing H-type phosphine oxide (0.2 mol), catalyst Cu(CH3CN)4PF6
(0.01 mmol), and 0.4 mL of CHCl3. The reaction mixture was then stirred at 50 ◦C under
an argon atmosphere for one hour. Upon completion, the solvent was evaporated under
vacuum, and the resulting residue was purified using silica gel column chromatography
(petroleum ether/ethyl acetate 3:1) to obtain the phosphine hydride compound.
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3.5. Structural Validation of Synthesized Product

The 1H NMR and 13C NMR spectra were acquired using a Brucker 600 MHz spectrom-
eter in CDCl3. TMS served as the internal standard for 1H NMR (δ = 0), while CDCl3 was
employed as the internal standard for 13C NMR (δ = 77.0). Additionally, the 31P NMR and
19F NMR spectra were recorded on the same instrument. Chemical shifts were reported
in parts per million (ppm), and the multiplicity was indicated as s (singlet), d (doublet),
t (triplet), q (quartet), m (multiplet), or br (broad). High-resolution mass spectrometry
(HRMS) using electrospray ionization (ESI) was performed on a Thermo Fisher Scien-
tific LTQ FT Ultra. The starting materials were purchased from Aldrich, Macklin, and
Energy Chemicals and were used without further purification. Solvents were dried and
purified following the procedures. Column chromatography was conducted using sil-
ica gel (200–300 mesh ASTM). The substrates were prepared according to published
procedures [75].
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4. Conclusions

This work presents a novel approach that combines quantum chemical transition
state modeling with machine learning to establish a highly accurate model for predicting
transition state features and yield in P–H insertion reactions. This study proves the po-
tential of integrating quantum mechanical calculations and machine learning techniques
to predict the outcome of catalytic reactions, which could significantly reduce the costs of
human labor and experimentation. Furthermore, by developing appropriate descriptors
and fine-tuning hyperparameters, this method can be extended to other organic and inor-
ganic material fields, thereby facilitating the improvement and discovery of new materials.
Furthermore, it is important to recognize that there is still room for further improvement in
our work—for example, exploring the inclusion of solvent-related descriptors to enhance
the general applicability and stability of the prediction model. Additionally, conducting
sensitivity analyses on different descriptors would provide theoretical guidance for sub-
sequent experimental designs, rather than relying solely on designing predictions before
conducting experiments. This approach would enhance the practicality and functionality
of the model, and it is an area we will explore in our future investigations.
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