Effects of Tea Polyphenols and Theaflavins on Three Oral Cariogenic Bacteria
Abstract
:1. Introduction
2. Results
2.1. Determination of MIC and MBC of Tea Polyphenols and Theaflavins against Cariogenic Bacteria
2.2. Cariogenic Bacteria Acidogenicity after Treatment with Tea Polyphenols and Theaflavins
2.3. Effects of Tea Polyphenols and Theaflavins on the Adhesion of Cariogenic Bacteria
2.4. Effects of Tea Polyphenols and Theaflavins on the Conductivity of Cariogenic Bacteria Culture Medium
2.5. Effects of Tea Polyphenols and Theaflavins on Cariogenic Biofilm Biomass
2.6. Effects of Tea Polyphenols and Theaflavins on the Biofilm Activity of Cariogenic Bacteria
3. Methods
3.1. Materials
3.1.1. Bacteria and Culture Medium
3.1.2. Samples
3.1.3. Instruments and Reagents
3.2. Preparation of Bacterial Solution
3.3. Preparation of Positive Control
3.4. Preparation of Agent-Containing Solution
3.5. MIC and MBC Determination of Tea Polyphenols and Theaflavins against Cariogenic Bacteria
3.6. Acid Production of Cariogenic Bacteria treated by Tea Polyphenols and Theaflavins
3.7. Determination of Adhesion of Cariogenic Bacteria by Tea Polyphenols and Theaflavins
3.8. Determination of the Electrical Conductivity of the Culture Medium of the Cariogenic Bacteria by Tea Polyphenols and Theaflavins
3.9. Determination of Cariogenic Biofilm Biomass by Tea Polyphenols and Theaflavins
3.10. Determination of the Biofilm Activity of Tea Polyphenols and Theaflavins against Cariogenic Bacteria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
GTF | glucosyltransferase |
TP | tea polyphenols |
TFs | theaflavins |
S.m | Streptococcus mutans |
S.s | Streptococcus sobrinus |
A.v | Actinomyces viscosus |
BHI | Brain heart infusion |
References
- Kanasi, E.; Johansson, I.; Lu, S.C.; Kressin, N.R.; Nunn, M.E.; Kent, R., Jr.; Tanner, A.C. Microbial risk markers for childhood caries in pediatricians’ offices. J. Dent. Res. 2010, 89, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Nyvad, B. The role of bacteria in the caries process: Ecological perspectives. J. Dent. Res. 2011, 90, 294–303. [Google Scholar] [CrossRef]
- Takahashi, N.; Nyvad, B. Ecological Hypothesis of Dentin and Root Caries. Caries Res. 2016, 50, 422–431. [Google Scholar] [CrossRef]
- Takahashi, N.; Nyvad, B. Caries ecology revisited: Microbial dynamics and the caries process. Caries Res. 2008, 42, 409–418. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Ru, J.; Liu, F. NiP/CuO composites: Electroless plating synthesis, antibiotic photodegradation and antibacterial properties. Chemosphere 2021, 267, 129220. [Google Scholar] [CrossRef]
- Sirk, T.W.; Friedman, M.; Brown, E.F. Molecular binding of black tea theaflavins to biological membranes: Relationship to bioactivities. J. Agric. Food Chem. 2011, 59, 3780–3787. [Google Scholar] [CrossRef]
- Lagha, A.B.; Haas, B.; Grenier, D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci. Rep. 2017, 7, 44815. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Qi, X.; Huang, S.; Chen, S.; Wu, Y.; Zhao, L. Theaflavins inhibit pathogenic properties of P. gingivalis and MMPs production in P. gingivalis-stimulated human gingival fibroblasts. Arch. Oral Biol. 2015, 60, 12–22. [Google Scholar] [CrossRef]
- Bedran, T.B.L.; Morin, M.P.; Spolidorio, D.P.; Grenier, D. Black Tea Extract and Its Theaflavin Derivatives Inhibit the Growth of Periodontopathogens and Modulate Interleukin-8 and beta-Defensin Secretion in Oral Epithelial Cells. PLoS ONE 2015, 10, e0143158. [Google Scholar]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Zada, A.; Yu, X.; Liu, F.; Jin, G. NiFe2O4/g-C3N4 heterostructure with an enhanced ability for photocatalytic degradation of tetracycline hydrochloride and antibacterial performance. Chemosphere 2022, 307, 135717. [Google Scholar] [CrossRef] [PubMed]
- Leme, A.F.P.; Koo, H.; Bellato, C.M.; Bedi, G.; Cury, J.A. The role of sucrose in cariogenic dental biofilm formation—New insight. J. Dent. Res. 2006, 85, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, C.; Huang, I.H.; Merritt, J.; Qi, F. Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures. Microbiology 2011, 157, 2433–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; McLean, J.S.; Yang, Y.; Eckert, R.; Kaplan, C.W.; Kyme, P.; Sheikh, O.; Varnum, B.; Lux, R.; Shi, W.; et al. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc. Natl. Acad. Sci. USA 2015, 112, 7569–7574. [Google Scholar] [CrossRef]
- Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res. 2015, 99, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.; Bifulco, A.; Amato, P.; Imparato, C.; Qi, K. Copper indium sulfifide quantum dots in photocatalysis. J. Colloid Interf. Sci. 2023, 638, 193–219. [Google Scholar]
- Xiao, J.; Zhou, X.D.; Feng, J.; Hao, Y.Q.; Li, J.Y. Activity of Nidus Vespae extract and chemical fractions against Streptococcus mutans biofilms. Lett. Appl. Microbiol. 2007, 45, 547–552. [Google Scholar] [CrossRef]
- Cui, Q.; Gu, X.; Zhao, Y.; Qi, K.; Yan, Y. S-scheme CuInS2/ZnS heterojunctions for the visible light-driven photocatalytic degradation of tetracycline antibiotic drugs. J. Taiwan Inst. Chem. E 2023, 142, 104679. [Google Scholar] [CrossRef]
- Zeng, Y.; Nikitkova, A.; Abdelsalam, H.; Li, J.; Xiao, J. Activity of quercetin and kaemferol against Streptococcus mutans biofilm. Arch. Oral Biol. 2019, 98, 9–16. [Google Scholar] [CrossRef]
- Xu, H.X.; Lee, S.F. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother. Res. 2001, 15, 39–43. [Google Scholar] [CrossRef]
- Queda, F.; Calò, S.; Gwizdala, K.; Magalhães, J.D.; Cardoso, S.M.; Chaves, S.; Piemontese, L.; Amélia, M. Novel Donepezil–Arylsulfonamide Hybrids as Multitarget-Directed Ligands for Potential Treatment of Alzheimer’s Disease. Molecules 2021, 26, 1658. [Google Scholar] [CrossRef]
- Yang, H.; Li, K.; Yan, H.; Liu, S.; Wang, Y.; Huang, C. High-performance therapeutic quercetin-doped adhesive for adhesive-dentin interfaces. Sci. Rep. 2017, 7, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gu, X.; Zhao, Y.; Zhang, K.; Yan, Y.; Qi, K. Photocatalytic Hydrogen Production and Tetracycline Degradation Using ZnIn2S4 Quantum Dots Modifified g-C3N4 Composites. Nanomaterials 2023, 13, 305. [Google Scholar] [CrossRef]
- Girme, A.; Pawar, S.; Ghule, C.; Shengule, S.; Saste, G.; Balasubramaniam, A.K.; Hingorani, A.D.L. Bioanalytical Method Development and Validation Study of Neuroprotective Extract of Kashmiri Saffron Using Ultra-Fast Liquid Chromatography-Tandem Mass Spectrometry (UFLC-MS/MS): In Vivo Pharmacokinetics of Apocarotenoids and Carotenoids. Molecules 2021, 26, 1815. [Google Scholar] [CrossRef]
- Kawai, K.; Tsuchitani, Y. Effects of resin composite components on glucosyltransferase of cariogenic bacterium. J. Biomed. Mater. Res. A 2000, 51, 123–127. [Google Scholar] [CrossRef]
- Qi, K.; Zhuang, C.; Zhang, M.; Gholami, P.; Khataee, A. Sonochemical synthesis of photocatalysts and their applications. J. Mater. Sci. Technol. 2022, 123, 243–256. [Google Scholar] [CrossRef]
- Mingas, P.-D.; Zdovc, J.; Grabnar, I.; Vovk, T. The Evolving Role of Microsampling in Therapeutic Drug Monitoring of Monoclonal Antibodies in Inflammatory Diseases. Molecules 2021, 26, 1787. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.R.D.; Freitas, V.A.A.D.; Nascimento-Neto, L.G.; Carneiro, V.A.; Arruda, F.V.S.; Aguiar, A.S.W.D.; Cavada, B.S.; Teixeira, E.H. Antimicrobial peptide control of pathogenic microorganisms of the oral cavity: A review of the literature. Peptides 2012, 36, 315–321. [Google Scholar] [CrossRef]
- Leung, L.K.; Su, Y.; Chen, R.; Zhang, Z.; Huang, Y.; Chen, Z.Y. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr. 2001, 131, 2248–2251. [Google Scholar] [CrossRef] [Green Version]
- Batiha, G.E.-S.; Beshbishy, A.M.; Guswanto, A.; Nugraha, A.; Munkhjargal, T.; Abdel-Daim, M.M.; Mosqueda, J.; Igarashi, I. Phytochemical Characterization and Chemotherapeutic Potential of Cinnamomum verum Extracts on the Multiplication of Protozoan Parasites In Vitro and In Vivo. Molecules 2020, 25, 996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Yang, B.; Gu, X.; Li, M.; Qi, K.; Yan, Y. Detection of enrofloxacin residues in dairy products based on their fluorescence quenching effect on AgInS2 QDs. Spectrochim. Acta Part A 2023, 301, 122985. [Google Scholar] [CrossRef] [PubMed]
- Qi, K.; Sun, B.; Liu, S.-Y.; Zhang, M. Research progress on carbon materials in tumor photothermal therapy. Biomed. Pharmacother. 2023, 165, 115070. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.D. Dental plaque as a biofilm and a microbial community-implications for health and disease. BMC Oral Health 2006, 6, S14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majtan, J.; Sojka, M.; Palenikova, H.; Bucekova, M.; Majtan, V. Vitamin C Enhances the Antibacterial Activity of Honey against Planktonic and Biofilm-Embedded Bacteria. Molecules 2020, 25, 992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 2017, 727, 792–820. [Google Scholar] [CrossRef]
- Filoche, S.; Wong, L.; Sissons, C.H. Oral biofilms: Emerging concepts in microbial ecology. Dent. Res. 2010, 89, 8–18. [Google Scholar] [CrossRef]
Groups | MIC (mg/mL) | MBC (mg/mL) | ||||
---|---|---|---|---|---|---|
S.m | S.s | A.v | S.m | S.s | A.v | |
95% tea polyphenols | 2 | 2 | 1 | 16 | 8 | 4 |
20% theaflavins | 8 | 4 | 4 | 32 | 16 | 32 |
40% theaflavins | 4 | 2 | 2 | 16 | 8 | 32 |
60% theaflavins | 8 | 4 | 4 | 32 | 8 | 32 |
80% theaflavins | 16 | 4 | 16 | 32 | 16 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Xu, L.; Qi, K.; Lan, H. Effects of Tea Polyphenols and Theaflavins on Three Oral Cariogenic Bacteria. Molecules 2023, 28, 6034. https://doi.org/10.3390/molecules28166034
Cui X, Xu L, Qi K, Lan H. Effects of Tea Polyphenols and Theaflavins on Three Oral Cariogenic Bacteria. Molecules. 2023; 28(16):6034. https://doi.org/10.3390/molecules28166034
Chicago/Turabian StyleCui, Xia, Lei Xu, Kezhen Qi, and Hai Lan. 2023. "Effects of Tea Polyphenols and Theaflavins on Three Oral Cariogenic Bacteria" Molecules 28, no. 16: 6034. https://doi.org/10.3390/molecules28166034
APA StyleCui, X., Xu, L., Qi, K., & Lan, H. (2023). Effects of Tea Polyphenols and Theaflavins on Three Oral Cariogenic Bacteria. Molecules, 28(16), 6034. https://doi.org/10.3390/molecules28166034