Impact of Polymer Chain Rearrangements in the PA Structure of RO Membranes on Water Permeability and N-Nitrosamine Rejection
Abstract
:1. Introduction
2. Results
2.1. Improvement of Water Permeability and N-Nitrosamine Rejection
2.2. ATR-IR
2.3. Contact Angle
2.4. Pore Size Distribution
2.5. AFM
2.6. SEM
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. n-PrOH Treatment of Membranes
4.3. Characterization of PA-TFC Membranes
4.3.1. RO Performance
4.3.2. ATR-IR Spectral Analysis
4.3.3. Contact Angle
4.3.4. Atomic Force Microscopy (AFM)
4.3.5. Scanning Electron Microscopy
4.3.6. High-Performance Liquid Chromatography Analysis
4.3.7. Pore Size Distribution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Yang, J.; Monnot, M.; Ercolei, L.; Moulin, P. Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-of-the-Art and Performance Analysis. Membranes 2020, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Farré, M.J.; Insa, S.; Gernjak, W.; Corominas, L.; Čelić, M.; Acuña, V. N-Nitrosamines and Their Precursors in Wastewater Effluents from Selected Industries in Spain. J. Hazard. Mater. 2023, 451, 131159. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Bei, E.; Wang, Y.; Wang, J.; Zhang, X.; Chen, C. One Representative Water Supply System in China with Nitrosamine Concern: Challenges and Treatment Strategies. J. Environ. Sci. 2020, 88, 12–20. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Contaminant Candidate List (CCL) and Regulatory Determination. Available online: https://www.epa.gov/ccl/ccl-4-chemical-contaminants (accessed on 1 February 2023).
- Thresher, A.; Foster, R.; Ponting, D.J.; Stalford, S.A.; Tennant, R.E.; Thomas, R. Are All Nitrosamines Concerning? A Review of Mutagenicity and Carcinogenicity Data. Regul. Toxicol. Pharmacol. 2020, 116, 104749. [Google Scholar] [CrossRef]
- Krasner, S.W.; Mitch, W.A.; McCurry, D.L.; Hanigan, D.; Westerhoff, P. Formation, Precursors, Control, and Occurrence of Nitrosamines in Drinking Water: A Review. Water Res. 2013, 47, 4433–4450. [Google Scholar] [CrossRef]
- Peyravi, M.; Nikpour, P. Organic Pollutants of Global Concern in Groundwater Resources and Remediation Measures. In Groundwater Geochemistry; Wiley: Hoboken, NJ, USA, 2021; Volume 116, pp. 164–192. [Google Scholar]
- Nawrocki, J.; Andrzejewski, P. Nitrosamines and Water. J. Hazard. Mater. 2011, 189, 1–18. [Google Scholar] [CrossRef]
- US EPA. Six-Year Review 3 Technical Support Document for Nitrosamines; United States Environmental Protection Agency: Washington, DC, USA, 2016. [Google Scholar]
- Sgroi, M.; Vagliasindi, F.G.A.; Snyder, S.A.; Roccaro, P. N-Nitrosodimethylamine (NDMA) and Its Precursors in Water and Wastewater: A Review on Formation and Removal. Chemosphere 2018, 191, 685–703. [Google Scholar] [CrossRef] [PubMed]
- Alaba, P.A.; Sani, Y.M.; Olupinla, S.F.; Daud, W.M.W.; Mohammed, I.Y.; Enweremadu, C.C.; Ayodele, O.O. Toward N-Nitrosamines Free Water: Formation, Prevention, and Removal. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2448–2489. [Google Scholar] [CrossRef]
- Mitch, W.A.; Sharp, J.O.; Trussell, R.R.; Valentine, R.L.; Alvarez-Cohen, L.; Sedlak, D.L. N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review. Environ. Eng. Sci. 2003, 20, 389–404. [Google Scholar] [CrossRef]
- Sharpless, C.M.; Linden, K.G. Experimental and Model Comparisons of Low- and Medium-Pressure Hg Lamps for the Direct and H2O2 Assisted UV Photodegradation of N-Nitrosodimethylamine in Simulated Drinking Water. Environ. Sci. Technol. 2003, 37, 1933–1940. [Google Scholar] [CrossRef]
- von Gunten, U. Oxidation Processes in Water Treatment: Are We on Track? Environ. Sci. Technol. 2018, 52, 5062–5075. [Google Scholar] [CrossRef]
- Okamoto, Y.; Lienhard, J.H. How RO Membrane Permeability and Other Performance Factors Affect Process Cost and Energy Use: A Review. Desalination 2019, 470, 114064. [Google Scholar] [CrossRef]
- Fujioka, T.; Khan, S.J.; McDonald, J.A.; Henderson, R.K.; Poussade, Y.; Drewes, J.E.; Nghiem, L.D. Effects of Membrane Fouling on N-Nitrosamine Rejection by Nanofiltration and Reverse Osmosis Membranes. J. Membr. Sci. 2013, 427, 311–319. [Google Scholar] [CrossRef]
- Fujioka, T.; Ishida, K.P.; Shintani, T.; Kodamatani, H. High Rejection Reverse Osmosis Membrane for Removal of N-Nitrosamines and Their Precursors. Water Res. 2018, 131, 45–51. [Google Scholar] [CrossRef]
- Fujioka, T.; Khan, S.J.; McDonald, J.A.; Roux, A.; Poussade, Y.; Drewes, J.E.; Nghiem, L.D. N-Nitrosamine Rejection by Reverse Osmosis Membranes: A Full-Scale Study. Water Res. 2013, 47, 6141–6148. [Google Scholar] [CrossRef]
- Fujioka, T.; Osako, M.; Tanabe, S.; Kodamatani, H.; Shintani, T. Plugging Nonporous Polyamide Membranes for Enhanced Rejection of Small Contaminants during Advanced Wastewater Treatment. Sep. Purif. Technol. 2020, 253, 117490. [Google Scholar] [CrossRef]
- Geise, G.M.; Park, H.B.; Sagle, A.C.; Freeman, B.D.; McGrath, J.E. Water Permeability and Water/Salt Selectivity Tradeoff in Polymers for Desalination. J. Membr. Sci. 2011, 369, 130–138. [Google Scholar] [CrossRef]
- Zhang, H.; Geise, G.M. Modeling the Water Permeability and Water/Salt Selectivity Tradeoff in Polymer Membranes. J. Membr. Sci. 2016, 520, 790–800. [Google Scholar] [CrossRef]
- Xia, L.; McCutcheon, J.R. Understanding the Influence of Solvents on the Intrinsic Properties and Performance of Polyamide Thin Film Composite Membranes. Sep. Purif. Technol. 2020, 238, 116398. [Google Scholar] [CrossRef]
- Razali, M.; Didaskalou, C.; Kim, J.F.; Babaei, M.; Drioli, E.; Lee, Y.M.; Szekely, G. Exploring and Exploiting the Effect of Solvent Treatment in Membrane Separations. ACS Appl. Mater. Interfaces 2017, 9, 11279–11289. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.G.; Park, S.H.; Kwon, S.J.; Kwon, H.E.; Park, J.B.; Lee, J.H. Facile Performance Enhancement of Reverse Osmosis Membranes via Solvent Activation with Benzyl Alcohol. J. Membr. Sci. 2019, 578, 220–229. [Google Scholar] [CrossRef]
- Barton, A.F.M. Solubility Parameters. Chem. Rev. 1975, 75, 731–753. [Google Scholar] [CrossRef]
- Hansen, C.M. Hansen Solubility Parameters, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780429127526. [Google Scholar]
- Rezzadori, K.; Penha, F.M.; Proner, M.C.; Zin, G.; Petrus, J.C.C.; Di Luccio, M. Impact of Organic Solvents on Physicochemical Properties of Nanofiltration and Reverse-Osmosis Membranes. Chem. Eng. Technol. 2019, 42, 2700–2708. [Google Scholar] [CrossRef]
- Mukherjee, D.; Kulkarni, A.; Gill, W.N. Chemical Treatment for Improved Performance of Reverse Osmosis Membranes. Desalination 1996, 104, 239–249. [Google Scholar] [CrossRef]
- Gorgojo, P.; Jimenez-Solomon, M.F.; Livingston, A.G. Polyamide Thin Film Composite Membranes on Cross-Linked Polyimide Supports: IMPROVEMENT of RO Performance via Activating Solvent. Desalination 2014, 344, 181–188. [Google Scholar] [CrossRef]
- Shi, M.; Yan, W.; Dong, C.; Liu, L.; Xie, S.; Gao, C. Solvent Activation before Heat-Treatment for Improving Reverse Osmosis Membrane Performance. J. Membr. Sci. 2020, 595, 117565. [Google Scholar] [CrossRef]
- Morović, S.; Košutić, K.; Komparić, I. The Impact of Solvent Activation of RO Membranes on Their Performances. In Proceedings of the 22th International Conference on Materials, Tribology & Recycling MATRIB 2022, Vela Luka, Croatia, 30 June–2 July 2022; Bušić, M., Leder Horina, J., Tropša, V., Eds.; HDMT—Hrvatsko Društvo za Materijale i Tribologiju: Vela Luka, Croatia, 2022; pp. 264–274. [Google Scholar]
- Bellona, C.; Drewes, J.E.; Xu, P.; Amy, G. Factors Affecting the Rejection of Organic Solutes during NF/RO Treatment—A Literature Review. Water Res. 2004, 38, 2795–2809. [Google Scholar] [CrossRef]
- Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O. Effect of Membrane Chemistry and Coating Layer on Physiochemical Properties of Thin Film Composite Polyamide RO and NF Membranes: I. FTIR and XPS Characterization of Polyamide and Coating Layer Chemistry. Desalination 2009, 242, 149–167. [Google Scholar] [CrossRef]
- Kolev, V.; Freger, V. Hydration, Porosity and Water Dynamics in the Polyamide Layer of Reverse Osmosis Membranes: A Molecular Dynamics Study. Polymer 2014, 55, 1420–1426. [Google Scholar] [CrossRef]
- Takeuchi, H.; Tanaka, H.; Nghiem, L.D.; Fujioka, T. Emerging Investigators Series: A Steric Pore-Flow Model to Predict the Transport of Small and Uncharged Solutes through a Reverse Osmosis Membrane. Environ. Sci. 2018, 4, 493–504. [Google Scholar] [CrossRef]
- Wang, L.; He, J.; Heiranian, M.; Fan, H.; Song, L.; Li, Y.; Elimelech, M. Water Transport in Reverse Osmosis Membranes Is Governed by Pore Flow, Not a Solution-Diffusion Mechanism. Sci. Adv. 2023, 9, eadf8488. [Google Scholar] [CrossRef]
- Dražević, E.; Košutić, K.; Freger, V. Permeability and Selectivity of Reverse Osmosis Membranes: Correlation to Swelling Revisited. Water Res. 2014, 49, 444–452. [Google Scholar] [CrossRef]
- Freger, V. Outperforming Nature’s Membranes. Science 2015, 348, 1317–1318. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications; Wiley: Hoboken, NJ, USA, 2012; ISBN 9780470743720. [Google Scholar]
- Meng, H.; Gong, B.; Geng, T.; Li, C. Thinning of Reverse Osmosis Membranes by Ionic Liquids. Appl. Surf. Sci. 2014, 292, 638–644. [Google Scholar] [CrossRef]
- Košutić, K.; Kunst, B. Removal of Organics from Aqueous Solutions by Commercial RO and NF Membranes of Characterized Porosities. Desalination 2002, 142, 47–56. [Google Scholar] [CrossRef]
- Kosutic, K. Porosity of Some Commercial Reverse Osmosis and Nanofiltration Polyamide Thin-Film Composite Membranes. J. Membr. Sci. 2000, 168, 101–108. [Google Scholar] [CrossRef]
- Kwak, S.Y.; Jung, S.G.; Kim, S.H. Structure-Motion-Performance Relationship of Flux-Enhanced Reverse Osmosis (RO) Membranes Composed of Aromatic Polyamide Thin Films. Environ. Sci. Technol. 2001, 35, 4334–4340. [Google Scholar] [CrossRef]
- Freger, V. Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial Polymerization. Langmuir 2003, 19, 4791–4797. [Google Scholar] [CrossRef]
- Al-Jeshi, S.; Neville, A. An Investigation into the Relationship between Flux and Roughness on RO Membranes Using Scanning Probe Microscopy. Desalination 2006, 189, 221–228. [Google Scholar] [CrossRef]
- Song, X.; Gan, B.; Yang, Z.; Tang, C.Y.; Gao, C. Confined Nanobubbles Shape the Surface Roughness Structures of Thin Film Composite Polyamide Desalination Membranes. J. Membr. Sci. 2019, 582, 342–349. [Google Scholar] [CrossRef]
- Hirose, M.; Ito, H.; Kamiyama, Y. Effect of Skin Layer Surface Structures on the Flux Behaviour of RO Membranes. J. Membr. Sci. 1996, 121, 209–215. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Geens, J.; Vandecasteele, C. Fluxes and Rejections for Nanofiltration with Solvent Stable Polymeric Membranes in Water, Ethanol and n-Hexane. Chem. Eng. Sci. 2002, 57, 2511–2518. [Google Scholar] [CrossRef]
- Kaštelan-Kunst, L.; Dananić, V.; Kunst, B.; Košutić, K. Preparation and Porosity of Cellulose Triacetate Reverse Osmosis Membranes. J. Membr. Sci. 1996, 109, 223–230. [Google Scholar] [CrossRef]
- Matsuura, T.; Sourirajan, S. Reverse Osmosis Transport through Capillary Pores under the Influence of Surface Forces. Ind. Eng. Chem. Process Des. Dev. 1981, 20, 273–282. [Google Scholar] [CrossRef]
- Dražević, E.; Košutić, K.; Dananić, V.; Pavlović, D.M. Coating Layer Effect on Performance of Thin Film Nanofiltration Membrane in Removal of Organic Solutes. Sep. Purif. Technol. 2013, 118, 530–539. [Google Scholar] [CrossRef]
Membranes | Pore Size/nm | Rejection/% | |||
---|---|---|---|---|---|
NDEA (r = 0.278 nm) | NDPA (r = 0.295 nm) | NDBA (r = 0.302 nm) | |||
UTC73AC | 0.20–0.63 | 88.9 | 94.9 | 94.9 | |
UTC73AC_M | 0.20–0.40 | 0.47–0.58 | 85.9 | 95.8 | 97.6 |
ACM1 | 0.49–0.56 | 93.8 | 97.4 | 95.6 | |
ACM1_M | 0.20–0.40 | 0.49–0.59 | 93.4 | 93.2 | 97.5 |
BW30LE | 0.25–0.40 | 0.47–0.57 | 75.5 | 89.6 | 86.1 |
BW30LE_M | 0.25–0.40 | 0.50–0.61 | 86.4 | 95.1 | 98.9 |
Membrane | UTC73AC | UTC73AC_M | ACM1 | ACM1_M | BW30LE | BW30LE_M |
---|---|---|---|---|---|---|
RMS/nm | 37.3 | 48.0 | 53.3 | 86.8 | 52.8 | 58.4 |
DOW-FILMTEC™ BW30LE | Toray™ UTC-73AC | TriSep™ ACM1 | |
---|---|---|---|
Feed | Brackish Water | Brackish Water | Brackish Water |
Type | Low Energy | High Rejection, Low Energy, Cl Resistant | “Tight” |
pH Range (25 °C) | 2–11 | 2–11 | 2–11 |
Flux 1/L m−2 h−1 bar−1 | 4.09–5.09 | 3.40 | 2.77 |
Rejection (NaCl) | 99.0% | 99.8% | 99.5% |
Pore size/MWCO | N/A | N/A | N/A |
Polymer | Polyamide-TFC | Polyamide-TFC | Polyamide-TFC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morović, S.; Vezjak Fluksi, A.; Babić, S.; Košutić, K. Impact of Polymer Chain Rearrangements in the PA Structure of RO Membranes on Water Permeability and N-Nitrosamine Rejection. Molecules 2023, 28, 6124. https://doi.org/10.3390/molecules28166124
Morović S, Vezjak Fluksi A, Babić S, Košutić K. Impact of Polymer Chain Rearrangements in the PA Structure of RO Membranes on Water Permeability and N-Nitrosamine Rejection. Molecules. 2023; 28(16):6124. https://doi.org/10.3390/molecules28166124
Chicago/Turabian StyleMorović, Silvia, Alegra Vezjak Fluksi, Sandra Babić, and Krešimir Košutić. 2023. "Impact of Polymer Chain Rearrangements in the PA Structure of RO Membranes on Water Permeability and N-Nitrosamine Rejection" Molecules 28, no. 16: 6124. https://doi.org/10.3390/molecules28166124
APA StyleMorović, S., Vezjak Fluksi, A., Babić, S., & Košutić, K. (2023). Impact of Polymer Chain Rearrangements in the PA Structure of RO Membranes on Water Permeability and N-Nitrosamine Rejection. Molecules, 28(16), 6124. https://doi.org/10.3390/molecules28166124