Chemical Investigations in Kelussia odoratissima Mozaff. Leaves Based on Comprehensive Analytical Methods: LC-MS, SPME, and GC-MS Analyses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic and Flavonoid Compounds
2.2. GC-MS SPME-Arrow Results
2.3. Essential Oils Composition
3. Materials and Methods
3.1. Liquid Chromatography Mass Spectrometry
3.1.1. Sample Preparation
3.1.2. Instrumental Analysis
3.2. HS-SPME Arrow GC/MS Analysis
Sample Preparation
3.3. Essential Oil Isolation
3.4. GC-MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Khanavi, M.; Ghadami, S.; Sadaghiani-Tabrizi, G.; Delnavazi, M.R. Phytochemical constituents of the fruits of Kelussia odoratissima Mozaff; an aromatic plant endemic to Iran. J. Med. Plants 2021, 20, 1–13. [Google Scholar] [CrossRef]
- Allah Saeedi, K.; Omidbaigi, R. Chemical characteristics of the seed of Iranian endemic plant Kelussia odoratissima. Chem. Nat. Compd. 2010, 46, 813–815. [Google Scholar] [CrossRef]
- Akbarian, A.; Rahimmalek, M.; Sabzalian, M.R.; Sarfaraz, D. Variation in essential oil composition, phenolic, flavonoid and antioxidant activity of Kelussia odoratissima Mozaff based on three model systems. J. Appl. Res. Med. Aromat. Plants 2019, 13, 100208. [Google Scholar] [CrossRef]
- Rabbani, M.; Sajjadi, S.E.; Sadeghi, M. Chemical composition of the essential oil from Kelussia odoratissima Mozaff. and the evaluation of its sedative and anxiolytic effects in mice. Clinics 2011, 66, 843–848. [Google Scholar] [CrossRef]
- Momtazi, A.A.; Askari-Khorasgani, O.; Abdollahi, E.; Sadeghi-Aliabadi, H.; Mortazaeinezhad, F.; Sahebkar, A. Phytochemical Analysis and Cytotoxicity Evaluation of Kelussia odoratissima Mozaff. J. Acupunct. Meridian Stud. 2017, 10, 180–186. [Google Scholar] [CrossRef]
- Ahmadi, F.; Kadivar, M.; Shahedi, M. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chem. 2007, 105, 57–64. [Google Scholar] [CrossRef]
- Shafaroodi, H.; Soltanmoradi, A.; Asgarpanah, J. The essential oil from Kelussia odoratissima Mozaff. fruits exerting potent analgesic and anti-inflammatory effects. Bol. Latinoam. Caribe Plantas Med. Aromat. 2023, 22, 59–67. [Google Scholar] [CrossRef]
- Pachura, N.; Zimmer, A.; Grzywna, K.; Figiel, A.; Szumny, A.; Łyczko, J. Chemical investigation on Salvia officinalis L. Affected by multiple drying techniques—The comprehensive analytical approach (HS-SPME, GC-MS, LC-MS/MS, GC-O and NMR). Food Chem. 2022, 397, 133802. [Google Scholar] [CrossRef]
- Raeisi, S.; Mirjalili, M.H.; Nadjafi, F.; Hadian, J. Variability in the essential oil content and composition in different plant organs of Kelussia odoratissima Mozaff. (Apiaceae) growing wild in Iran. J. Essent. Oil Res. 2015, 27, 283–288. [Google Scholar] [CrossRef]
- Mirhosseini, F.; Rahimmalek, M.; Pirbalouti, A.G.; Taghipoor, M. Effect of different drying treatments on essential oil yield, composition and color characteristics of Kelussia odoratissima Mozaff. J. Essent. Oil Res. 2015, 27, 204–211. [Google Scholar] [CrossRef]
- León, A.; Del-Ángel, M.; Ávila, J.L.; Delgado, G. Phthalides: Distribution in nature, chemical reactivity, synthesis, and biological activity. Prog. Chem. Org. Nat. Prod. 2017, 104, 127–246. [Google Scholar] [PubMed]
- Sajjadi, S.E.; Shokoohinia, Y.; Moayedi, N.S. Isolation and identification of ferulic acid from aerial parts of Kelussia odoratissima Mozaff. Jundishapur. J. Nat. Pharm. Prod. 2012, 7, 159–162. [Google Scholar]
- Cornara, L.; D’arrigo, C.; Pioli, F.; Borghesi, B.; Bottino, C.; Patrone, E.; Mariotti, M.G. Micromorphological investigation on the leaves of the rock samphire (Crithmum maritimum L.): Occurrence of hesperidin and diosmin crystals. Plant Biosyst. 2009, 143, 283–292. [Google Scholar] [CrossRef]
- Chung, S.; Kim, H.J.; Choi, H.K.; Park, J.H.; Hwang, J.T. Comparative study of the effects of diosmin and diosmetin on fat accumulation, dyslipidemia, and glucose intolerance in mice fed a high fat high sucrose diet. Food Sci. Nutr. 2020, 8, 5976–5984. [Google Scholar] [CrossRef]
- Moieni, A.; Torkan, S.; Malekpoor, F. Evaluation of Kelussia odoratissima Mozaff. extract on serum biochemical parameters and hepatica enzymes in the Persian Shepherd dogs. J. Herb. Med. 2019, 10, 53–60. [Google Scholar]
- Zhang, Y.; Jiang, S.; Xu, K.; Shi, H.; Zhou, Y.; Deng, W.; Ding, L.; Peng, S. Chemical constituents contained in seeds of Notopterygium franchetii. Chin. Med. J. 2012, 37, 941–945. [Google Scholar]
- Topdas, E.F.; Sengul, M.; Taghizadehghalehjoughi, A.; Hacimuftuoglu, A. Neuroprotective potential and antioxidant activity of various solvent extracts and essential oil of Ferula orientalis L. J. Essent. Oil Bear. Plants 2020, 23, 121–138. [Google Scholar] [CrossRef]
- Hashemi, P.; Yarahmadi, A.; Shamizadeh, M.; Khademi, K. Comparison of headspace solvent microextraction, hydrodistillation solvent microextraction, and solid-phase microextraction for the study of volatile components of Kelussia odoratissima Mozaff. by GC-MS. Acta Chromatogr. 2012, 24, 97–109. [Google Scholar] [CrossRef]
- Feng, W.M.; Liu, P.; Yan, H.; Yu, G.; Zhang, S.; Jiang, S.; Shang, E.X.; Qian, D.W.; Duan, J.A. Investigation of enzymes in the phthalide biosynthetic pathway in Angelica sinensis using integrative metabolite profiles and transcriptome analysis. Front. Plant Sci. 2022, 13, 928760. [Google Scholar] [CrossRef]
- Diao, X.; Deng, P.; Xie, C.; Li, X.; Zhong, D.; Zhang, Y.; Chen, X. Metabolism and pharmacokinetics of 3-n-butylphthalide (NBP) in humans: The role of cytochrome P450s and alcohol dehydrogenase in biotransformation. Drug Metab. Dispos. 2013, 41, 430–444. [Google Scholar] [CrossRef]
- Maggi, F.; Papa, F.; Giuliani, C.; Maleci Bini, L.; Venditti, A.; Bianco, A.; Nicoletti, M.; Iannarelli, R.; Caprioli, G.; Sagratini, G.; et al. Essential oil chemotypification and secretory structures of the neglected vegetable Smyrnium olusatrum L. (Apiaceae) growing in central Italy. Flavour Fragr. J. 2015, 30, 139–159. [Google Scholar] [CrossRef]
- Asuming, W.A.; Beauchamp, P.S.; Descalzo, J.T.; Dev, B.C.; Dev, V.; Frost, S.; Ma, C.W. Essential oil composition of four Lomatium Raf. species and their chemotaxonomy. Biochem. Syst. Ecol. 2005, 33, 17–26. [Google Scholar] [CrossRef]
- Pan, J.; Wu, C.; Tan, R.; Liao, Y.; Zhao, G.; Li, W.; Peng, Y.; Li, W.; Zheng, J. Difference in hepatotoxicity of furan-containing components in Cortex dictamni correlates the efficiency of their metabolic activation. Phytomedicine 2023, 114, 154778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, C.; Teng, X.; Wang, K.; Chen, M. Bioinformatics and computational chemistry approaches to explore the mechanism of the anti-depressive effect of ligustilide. Sci. Rep. 2023, 13, 5417. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, C.; Zhang, Y.; Xiao, X.; Han, G.; Sun, K.; Liu, S.; Zhang, Z.; Dong, C.; Zheng, Y.; et al. Sustainable extraction of ligustilide and ferulic acid from Angelicae Sinensis Radix, for antioxidant and anti-inflammatory activities. Ultrason. Sonochem. 2023, 94, 106344. [Google Scholar] [CrossRef] [PubMed]
Compound | Precursor m/z [M−H]− | Product m/z | Relative Product Ions Abundance [%] | Q1 Pre Bias 1 (V) | CE 2 | Q3 Pre Bias 3 (V) |
---|---|---|---|---|---|---|
3-Hydroxyflavone * | 238.9 | 164.9 | 100 | −12.0 | −33.0 | −25.0 |
120.95 | 51 | −26.0 | −29.0 | −18.0 | ||
104.95 | 25 | −12.0 | −30.0 | −15.0 | ||
Flavone * | 222.9 | 76.8 | 100 | −11.0 | −38.0 | −29.0 |
120.95 | 7 | −11.0 | −29.0 | −18.0 | ||
64.8 | 9 | −11.0 | −46.0 | −24.0 | ||
Quercetin | 300.9 | 150.9 | 100 | 14.0 | 24.0 | 28.0 |
178.95 | 48 | 14.0 | 17.0 | 11.0 | ||
106.9 | 25 | 14.0 | 29.0 | 20.0 | ||
Neohespederin dihydrohalcone | 611.1 | 303.0 | 100 | 28.0 | 35.0 | 20.0 |
125.0 | 27 | 28.0 | 45.0 | 24.0 | ||
165.9 | 5 | 28.0 | 55.0 | 16.0 | ||
Rutin | 609.0 | 301.0 | 57 | 30.0 | 27.0 | 19.0 |
285.9 | 6 | 30.0 | 44.0 | 17.0 | ||
299.05 | 100 | 28.0 | 28.0 | 19.0 | ||
Neohesperidin | 609.0 | 300.95 | 100 | 28.0 | 27.0 | 20.0 |
286.0 | 30 | 30.0 | 43.0 | 17.0 | ||
164.0 | 11 | 28.0 | 54.0 | 16.0 | ||
Polydatin | 389.0 | 321.0 | 50 | 19.0 | 12.0 | 23.0 |
343.1 | 100 | 20.0 | 14.0 | 24.0 | ||
Diosmin | 607.0 | 299.2 | 100 | 30.0 | 30.0 | 20.0 |
283.7 | 29 | 30.0 | 49.0 | 18.0 | ||
p-Coumaric acid | 163.0 | 119.05 | 100 | 15.0 | 16.0 | 22.0 |
92.95 | 7 | 16.0 | 31.0 | 17.0 | ||
91.05 | 14 | 15.0 | 29.0 | 13.0 | ||
Ferullic acid | 193.4 | 134.0 | 100 | 12.0 | 14.0 | 26.0 |
177.95 | 61 | 12.0 | 15.0 | 30.0 | ||
149.05 | 19 | 12.0 | 13.0 | 14.0 | ||
Caffeic acid | 179.5 | 134.95 | 100 | 11.0 | 16.0 | 25.0 |
134.65 | 27 | 11.0 | 30.0 | 23.0 | ||
106.95 | 3 | 11.0 | 22.0 | 19.0 | ||
Chlorogenic acid | 353.0 | 191.0 | 100 | 16 | 17.0 | 20.0 |
84.95 | 21 | 16 | 43.0 | 16.0 | ||
92.95 | 5 | 16 | 46.0 | 17.0 | ||
Acetylphloroglucinol | 167.5 | 123.0 | 100 | 11.0 | 17.0 | 24.0 |
80.95 | 29 | 10.0 | 22.0 | 15.0 | ||
83.0 | 31 | 11.0 | 24.0 | 16.0 | ||
m-Coumaric acid | 163.4 | 119.0 | 100 | 10.0 | 15.0 | 23.0 |
4-Methylsiringol | 167.3 | 123.0 | 100 | 26.0 | 13.0 | 26.0 |
108.0 | 64 | 10.0 | 15.0 | 11.0 |
Compounds | RT [min] | Concentration (µg/gDw) |
---|---|---|
Chlorogenic acid | 4.65 | 303.08 ± 1.9 |
Vanillic acid | 4.97 | 28.02 ± 0.9 |
4-Methylsiringol | 4.97 | 57.03 ± 0.85 |
Acetylphloroglucinol | 4.98 | 21.66 ± 0.64 |
Caffeic acid | 5.20 | 1.94 ± 0.44 |
p-Coumaric acid | 6.42 | 2.14 ± 0.53 |
m-Coumaric acid | 6.42 | 2.93 ± 0.25 |
Ferullic acid | 6.84 | 62.60 ± 1.2 |
Compounds | RT [min] | Concentration (µg/gDw) |
---|---|---|
Polydatin | 1.40 | 1.15 ± 0.34 |
Neohesperidin dihydrochalcone | 6.46 | 0.09 ± 0.12 |
Neohesperidin | 6.46 | 38.37 ± 0.87 |
Rutin | 6.48 | 23.08 ± 0.11 |
Flavone | 8.76 | 1.07 ± 0.86 |
3-Hydroxyflavone | 8.85 | 0.20 ± 0.09 |
Diosmin | 9.84 | 28.62 ± 0.76 |
Quercetin | 9.88 | 0.87 ± 0.08 |
Nr | Peak Name | tR (min) | KI Exp. | KI Lit. | Area (%) e | Identification | Similarity d |
---|---|---|---|---|---|---|---|
1 | Isobutyric acid | 3.19 | 770 | 756 | 1.22 | S, KI, MS | 95 |
2 | Butanoic acid | 3.63 | 801 | 802 | 13.75 | S, KI, MS | 92 |
3 | n-Hexanal | 3.95 | 803 | 801 | 2.10 | S, KI, MS | 90 |
4 | Isovaleric acid | 4.61 | 845 | 850 | 1.96 | S, KI, MS | 92 |
6 | Butanoic acid, 2-methyl- | 4.87 | 855 | 861 | 2.26 | S, KI, MS | 89 |
7 | 2-(E)-Hexenal | 5.08 | 862 | 864 | 0.01 | S, KI, MS | 86 |
8 | Pentanoic acid | 5.55 | 899 | 901 | 1.17 | S, KI, MS | 84 |
9 | trans-2-Pentenoic acid | 5.83 | 905 | 909 | 1.37 | S, KI, MS | 85 |
11 | Hexanal, 3-methyl- | 6.17 | 908 | 910 | 0.72 | S, KI, MS | 90 |
12 | Acetylfuran | 6.47 | 926 | 911 | 0.26 | KI, MS | 89 |
13 | Benzene, propyl- | 6.57 | 926 | 953 | 0.21 | KI, MS | 91 |
14 | 2-Heptenal, (E)- | 7.75 | 960 | 958 | 0.16 | KI, MS | 93 |
15 | Benzaldehyde | 7.92 | 970 | 962 | 0.23 | S, KI, MS | 95 |
16 | 1-Heptanol | 8.12 | 976 | 970 | 0.18 | S, KI, MS | 90 |
17 | 4-Octanone | 8.24 | 979 | 975 | 0.61 | KI, MS | 92 |
18 | Hexanoic acid | 8.34 | 982 | 990 | 1.41 | S, KI, MS | 87 |
19 | 5-Hepten-2-one, 6-methyl- | 8.67 | 991 | 986 | 0.23 | KI, MS | 96 |
20 | Furan, 2-pentyl- | 8.81 | 997 | 993 | 0.12 | KI, MS | 91 |
21 | 2-Ethylhexenal | 9.11 | 1004 | 999 | 0.062 | KI, MS | 93 |
22 | Octanal | 9.17 | 1006 | 1003 | 1.96 | S, KI, MS | 94 |
23 | 3-Hexenoic acid, (E)- | 9.42 | 1014 | 1021 | 0.70 | KI, MS | 91 |
24 | p-Cymene | 9.90 | 1031 | 1025 | 0.09 | S, KI, MS | 94 |
25 | Limonene | 10.03 | 1035 | 1031 | 0.21 | S, KI, MS | 90 |
26 | Benzyl alcohol | 10.23 | 1041 | 1036 | 0.31 | S, KI, MS | 93 |
28 | Phenylethanal | 10.59 | 1052 | 1045 | 0.68 | KI, MS | 89 |
29 | 4-Hexanolide | 10.95 | 1062 | 1057 | 0.06 | KI, MS | 87 |
30 | 2-Octenal, (E)- | 11.02 | 1062 | 1060 | 0.16 | S, KI, MS | 91 |
31 | 2-Acetylpyrrole | 11.105 | 1068 | 1663 | 0.41 | KI, MS | 88 |
32 | Octanol | 11.44 | 1075 | 1071 | 0.48 | S, KI, MS | 90 |
33 | 3,5-Octadien-2-one | 12.24 | 1097 | 1091 | 0.57 | KI, MS | 91 |
34 | Linalool | 12.44 | 1099 | 1099 | 0.08 | S, KI, MS | 95 |
35 | Nonanal | 12.59 | 1099 | 1104 | 4.95 | S, KI, MS | 94 |
36 | Octadienol <(2E,4E)-> | 12.79 | 1114 | 1116 | 0.28 | S, KI, MS | 92 |
37 | Phenylethyl Alcohol | 12.96 | 1119 | 1116 | 0.67 | S, KI, MS | 90 |
38 | Camphor | 14.09 | 1150 | 1142 | 0.18 | S, KI, MS | 94 |
39 | Benzene, pentyl- | 14.46 | 1163 | 1157 | 0.55 | KI, MS | 90 |
40 | Octanoic acid | 14.85 | 1174 | 1180 | 0.68 | S, KI, MS | 89 |
41 | Menthol | 15.02 | 1178 | 1174 | 0.38 | S, KI, MS | 91 |
42 | Unknown a | 15.30 | 1186 | n.d. | 0.18 | - | - |
43 | p-Cymen-8-ol | 15.47 | 1190 | 1183 | 0.18 | S, KI, MS | 93 |
44 | Estragole | 15.94 | 1203 | 1196 | 0.10 | S, KI, MS | 91 |
45 | Decanal | 16.13 | 1207 | 1206 | 0.38 | S, KI, MS | 89 |
46 | Carvone | 17.52 | 1253 | 1246 | 1.19 | S, KI, MS | 92 |
47 | Piperitone oxide | 17.91 | 1263 | 1256 | 0.70 | S, KI, MS | 93 |
48 | 2-Decenal, (E)- | 18.06 | 1271 | 1263 | 0.49 | KI, MS | 92 |
49 | n-Nonanoic acid | 18.20 | 1271 | 1273 | 0.67 | S, KI, MS | 88 |
50 | (Z)-6-Undecen-2-one | 18.59 | 1282 | 1274 | 15.09 | KI, MS | 92 |
51 | 1-Tridecyne | 18.70 | 1286 | 1297 | 0.55 | KI, MS | 90 |
52 | IS | 19.13 | 1297 | 1294 | 15.41 | S, KI, MS | 95 |
53 | unknown b | 20.77 | 1352 | n.d. | 0.26 | - | - |
54 | Ylangene | 20.98 | 1365 | 1372 | 0.25 | KI, MS | 92 |
55 | Valerophenone | 21.15 | 1368 | 1373 | 2.17 | KI, MS | 91 |
56 | 2-Undecenal, (Z)- | 21.30 | 1373 | n.d. | 0.60 | KI, MS | 93 |
57 | Copaene | 21.69 | 1387 | 1376 | 1.28 | KI, MS | 90 |
58 | Hexanoic acid, hexyl ester | 21.85 | 1391 | 1384 | 0.13 | KI, MS | 89 |
59 | Tetradecane | 22.14 | 1400 | 1400 | 0.26 | S, KI, MS | 85 |
60 | Dodecanal | 22.38 | 1411 | 1408 | 0.30 | S, KI, MS | 92 |
61 | α-Barbatene | 22.73 | 1435 | 1435 | 0.27 | KI, MS | 90 |
62 | Ethylphthalide * | 23.38 | 1464 | n.d. | 1.26 | MS | - |
63 | Acoradien | 23.66 | 1480 | 1471 | 0.87 | KI, MS | 93 |
64 | 4-epi-α-Acoradiene | 23.81 | 1486 | 1475 | 0.81 | KI, MS | 91 |
65 | α-Curcumene | 23.90 | 1491 | 1483 | 0.59 | S, KI, MS | 95 |
66 | Cuparene | 24.39 | 1521 | 1505 | 2.19 | KI, MS | 93 |
67 | Cubebol | 24.54 | 1532 | 1515 | 0.36 | KI, MS | 89 |
68 | unknown c | 24.65 | 1538 | n.d. | 1.20 | - | - |
69 | Kessane | 24.78 | 1548 | 1537 | 2.24 | KI, MS | 90 |
70 | Actinidiolide, dihydro- | 24.84 | 1551 | 1534 | 1.04 | KI, MS | 93 |
Peak Name | tR (min) | KI Exp. | KI Lit. | Area (%) | Identification | Similarity a |
---|---|---|---|---|---|---|
Isocumene * | 7.217 | 956 | 953 | 0.087 | KI, MS | 94 |
Heptenol (3-Z) | 7.286 | 959 | 954 | 0.039 | KI, MS | 92 |
4-Octanone | 7.734 | 974 | 976 | 0.042 | KI, MS | 95 |
2-Ethyl-2-hexenal | 8.576 | 1001 | 990 | 0.097 | KI, MS | 91 |
Limonene | 9.491 | 1033 | 1031 | 0.073 | S, KI, MS | 95 |
Terpinolene | 11.45 | 1090 | 1088 | 0.068 | S, KI, MS | 97 |
5-Pentylcyclohexa-1,3-diene | 13.802 | 1162 | 1161 | 0.854 | KI, MS | 91 |
Carvone | 16.729 | 1248 | 1242 | 0.09 | S, KI, MS | 93 |
(Z)-Undec-6-en-2-one | 17.802 | 1279 | 1279 | 2.233 | KI, MS | 90 |
2-Undecanone (IS) | 18.381 | 1295 | 1294 | 7.489 | S, KI, MS | 93 |
2-Methoxy-4-vinylphenol | 19.116 | 1318 | 1318 | 0.508 | KI, MS | 89 |
3-Penten-1-one, 1-phenyl- * | 20.433 | 1360 | n.d. | 0.383 | MS | 92 |
Copaene | 21.108 | 1380 | 1376 | 0.209 | KI, MS | 94 |
trans-β-Caryophyllene | 22.504 | 1424 | 1419 | 0.069 | S, KI, MS | 94 |
β-Barbatene | 23.245 | 1449 | 1451 | 0.062 | KI, MS | 92 |
Ethylphthalide * | 23.459 | 1455 | n.d. | 0.064 | MS | 92 |
Acoradien | 23.984 | 1472 | 1471 | 0.134 | KI, MS | - |
α-Curcumene | 24.405 | 1485 | 1483 | 0.085 | S, KI, MS | 91 |
β-Ionone | 24.816 | 1498 | 1491 | 0.12 | S, KI, MS | 96 |
Cuparene | 25.14 | 1509 | 1505 | 0.329 | KI, MS | 93 |
Cubebol | 25.478 | 1521 | 1515 | 0.119 | KI, MS | 91 |
δ-Cadinene | 25.644 | 1527 | 1524 | 0.234 | KI, MS | 89 |
Kessane | 25.8 | 1533 | 1537 | 0.587 | KI, MS | 92 |
Caryophyllene oxide | 27.42 | 1587 | 1581 | 0.181 | S, KI, MS | 92 |
Isobutylphthalide | 28.025 | 1608 | n.d. | 0.098 | MS | - |
Humulene epoxide II | 28.164 | 1613 | 1608 | 0.127 | KI, MS | 94 |
γ-Eudesmol | 28.489 | 1626 | 1630 | 0.042 | KI, MS | 92 |
Cubenol | 28.686 | 1633 | 1642 | 0.077 | KI, MS | 88 |
Gossonorol | 28.926 | 1642 | 1640 | 0.085 | KI, MS | 92 |
3-n-Butylphthalide | 29.337 | 1656 | 1656 | 0.682 | S, KI, MS | 93 |
(Z)-n-Butylidene phthalide | 29.97 | 1678 | 1675 | 11.57 | S, KI, MS | 95 |
unknown | 30.096 | 1683 | n.d. | 0.463 | - | - |
(E)-n-Butylidene phthalide | 31.16 | 1723 | 1722 | 2.092 | KI, MS | 93 |
(Z)-Ligustilide | 31.797 | 1748 | 1740 | 50.479 | S, KI, MS | 92 |
(E)-Ligustilide | 33.195 | 1802 | 1810 | 1.455 | S, KI, MS | 93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimmalek, M.; Szumny, A.; Gharibi, S.; Pachura, N.; Miroliaei, M.; Łyczko, J. Chemical Investigations in Kelussia odoratissima Mozaff. Leaves Based on Comprehensive Analytical Methods: LC-MS, SPME, and GC-MS Analyses. Molecules 2023, 28, 6140. https://doi.org/10.3390/molecules28166140
Rahimmalek M, Szumny A, Gharibi S, Pachura N, Miroliaei M, Łyczko J. Chemical Investigations in Kelussia odoratissima Mozaff. Leaves Based on Comprehensive Analytical Methods: LC-MS, SPME, and GC-MS Analyses. Molecules. 2023; 28(16):6140. https://doi.org/10.3390/molecules28166140
Chicago/Turabian StyleRahimmalek, Mehdi, Antoni Szumny, Shima Gharibi, Natalia Pachura, Mehran Miroliaei, and Jacek Łyczko. 2023. "Chemical Investigations in Kelussia odoratissima Mozaff. Leaves Based on Comprehensive Analytical Methods: LC-MS, SPME, and GC-MS Analyses" Molecules 28, no. 16: 6140. https://doi.org/10.3390/molecules28166140
APA StyleRahimmalek, M., Szumny, A., Gharibi, S., Pachura, N., Miroliaei, M., & Łyczko, J. (2023). Chemical Investigations in Kelussia odoratissima Mozaff. Leaves Based on Comprehensive Analytical Methods: LC-MS, SPME, and GC-MS Analyses. Molecules, 28(16), 6140. https://doi.org/10.3390/molecules28166140