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Abstract: In order to examine the effect of oriented (static) electric fields (OEF) on the kinetics of
some representative Suzuki–Miyaura and metal-cluster mediated reactions at ambient temperatures,
density functional theory-based calculations are reported herein. Results indicate that, in general,
OEF can facilitate the kinetics of the concerned reactions when applied along the suitable direction
(parallel or anti-parallel with respect to the reaction axis). The reverse effect happens if the direction
of the OEF is flipped. OEF (when applied along the ‘right’ direction) helps to polarize the transition
states in the desired direction, thereby facilitating favorable bonding interactions. Given the growing
need for finding appropriate catalysts among the scientific community, OEF can prove to be a vital
route for the same.

Keywords: oriented electric field; kinetics; Suzuki–Miyaura reaction; metal cluster; transition
state stabilization

1. Introduction

One of the main goals of chemistry is to achieve desired reactivity changes within
molecules by suitably tuning the external physicochemical conditions. To this end, suitable
catalysts are usually used in order to achieve kinetic acceleration for a given chemical reaction.
Of late, several other avenues for catalyzing chemical reactions are being actively explored by
several research groups. Prominent routes among them are the effects of an external electric
field [1–10] and the effects of confinement [11–16], etc. Chemical reactions can often lead to
multiple product formation. The reasons for product branching effects could be due to the
thermodynamic/kinetic or dynamic (i.e., time-dependent) factors [17–23]. Controlling the
product branching effects is an important objective in research so that the reaction can be
driven toward the desired product formation route. To this end, the impact of time-dependent
oscillating electric/laser fields on reaction dynamics has been explored in the past from both
theoretical (using model potentials as well as using small molecules) and experimental points
of view [24–29]. Of late, the impact of oriented (static) electric fields (OEFs) has also been
studied within a time-independent framework by several researchers to gauge the effect of
the same in making chemical reactions more facile from a kinetic perspective [1–10]. For
example, Meir et al. [1] have computationally demonstrated the ability of OEF to catalyze
some representative Diels–Alder reactions. Experimental evidence [6] for the catalysis of
some Diels–Alder reactions by an OEF was provided by Coote et al. Timerghazin et al.
have computationally demonstrated that the site preference for nucleophilic attacks on S-
nitrosothiols could be controlled by the application of OEFs [2]. Shaik et al. have shown
that the selectivity of two competing reaction channels, i.e., C=C epoxidation and C–H
hydroxylation within cytochrome P450, could be controlled by the application of an OEF [3].
Bhattacharyya et al. computationally showed that the Huisgen reaction between alkyl azide
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and cyclooctyne (biflurocyclooctyne) could be kinetically accelerated by the application of a
suitable OEF [5].

During the course of chemical reactions, maximum changes in the geometrical features
of the reactants happen along the main reaction coordinate. Therefore, through the applica-
tion of an external perturbation, such as an OEF, one could, in principle, force the reaction
to proceed in the desired direction, as the OEF could facilitate the suitable geometrical
re-arrangements required by the reactants. However, given the fact that an OEF is a vector
quantity, a reverse effect might happen if the direction of the OEF is altered. Nonetheless,
only geometrical considerations might not be the only factor that impacts the fate of a given
chemical reaction’s kinetics in the presence of an OEF. There could be subtle quantum
electronic factors that might play significant roles in these processes, as the OEF also has
the ability to affect the molecular orbitals of the reactants. Thus, detailed quantum chemical
analyses might be needed to understand the impact of OEFs on a given chemical reaction.

In this work, we report an exploratory study on the impact of OEFs on some represen-
tative Suzuki–Miyaura cross-coupling [30–34] and metal cluster-mediated reactions [35]
with the help of density functional theory (DFT) based calculations. It is a well-known fact
in the literature that the Suzuki–Miyaura reaction constitutes one of the most prominent
routes for achieving cross-coupling in organic chemistry [30–34]. The concerned reaction
mechanism usually involves two competing pathways: oxidative addition and nucleophilic
displacement [34]. It has been suggested in the literature that these cross-coupling reactions
can also proceed through radical pathways [34]. However, in simple model systems (which
have been considered in this work), oxidative addition and nucleophilic displacement seem
to play significant roles [33]. Thus, we consider these two pathways in our present analysis.
To this end, we have considered the following four reactions (in Tetrahydrofuran (THF)
solvent): (1) PhCl + Pd(PMe3), (2) PhCl + Pd(PMe3)2, (3) PhBr + Pd(PMe3), and (4) PhBr
+ Pd(PMe3)2. On the other hand, we have also considered (in the gas phase) the (5) C-F
bond activation in CH3F mediated by the Al12Be metal cluster [35] as a representative
example. In all the aforementioned chemical reactions, the impact of OEFs in affecting
the free energy of activation has been examined by employing the OEF in parallel and
anti-parallel orientation with respect to the reaction coordinate. In particular, our emphasis
in this study is to understand how OEFs affect the energetics of the transition states in the
concerned reactions. In what follows, we describe the results and discussion, followed by
the computational details adopted in our work.

2. Results and Discussion

2.1. Effect of OEFs on the Free Energy of Activation (∆G‡) (Suzuki–Miyaura Coupling Reactions)

We begin our discussion by considering the results obtained for the Suzuki–Miyaura
coupling reactions (reactions 1 to 4). All these reactions involve different transition states
due to the possibility of two mechanistic pathways, namely, concerted and displacement.
In all these reactions (1 to 4), the effect of an OEF on the free energy of activation has been
studied with respect to all the transition states that were located for a particular reaction.

For reaction 1, three different transition states were located, namely 1a, 1b, and
1c (Figure 1).

Among these three, 1a and 1b represent the concerted mechanism, whereas 1c repre-
sents the displacement mechanism [33]. When the reaction proceeds through the transition
state 1a (Table 1), the free energy of activation (∆G‡) always increases irrespective of the
direction of the OEF but for one case.

In the cases of transition states 1b and 1c, however, the free energy of activation
decreases when the OEF is applied parallel to the reaction coordinate. The magnitude of
the decrease in free energy of activation increases with an increase in the strength of the
OEF applied. The reverse effect happens when the OEF is applied in parallel orientation
with respect to the reaction coordinate.

For reaction 2, two different transition states were located, namely 2a and 2b (Figure 2).
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Among these two, 2a represents the concerted mechanism, whereas 2b represents the
displacement mechanism [33]. An OEF applied in an anti-parallel orientation with respect
to the reaction coordinate reduces the free energy of activation (∆G‡) of reaction 2 when it
proceeds through both the transition states 2a and 2b (Table 2). Flipping the orientation of
an OEF (parallel in case of both 2a and 2b) increases the free energy of activation (∆G‡)
with respect to the zero field conditions.
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Figure 1. The optimized geometries of the transition states involved in reaction 1. Here, the grey
color denotes C, the green color denotes Cl, the white color denotes H, the orange color denotes P,
and the blue color denotes Pd atoms, respectively.

Table 1. The changes in the free energy of activation and the x-component of the dipole moment for
the transition state involved in reaction 1 as a function of the OEF.

Field
Strength

(Fx)
(V/Å)

Dipole
Moment

(µx)
(D)
(1a)

Free
Energy of
Activation

(∆G‡)
(kcal/mol)

(1a)

Rate
Constant
(k, s−1)

(1a)

Dipole
Moment

(µx)
(D)
(1b)

Free
Energy of
Activation

(∆G‡)
(kcal/mol)

(1b)

Rate
Constant
(k, s−1)

(1b)

Dipole
Moment

(µx)
(D)
(1c)

Free
Energy of
Activation

(∆G‡)
(kcal/mol)

(1c)

Rate
Constant
(k, s−1)

(1c)

−0.5140 9.90 14.2 2.6 × 102 8.02 26.9 1.1 × 10−7 5.91 21.9 5.4 × 10−4

−0.4112 8.03 14.0 3.1 × 102 5.16 26.3 3.5 × 10−7 3.62 22.3 2.6 × 10−4

−0.3084 6.39 13.2 1.4 × 103 2.98 25.0 2.9 × 10−6 1.43 21.5 1.0 × 10−3

−0.2056 5.12 11.0 5.2 × 104 0.71 19.4 3.9 × 10−2 −0.66 20.7 3.9 × 10−3

−0.1028 4.05 13.2 1.4 × 103 −1.34 16.8 3.1 −2.07 20.3 8.1 × 10−3

0 3.20 11.6 2.0 × 104 −3.55 13.8 4.7 × 102 −4.72 19.2 5.5 × 10−2

0.1028 2.25 13.9 3.9 × 102 −5.10 10.8 7.1 × 104 −6.75 18.7 1.2 × 10−1

0.2056 1.13 15.1 5.7 × 101 −6.90 9.6 6.2 × 105 −8.77 17.0 2.1
0.3084 −0.08 17.0 2.2 −8.70 7.1 3.7 × 107 −10.86 13.5 7.3 × 102

0.4112 −1.36 18.4 2.1 × 10−1 −10.63 4.3 4.6 × 109 −12.96 14.6 1.2 × 102

0.5140 −2.70 20.1 1.2 × 10−2 −12.77 0.5 2.5 × 1012 −15.03 13.0 1.7 × 103

In the case of reaction 3, two different transition states were located, namely 3a and 3b
(Figure 3).

Herein, 3a represents the displacement mechanism, whereas 3b represents the con-
certed mechanism [34]. An OEF applied in anti-parallel orientation with respect to the
reaction coordinate reduces the free energy of activation (∆G‡) of reaction 3 when it pro-
ceeds through both the transition states 3a and 3b, whereas the reverse effect happens when
the direction of the OEF is altered (Table 3).

For reaction 4, three different transition states were located, namely 4a, 4b, and 4c
(Figure 4).

Herein, 4a and 4b represent the concerted mechanism, whereas 4c represents the
displacement mechanism [34]. Generally, an OEF applied in parallel orientation with
respect to the reaction coordinate reduces the free energy of activation (∆G‡) with respect
to the zero field conditions of reaction 4 when it proceeds through the transition states 4a
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and 4b. In case 4c, however, the free energy of activation (∆G‡) increases irrespective of
the direction of OEF (Table 4).
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Figure 2. The optimized geometries of the transition states involved in reaction 2. Here, the grey
color denotes C, the green color denotes Cl, the white color denotes H, the orange color denotes P,
and the blue color denotes Pd atoms, respectively.

Table 2. The changes in the free energy of activation and the x-component of the dipole moment for
the transition state involved in reaction 2 as a function of the OEF.

Field
Strength

(Fx)
(V/Å)

Dipole
Moment

(µx)
(D)
(2a)

Free
Energy of
Activation

(∆G‡)
(kcal/mol)

(2a)

Rate
Constant
(k, s−1)

(2a)

Dipole
Moment

(µx)
(D)
(2b)

Free
Energy of
Activation

(∆G‡)
(kcal/mol)

(2b)

Rate
Constant
(k, s−1)

(2b)

−0.5140 - *** - - *** -
−0.4112 16.57 −8.9 2.0 × 1019 18.12 0.7 1.8 × 1012

−0.3084 16.22 −3.8 3.5 × 1015 16.92 0.7 1.9 × 1012

−0.2056 8.53 15.4 3.3 × 101 15.30 3.5 1.6 × 1010

−0.1028 6.00 16.7 3.3 13.28 5.9 3.0 × 108

0 3.50 18.4 1.9 × 10−1 11.03 8.8 2.1 × 106

0.1028 1.05 19.5 3.0 × 10−2 8.38 11.8 1.5 × 104

0.2056 −2.33 19.5 3.1 × 10−2 5.61 22.3 3.0 × 10−4

0.3084 −4.99 23.5 3.8 × 10−5 2.30 30.7 1.8 × 10−10

0.4112 −7.51 24.8 4.2 × 10−6 −7.56 26.7 1.6 × 10−7

0.5140 - *** - −10.20 28.5 7.5 × 10−9

*** Converged results could not be obtained.

In all the aforementioned cases, the OEF polarizes the concerned transition states
quite significantly. However, the direction in which the polarization happens in these
transition states is dependent on the orientation of the OEF. To this end, we consider the
component of the dipole moment along the reaction coordinate (µx/µy). It can be seen from
Tables 1–4 that the magnitude of µx/µy generally changes significantly in the presence of
increasing strength of the OEF (irrespective of the direction of the OEF) as compared to the
unperturbed transition states. The crucial factor, however, is being played by the direction
of µx. If the OEF polarizes the transition states in the direction in which the new bond is
about to be formed, the reactions generally become kinetically more favorable. The reverse
effect happens if the direction of the OEF is flipped.
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Figure 3. The optimized geometries of the transition states involved in reaction 3. Here, the grey
color denotes C, the red color denotes Br, the white color denotes H, the orange color denotes P, and
the blue color denotes Pd atoms, respectively.

Table 3. The changes in the free energy of activation and the x-component of the dipole moment for
the transition state involved in reaction 3 as a function of the OEF.

Field
Strength

(Fx)
(V/Å)

Dipole
Moment

(µx)
(D)
(3a)

Free
Energy of
Activation

(∆G‡)
(kcal/mol)

(3a)

Rate
Constant
(k, s−1)

(3a)

Dipole
Moment

(µx)
(D)
(3b)

Free
Energy of
Activation

(∆G‡)
(kcal/mol)

(3b)

Rate
Constant
(k, s−1)

(3b)

−0.5140 15.04 5.4 6.3 × 108 11.98 −5.3 4.8 × 1016

−0.4112 12.90 6.9 5.0 × 107 10.22 −2.9 8.4 × 1014

−0.3084 10.78 8.4 4.2 × 106 8.47 2.0 2.0 × 1011

−0.2056 8.64 9.8 3.9 × 105 6.84 1.1 9.2 × 1011

−0.1028 6.50 11.1 4.6 × 104 5.20 5.6 4.6 × 108

0 4.37 12.7 2.8 × 103 2.85 8.4 4.4 × 106

0.1028 2.21 13.9 3.7 × 102 0.89 11.2 3.8 × 104

0.2056 0.07 17.5 9.3 × 10−1 −1.27 13.2 1.2 × 103

0.3084 −2.10 16.5 5.3 −3.52 17.4 1.0
0.4112 - # # −5.72 # -
0.5140 −6.65 16.9 2.4 - # -

# The reactant geometry could not be converged after several attempts.
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Figure 4. The optimized geometries of the transition states involved in reaction 4. Here, the grey
color denotes C, the red color denotes Br, the white color denotes H, the orange color denotes P, and
the blue color denotes Pd atoms, respectively.
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Table 4. The changes in the free energy of activation and the x/y-component of the dipole moment
for the transition state involved in reaction 4 as a function of OEF.

Field
Strength

(Fx)
(V/Å)

Dipole
Moment

(µx)
(D)
(4a)

Free
Energy of
Activation

(∆G‡)
(kcal/mol)

(4a)

Rate
Constant
(k, s−1)

(4a)

Dipole
Moment

(µy)
(D)
(4b)

Free
Energy of
Activation

(∆G‡)
(kcal/mol)

(4b)

Rate
Constant
(k, s−1)

(4b)

Dipole
Moment

(µx)
(D)
(4c)

Free
Energy of
Activation

(∆G‡)
(kcal/mol)

(4c)

Rate
Constant
(k, s−1)

(4c)

−0.5140 12.36 −0.4 1.2 × 1013 15.57 *** - *** *** -
−0.4112 6.23 22.4 2.5 × 10−4 13.42 −3.3 1.8 × 1015 *** *** -
−0.3084 4.52 19.4 3.7 × 10−2 11.11 20.5 5.4 × 10−3 3.62 13.8 4.6 × 102

−0.2056 - *** - - *** - −5.49 13.0 1.9 × 103

−0.1028 −0.28 9.4 8.1 × 105 6.31 16.7 3.7 −9.18 11.8 1.3 × 104

0 −10.72 9.6 6.0 × 105 3.88 12.0 9.2 × 103 −11.80 10.7 8.2 × 104

0.1028 −15.53 6.7 7.2 × 107 1.58 5.3 7.5 × 108 −13.93 10.8 7.3 × 104

0.2056 −15.93 3.4 2.0 × 1010 −0.73 −0.5 1.5 × 1013 −15.33 10.8 7.7 × 104

0.3084 −15.50 0.8 1.7 × 1012 −3.11 *** - - *** -
0.4112 *** - - −5.56 *** - -5.5 24.4 7.5 × 10−6

0.5140 *** - - −8.06 *** - -8.05 27.6 3.5 × 10−6

*** Converged results could not be obtained.

2.2. Can OEFs Change the Reaction Mechanism?

We note that the objective of the application of OEFs in a given chemical reaction is
not only to check whether the concerned reaction becomes more favorable from the kinetic
perspective, but the OEF could also be utilized to control the product selectivity. In order to
explore this aspect, we discuss the following results (Figures 5 and 6).
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Figure 5. Variation of free energy of activation (∆G‡) as a function of OEFs for different pathways in
reactions 1 and 2.

For reaction 1, in the absence of an OEF, the concerted mechanism is favored over the
displacement mechanism. On application of an OEF, this trend does not change irrespective
of the direction of the OEF.

For reaction 2, in the absence of an OEF, the displacement mechanism is favored
over the concerted mechanism. At high field strengths at both parallel and anti-parallel
directions, there is a mechanistic crossover, and the concerted mechanism is favored over
the displacement mechanism.

For reaction 3, in the absence of an OEF, the concerted mechanism is favored over the
displacement mechanism. However, the mechanistic crossover can happen at high field
strengths of the OEF in parallel orientation.

For reaction 4, in the absence of an OEF, the displacement mechanism is favored over
the concerted mechanism. Nonetheless, the mechanistic crossover could happen at high
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field strengths of an OEF applied along the anti-parallel orientation. However, in case 4,
several calculations did not converge, and thus, we mention these results with caution.

Based on the aforementioned facts, we can infer that OEF can indeed be used in certain
cases to drive the reaction in the desired direction.
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2.3. Effect of OEFs on Free Energy of Activation (∆G‡) (Metal Cluster-Mediated Reactions)

We now consider reaction 5, i.e., (5) C–F bond activation in CH3F mediated by the
Al12Be metal cluster (Table 5, Figure 7).

In this reaction, the free energy of activation (∆G‡) generally reduces when the OEF
is applied along the parallel direction. The reverse effect happens if the OEF is flipped
in both the cases. Noting the direction of the component of the dipole moment along the
reaction coordinate (µx), we can infer that the OEF helps to polarize the transition states in
the direction of the bond formation.

Based on the aforementioned discussions, it becomes clear that the OEF (when ap-
plied along the ‘desired’ direction) can quite effectively facilitate the concerned reactions.
Obviously, the transition states become stabilized/de-stabilized from energetic points of
view as a function of the direction of the OEF. To shed some light on the impact of OEF on
the bonding interactions present within the concerned transition states, we now discuss the
results obtained from EDA.

Table 5. The changes in the free energy of activation and the x-component of the dipole moment for
the transition state involved in reaction 5 as a function of an OEF.

Field
Strength

(Fx)
(V/Å)

Dipole
Moment

(µx)
(D)

Free
Energy of
Activation

(∆G‡)
(kcal/mol)

Rate
Constant
(k, s−1)

−0.5140 10.42 43.8 5.2 × 10−20

−0.4112 7.68 38.9 1.8 × 10−16

−0.3084 4.97 34.5 3.5 × 10−13

−0.2056 2.25 29.7 9.7 × 10−10

−0.1028 −0.48 25.4 1.4 × 10−6

0 −3.26 20.6 4.7 × 10−3

0.1028 −6.06 16.2 8.6
0.2056 −8.90 11.7 1.6 × 104

0.3084 −11.20 8.8 2.2 × 106

0.4112 −14.81 3.8 1.0 × 1010

0.5140 −17.97 −0.9 3.0 × 1013
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2.4. Results Obtained from EDA

The total interaction energy within a given system could be decomposed into the
orbital interaction (Eorb), the exchange interaction (Eex), and the electrostatic interaction
(Eels). The summation of exchange and the electrostatic interaction could be expressed as
the steric interaction. We have performed the energy decomposition analysis for all the
transition states reported herein (for all the transition states as obtained in the presence
and in the absence of external electric fields). We have presented the corresponding results
in the supporting information (Figures S1–S7). It becomes quite evident that the primary
driving force for the stabilization of the concerned transition states is the favorable orbital
interaction term. Orbital interaction term reflects the polarization and bonding interactions
present within the system. OEF facilitates the geometrical arrangement of the concerned
transition states so that the bonding interaction between the intervening fragments becomes
more favorable (in the cases where an OEF kinetically facilitates the reactions). However,
the reverse effect happens when the direction of the OEF is altered, and the bonding
interaction becomes less favorable as compared to the cases where no external perturbation
is present.

In summary, OEFs facilitate the polarization and bonding interactions along the main
reaction axis, thereby imparting a stabilizing influence on the transition states.

3. Materials and Methods

The molecular modeling (reported in this work) has been carried out using Gauss
View 6.0 software [36]. All the transition states and reactants corresponding to reactions
1–4 in the presence as well as in the absence of a static-oriented electric field (OEF) have
been optimized using the MN15L [37] functional along with 6-311G(d,p) basis set for C, H,
Cl, Br, and P. For Pd, the LANL2DZ basis set has been used by taking into consideration
the concerned effective core potential (ECP). Here, for reactions 1 to 4, we have chosen the
MN15L functional as it was proven to perform well for reactions 1 to 4 by previous stud-
ies [33]. For reactions 1 to 4, the solvent effect of tetrahydrofuran (THF) was incorporated by
using the Polarizable Continuum solvation Model (PCM) [38]. For reaction 5, the geometry
optimization has been performed at the wb97xd [39] level of theory (as was performed in
our previous studies on this system) along with the basis set 6-311++G(d,p). No constraints
have been imposed while performing the geometry optimizations. To examine the nature
of all the stationary points on the concerned potential energy surface (PES), harmonic
vibrational frequencies have been computed. The reactants contain only real-valued vibra-
tional frequencies, whereas the transition states contain only one imaginary vibrational
frequency. The intrinsic reaction coordinate (IRC) method has been utilized to ascertain
that the concerned transition states are connected to the respective reactant and product
structures. All the aforementioned calculations have been performed with the help of the
Gaussian 16 code [40].
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To study the effect of a static external electric field on the free energy of activation
of all the reactions that are considered here, a static electric field was applied along the
reaction axis (in both parallel as well as anti-parallel directions) using the keyword ‘Field’
(in conjunction with the NOSYMM keyword so as to prevent the re-orientation of the
concerned molecules), as implemented in the Gaussian 16 code [40]. In order to compute
the free energy of activation, the preceding local minima (to the transition state) have been
considered as the reference reactant state [1] (both in the presence and absence of an OEF at
298 K). To this end, the last point on the reactant’s side from the IRC scan was optimized
(in conjunction with frequency calculation). We have applied the OEF parallelly (and
anti-parallelly) with respect to the reaction axis. The principle physical logic for the choice
of our computational protocol is the underlying assumption of the validity of the minimum
energy path (MEP). Herein, we assume that all the concerned reactions follow MEP. By
visualizing (via Gauss View 6.0 software) the IRC scan, as well as the transition state and
reactant complex geometries, the suitable reaction axis was defined, and the OEF was
applied with respect to this axis. Eyring’s equation has been used to calculate (qualitative)
rate constants. To understand the principle electronic factors that stabilize/de-stabilize
the transition states, energy decomposition analysis (EDA) has been performed using the
Multiwfn software [41] in conjunction with the Gaussian 16 code (at the same level of
theory which has been mentioned above).

4. Conclusions

In this work, we have tried to understand the effect of static OEF on the kinetics of
some representative Suzuki–Miyaura and some metal cluster-mediated reactions with the
aid of density functional theory based calculations. Results indicate that the concerned
reactions could be kinetically facilitated when the OEF is applied in a suitable direction
but for two cases. The reactions, however, become hindered when the direction of the OEF
is flipped. The crucial factor that has emerged from our analyses is the ability of the OEF
to polarize the transition states in the bond-formation direction. OEFs also facilitate the
bonding interactions within the concerned transition states, as evidenced by the energy
decomposition analysis. Due to these factors, the transition states become energetically
stabilized (in the presence of an OEF) as compared to the corresponding situation in the
absence of any external perturbation. We have also demonstrated that, in certain cases
(when multiple reaction pathways are available), OEFs can drive the reaction toward a
particular pathway. Therefore, product selectivity, at least in principle, could be controlled
via the application of an OEF. As the considered strengths of the OEF are well within the
reach of several experimental setups [4,5], it might be worthwhile to check the validity of
the work presented here from an experimental point of view.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28166169/s1, Figure S1: Results of EDA for reaction 1a.
Figure S2: Results of EDA for reaction 1b. Figure S3: Results of EDA for reaction 1c. Figure S4: Results
of EDA for reaction 2a. Figure S5: Results of EDA for reaction 2b. Figure S6: Results of EDA for reaction
3a. Figure S7: Results of EDA for reaction 3b. Figure S8: Results of EDA for reaction 4a. Figure S9:
Results of EDA for reaction 4b. Figure S10: Results of EDA for reaction 4c. Figure S11: Results of EDA
for reaction 5.
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