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Abstract: Due to the excellent characteristics of fluorescence-based imaging, such as non-invasive
detection of biomarkers in vitro and in vivo with high sensitivity, good spatio-temporal resolution
and fast response times, it has shown significant prospects in various applications. Compounds
with both biological activities and fluorescent properties have the potential for integrated diagnosis
and treatment application. Alectinib and Rilpivirine are two excellent drugs on sale that represent a
clinically approved targeted therapy for ALK-rearranged NSCLC and have exhibited more favorable
safety and tolerance profiles in Phase III clinical trials, ECHO and THRIVE, respectively. The optical
properties of these two drugs, Alectinib and Rilpivirine, were deeply explored, firstly through the
simulation of molecular structures, electrostatic potential, OPA/TPA and emission spectral properties
and experiments on UV-vis spectra, fluorescence and cell imaging. It was found that Alectinib
exhibited 7.8% of fluorescence quantum yield at the 450 nm excited wavelength, due to a larger
electronic transition dipole moment (8.41 Debye), bigger charge transition quantity (0.682 e) and
smaller reorganization energy (2821.6 cm−1). The stronger UV-vis spectra of Rilpivirine were due
to a larger electron–hole overlap index (Sr: 0.733) and were also seen in CDD plots. Furthermore,
Alectinib possessed obvious active two-photon absorption properties (δTPA

max * φ = 201.75 GM), which
have potential TPA imaging applications in bio-systems. Lastly, Alectinib and Rilpivirine displayed
green fluorescence in HeLa cells, suggesting the potential ability for biological imaging. Investigation
using theoretical and experimental methods is certainly encouraged, given the particular significance
of developing integrated diagnosis and treatment.

Keywords: fluorescence imaging; Alectinib; Rilpivirine; quantum chemistry

1. Introduction

In recent years, optical imaging modalities have shown promise in various health-
related applications, such as disease diagnosis and optical-guided surgery [1,2]. Compared
to traditional methods, fluorescence-based imaging offers several advantages, including
non-invasive detection of biomarkers in vitro and in vivo with high sensitivity, fast re-
sponse times and excellent spatio-temporal resolution [3,4]. Fluorescence-based imaging
often relies on the use of chemical tools, which are fluorescent molecules. Small fluorescent
molecules are an important kind of fluorescent compound and have the potential to achieve
the real-time monitoring of organ function and the visualization of organ-related processes
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at the cellular level [5]. An excellent small fluorescent molecule should possess the follow-
ing characteristics: high fluorescence quantum yield, adequate water solubility, fluorophore
with good photo-stability and acceptable bio-compatibility [1]. In recent years, more and
more fluorescent molecules combined with drugs, aptamers, peptide sequences and other
easily modified ligands have been used to develop novel integrated diagnosis and treat-
ment [6–9]. Along with the increase in reports about the potential UV-vis/fluorescence
spectral properties of some (chemotherapy) drugs, research on integrated diagnosis and
treatment has attracted widespread attention in the international fields of biology, materials
and medicine [10–12]. The technology of integrated diagnosis and treatment is able to track
the development, occurrence and treatment process of a lesion site (such as cancer) in real
time, implement effective and precise treatment, improve the cure effect, reduce side effects,
detect differentiation and metastasis for the lesion site and take measures to maximize pa-
tient survival and timely recovery rates. However, the strategy of combining fluorophores
and suitable ligands faces some limitations, for example, complicated synthesis, poor
permeability, low bioavailability and more. Therefore, none are currently used in clinical
applications. Following the significant demand of quality of human life, a small organic
drug molecule combining near-infrared (NIR) fluorescence imaging has significance for
promoting clinical applications of integrated diagnosis and treatment [13,14].

Alectinib and Rilpivirine (shown in Table 1) are two excellent drugs on sale with USD
1.292 billion and USD 964 million of retail sales volume in 2020, respectively [15]. Alectinib
is a highly selective, second-generation inhibitor of the tyrosine kinase anaplastic lymphoma
kinase (ALK), and is a clinically approved targeted therapy for ALK-rearranged non-small
lung cancers (NSCLCs) [16–18]. Importantly, Alectinib is also effective for treating brain
metastasis of ALK-rearranged NSCLCs, suggesting its high brain penetrance. In 2020, it was
reported that Alectinib could provide a personalized maximum benefit for patients with
high-grade serous ovarian cancer who are positive for EML4-ALK [19]. On the other hand,
Rilpivirine is a new-generation NNRTI and is considered as a recommended or alternative
key drug in the current ART guidelines. It exhibited more favorable safety and tolerance
profiles compared with Efavirenz in Phase III clinical trials, ECHO and THRIVE [20,21].
The most commonly observed mutation in patients with Rilpivirine-containing treatment
failure is E138K [22]. I135T/L, escape mutations from HLA-B*51/52-restricted cytotoxic T
lymphocytes, may predispose HIV-1 to harbor E138K upon failure of Rilpivirine-containing
ART and the mutation patterns of drug resistance may vary due to baseline polymorphic
mutations [22]. Developing small organic drug molecules with NIR spectra could bring
about new opportunities for improving disease diagnosis and effective therapeutics. But it
is extremely difficult, so it has not yet been reported. In this study, we thoroughly studied
the molecular properties and explored the photo-physical luminous mechanism for these
two drugs on sale (Alectinib and Rilpivirine) in order to offer more theoretical foundations
for traceable drugs and promote the development of integrated diagnosis and treatment.
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Table 1. The chemical structure, stable geometries of the ground state (S0) and first excited state (S1)
for compounds Alectinib and Rilpivirine.
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the main bond lengths (Å) and dihedral angles (°) were calculated for drugs Alectinib 
and Rilpivirine, and the resulting data were listed in Table 1 and Table S1. From Table 1 
about the geometries from molecular top and side view, it can be seen that in not only S0 
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the terminal 4-(piperidin-4-yl) morpholine group. And the dihedral angle (see Table S1) 
between parent molecular plane and 4-(piperidin-4-yl) morpholine group for Alectinib 
was decreased from the ground state (at about 61.2°) to the excited state (at about 46.6°), 
suggesting the larger planarity in the excited state. To make the bond length change 
more intuitive from S0 to S1, the data about bond length in Table S1 were drawn in Fig-
ure 1. As expected, the single bond in S1 was shorter (such as C36-C48: 1.48 > 1.43 Å) and 
the double bond was longer (such as C48-O49: 1.24 < 1.30 Å) than those in S0, implying 
the bond length alternation was smaller in S1 (seen Figure 1A), and further implying the 
enhanced π-conjugation effect in S1. In addition, Alectinib possessed strong electron-
withdrawing group (‒CN) connected with π-conjugation indole group directly. It may 
lead to marked intramolecular charge transfer (ICT) and benefit for electron transition. 
The drug molecule Rilpivirine had two conjugated planes, which were distorted by 
about 145.8° in S0 and decreased to about 111.0° in S1 (see Table S1), likely due to the ste-
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Side view

2. Results and Discussion
2.1. Molecular Structural Characteristics

Firstly, the geometric characteristic is very important to study the electronic and photo-
physical properties of a compound. In order to learn the geometric characteristics, the
structural parameters of stable ground state (S0) and first excited state (S1) including the
main bond lengths (Å) and dihedral angles (◦) were calculated for drugs Alectinib and
Rilpivirine, and the resulting data were listed in Tables 1 and S1. From Table 1 about the
geometries from molecular top and side view, it can be seen that in not only S0 but also
S1, molecule Alectinib had a π-conjugation planar molecular skeleton besides the terminal
4-(piperidin-4-yl) morpholine group. And the dihedral angle (see Table S1) between parent
molecular plane and 4-(piperidin-4-yl) morpholine group for Alectinib was decreased from
the ground state (at about 61.2◦) to the excited state (at about 46.6◦), suggesting the larger
planarity in the excited state. To make the bond length change more intuitive from S0 to
S1, the data about bond length in Table S1 were drawn in Figure 1. As expected, the single
bond in S1 was shorter (such as C36-C48: 1.48 > 1.43 Å) and the double bond was longer
(such as C48-O49: 1.24 < 1.30 Å) than those in S0, implying the bond length alternation was
smaller in S1 (seen Figure 1A), and further implying the enhanced π-conjugation effect in
S1. In addition, Alectinib possessed strong electron-withdrawing group (–CN) connected
with π-conjugation indole group directly. It may lead to marked intramolecular charge
transfer (ICT) and benefit for electron transition. The drug molecule Rilpivirine had two
conjugated planes, which were distorted by about 145.8◦ in S0 and decreased to about
111.0◦ in S1 (see Table S1), likely due to the steric effect from two methyl substituents on the
benzene ring. The two terminal electron acceptors (–CN) in Rilpivirine also were connected
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with a π-conjugation benzene ring, which maybe benefit electron transition. The same for
the molecule Rilpivirine, the important bond length change (in Figure 1B) was smaller in
S1, which also increased the conjugated electronic structures. To conclude, drugs Alectinib
and Rilpivirine exhibited the structural characteristics: planar parent skeleton, stronger
π-conjugation effect in S1 and electron acceptors connecting conjugated structures, which
would be a benefit for superior photo-physical performance.
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Figure 1. The important bond length (Å) of molecules Alectinib (A) and Rilpivirine (B) in S0 and S1.

2.2. Molecular Electrostatic Potential

The electrostatic potential is a representation of an electric charge distribution for
a single molecule, which is an important property for binding with protein. The blue
and red regions represent positive and negative electronic potential regions, respectively.
The darker color is a “more positive” or “more negative” potential. A negative electric
potential means that a positive charge group will be attracted easily. For Alectinib (shown
in Figure 2), the red color indicates a higher electron density around the oxygen and cyan
group representing that it will benefit the forming interaction with a positive charge group
(such as amide group) in protein. On the other hand, the amino group of compounds
Alectinib and Rilpivirine (shown in Figure 2) exhibit obvious positive electric potential,
which will attract the negative charge group (such as carbonyl group) in protein.
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2.3. UV-vis Experiments and One-Photon Absorption (OPA) Spectral Properties

To evaluate the UV-vis spectra of molecules Alectinib and Rilpivirine, we first tested
the solvent-dependent excited spectra in organic solvent 100%DMSO (dimethyl sulfox-
ide), 50%DMSO-50%PBS (phosphate-buffered saline) and 10%DMSO-90%PBS (shown in
Figure S1, Supplementary Materials). As displayed in Figure S1, the UV-vis spectra of
Alectinib and Rilpivirine at the three solvent exhibited one maximum characteristic peak
and were centered at about 345 nm and 310 nm, respectively. Upon adding PBS, the in-
tensity of excited characteristic peak for Alectinib was decreased gradually, accompanied
with a red-shift wavelength from 338 nm→ 348 nm→ 349 nm in Figure S1A. As well as
for Rilpivirine, following with increased PBS, the intensity of absorption peak also was
reduced from Figure S1B. It was worth noted that the solution became some turbid for
Alectinib and Rilpivirine upon adding 25%PBS solvent in UV-vis experiments, which was
in accordance with the reported poor/medium soluble for Alectinib and Rilpivirine [23].
The poor/medium soluble may lead to the reduced intensity of UV-vis spectra along with
increased PBS proportion. To further explore the photo-physical properties of UV-vis spec-
tra, theoretical calculation for OPA was performed in the next, which would be discussed
in detail.

Spectra is closely related with optical properties and electronic characteristics. So, the
simulated OPA spectral properties of Alectinib and Rilpivirine in water were obtained and
listed in Table 2, concluding OPA wavelength (λOPA

max ), oscillator strengths ( f O), vertical
excitation energies (E0 f ), transition dipole moment (µ0 f ) and transition characteristics.
TDDFT methods were employed to obtain the OPA spectra according quantum chemical
calculation. The solvation model density (SMD) [24,25] with default parameters of H2O
was used to implicitly consider the homogeneous dielectric solvation effects. Additionally,
compared with the results from Figure S1 and Table 2, we found that the calculated wave-
lengths of Alectinib and Rilpivirine were in reasonable agreement with the experimental
results generally.

The main absorption peak (349Exp. nm) in 10%DMSO-90%PBS of Alectinib was con-
nected with the first excited state S1, which was derived from HOMO → LUMO tran-
sition (88.1%) and had localized excitation (LE) and charge transfer (CT) characteristics
(see Figure S2). The CT characteristic mainly came from the 1-(2-ethylphenyl) piperidine
group to the indole group due to the electron-accepting group (–CN) connecting with
π-conjugated indole ring. For Rilpivirine, the maximum excited wavelength (311Exp. nm)
in 10%DMSO-90%PBS was also derived from S0 → S1 electron transition with a major
contribution of HOMO-1→ LUMO (56.7%). Furthermore, the transition density matrix
(TDM) and charge density difference (CDD) were adopted to describe the electron transfer
process directly from the ground and excited state in the whole molecule [26–28]. Here, we
mainly studied the electronic transition process of S0 → S1 for Alectinib and Rilpivirine
in the OPA spectrum, and the electronic transition properties were analyzed qualitatively
by TDM and CDD. In the meantime, more transition indexes were also listed in Table S2,
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including the centroid distance of the electrons and holes (D), electron-hole overlap in-
dex (Sr), average distribution breadth of the electrons and holes (H), hole delocalization
index (HDI) and electron delocalization index (EDI) [29]. Firstly, the two-dimensional
diagram showed the charge density difference, in which the green isosurface represented
electron distribution while the blue isosurface represented hole distribution. In the tran-
sition process from the S0 to S1, the molecule Alectinib showed the characteristic of local
excitation and weak charge transfer, which was mainly concentrated on the 7-ethyl-4-
methylnaphthalen-1(4H)-one group in Figure 3 (CDD). The smaller average distribution
breadth (H: 2.038 Å) of the electrons and holes for Alectinib was due to the local exci-
tation from 7-ethyl-4-methylnaphthalen-1(4H)-one group mainly. The centroid distance
(D: 1.084 Å) of the electrons and holes for Alectinib was smaller, likely because of the weak
charge transfer from the carbanyl group to 6-ethyl-1-methyl-1,4-dihydronaphthalene. For
molecule Rilpivirine, owning to the existence of two cyano groups in the left terminal,
larger local excitation occurred in the left half of the molecule and the electronic transfer
happened from right to left. Combining with TDM plots in Figure 3, it could be seen that
stronger contribution of electron transfer for Rilpivirine resulted from the 8th nitrogen
atom in linker to the 10th carbon atom in benzene ring (atomic numbers in Figure S3) [30].
Lastly, the larger electron-hole overlap index (Sr: 0.733) in Rilpivirine implied the more
electron-hole overlap, which was also seen in CDD plots.

Table 2. Calculated OPA spectra properties of Alectinib and Rilpivirine in water concluding OPA
wavelength (λOPA), oscillator strengths ( f O), vertical excitation energies (E0 f ), transition dipole
moment (µ0 f ) and transition characteristics.

Molecule λOPA
max /nm f O E0f/eV µ0f/Debye Transition Characteristics

Alectinib 318.0 a (349 Exp.) 0.7456 a 3.90 a 1.1 a S0 → S1
(HOMO→ LUMO 88.1%) a

Rilpivirine 298.6 a (311 Exp.) 1.4836 a 4.15 a 1.5 a S0 → S1
(HOMO-1→ LUMO 56.7%) a

a—was the data from the calculated OPA properties. Exp.—represented the data from experiments.
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2.4. TPA Spectral Properties

The traditional fluorescence imaging technique applyies one-photon microscopy (OPM),
which involves the application of UV-vis light as an excitation source and achieves the
lower tissue penetrations depth (generally 100 mm), limiting the application of OPM in
living systems [31]. Over the past decades, the fluorescence imaging technique basing on
multiphoton absorption uses near-infrared (NIR) as excitation sources, which has been proved
to be one of the most effective tools in biomedical imaging applications [5,32]. For two-photon
microscopy (TPM), the electron of fluorophore is excited to excited states after absorbing
two photons simultaneously, using half the energy of photons compared to OPM [2]. Maria
Goppert Mayer, as a Nobel laureate, first envisioned the concept of using two light quanta
to excite a fluorophore. In her honor, the unit ‘GM’ was used to represent the TPA cross
section values of a molecule [33]. Subsequently, the first cellular images was obtained by
Webb et al. according to simultaneous excitation of fluorophore with two photons of NIR
wavelength (700 nm–1100 nm) using femtosecond (fs) pulsed laser, which was in biological
optical window to excite the fluorophore. The TPM technology has exclusive advantages in
fluorescence imaging, including deeper imaging depth (down to 1 mm), less photobleaching,
weaker background fluorescence, and higher spatiotemporal resolution [34]. These promising
features have inspired more and more scientists to develop novel fluorescent molecules with
enhanced TPA properties by designing molecules with an appropriate donor–acceptor systems,
suitable dipolars, π-bridges, quadrupolars, octupolar characteristics and more [35–37]. Thus,
the potential TPA properties of Alectinib and Rilpivirine were also predicted in this section,
hoping to improve their bio-imaging applications.

As we all known, effective TPA imaging is influenced by the TPA cross-section (δTPA)
and fluorescent quantum yield (Φ) simultaneously. The δTPA denotes the TPA probability
of a molecule. The larger the TPA cross-section, the larger the probability is for reaching
the excited state after absorbing two photons simultaneously. In this work, we used the
response function theory method to obtain the TPA properties [38,39]. We performed the
calculation for the TPA spectral properties of both Alectinib and Rilpivirine, including
the maximum TPA cross sections (δTPA

max ) and corresponding TPA wavelengths (λTPA
max ) by

DALTON software (Dalton2021.alpha, http://daltonprogram.org) in the 550 nm–1000 nm
region [40]. Firstly, in order to decrease the deviation of simulated TPA spectra, two com-
mon TD-DFT functionals (Cam-B3LYP and B3LYP) for predicting the TPA properties were
adopted here. The TPA spectra in gas and water (with PCM solvent) were obtained and
listed in Tables 3 and S3, using Cam-B3LYP and B3LYP functional, respectively. We could
draw the following: (i) not only by B3LYP but also by Cam-B3LYP, the TPA wavelength
and cross section of Alectinib in water was longer and larger than that in gas, such as
647.4 nm/159 GM (water) > 623.00 nm/1.0 GM (gas), suggesting the potential application
in biological systems, as well as for compound Rilpivirine. (ii) Molecules Alectinib and
Rilpivirine generally exhibited shorter TPA wavelength and smaller TPA cross section
under Cam-B3LYP functional compared with those under B3LYP functional, which were
in agreement with the reported investigation [12]. But the transition characteristic for the
TPA spectra of Alectinib and Rilpivirine by the two functionals was consistent (from S0
→ S1). Considering the reported better results from B3LYP compared with the experi-
mental data, we adopted the calculated TPA properties by B3LYP functional for the later
discussion [41,42]. (iii) In a water environment, the compound Alectinib exhibited a larger
TPA cross-section (δTPA

max : 269.0 GM) at 772.5 nm, which was in the NIR wavelength region.
From the next fluorescence experiment, the fluorescence quantum yield of Alectinib was
7.5%, so its action TPA cross-section (δTPA

max *Φ) was 201.75 GM, which was larger than 50
GM and was suitable for applications in biological samples with reasonable incident laser
power [31]. (iv) For Rilpivirine, the TPA cross section in water was medium (δTPA

max : 159.0
GM) at 744.6 nm excited wavelength, but the fluorescence quantum yield (Φ: 1.1%) was
lower. Thus, its smaller action cross-section (δTPA

max *Φ: 17.49 GM) might restrict the potential
application in TPA bio-imaging. The latter sections were devoted to discussing important
aspects that affected their TPA properties.

http://daltonprogram.org
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Table 3. The calculated TPA properties of Alectinib and Rilpivirine including the maximum TPA
cross-section (δTPA

max ), corresponding TPA wavelength (λTPA
max ), transition nature and charge transfer

amount in gas (a) and water (b) by B3LYP functional.

Molecules δTPA
max /GM λTPA

max /nm Transition Nature qCT
TPA/e

Alectinib 44.8 a

269.0 b
700.5 a

772.5 b
S0→S1

a (HOMO→ LUMO)
S0→S1

b (HOMO→ LUMO) 0.723 b

Rilpivirine 21.8 a

159.0 b
756.0 a

744.6 b
S0→S1

a (HOMO→ LUMO)
S0→S1

b (HOMO→ LUMO) 0.546 b

a were the calculated TPA properties in gas. b represented the calculated TPA properties in water.

In order to further clarify the origin of the TPA activity of Alectinib and Rilpivirine
and explain the calculated TPA spectra, the two-state approximation expression (X) related
to the TPA cross section was adopted here [43,44]:

δTPA
max ∝

(
M01

)2(∣∣∆µ01
∣∣)2(

E01
)2 (1)

The values of transition/state dipole moment vectors and transition energy involved
in two-state approximation model were listed in Table 4. As shown in Table 4, it was clear
that the larger TPA cross-section of Alectinib resulted from the smaller transition energy
(E01 = 3.83 eV), larger transition state dipole moment (2.99 Debye), and bigger difference
of state dipole moment (

∣∣∆µ01
∣∣ = 2.48 Debye) mainly. Additionally, the simulated TPA

tensor elements basing on the quadratic response theory were also listed in Table 5 to
reveal the structural characteristics for TPA properties of Alectinib and Rilpivirine. By
using the TPA tensor elements in forma (4), the maximum TPA cross-sections in atomic
units (a.u.) were obtained and displayed in Table 5. From Table 5, it could be seen
that the Sxx component had a significant contribution in promoting the TPA process for
Alectinib and Rilpivirine, which happened in the direction of ICT from Figure S2. Thus, the
larger TPA cross-section for Alectinib might result from the bigger charge transfer amount
(Alectinib (0.723 e) > Rilpivirine (0.546 e), in Table 3) during the TPA transition process.

Table 4. Parameters related to TPA transition process of Alectinib and Rilpivirine.

Molecules Excited State µ00/Debye µ11/Debye
∣∣∆µ01

∣∣/Debye M01/Debye E01/eV

Alectinib S1 10.96 13.44 2.48 2.99 3.83
Rilpivirine S1 9.32 10.54 1.22 2.00 3.99

Table 5. TPA tensor elements (Sab) and TPA cross sections (σTPA) (in au) for Alectinib and Rilpivirine
molecules calculated in water solvent by DALTON software with B3LYP functional.

Molecules Excited State
Sab/a.u.

σTPA/a.u.
Sxx Syy Szz Sxy Sxz Syz

Alectinib S1 422.7 −31.7 7.5 6.6 63.2 −1.0 1,068,860.6
Rilpivirine S1 286.6 18.5 −2.9 2.5 4.7 95.6 590,613.0

2.5. Fluorescence Spectral Properties

For optical imaging and detection, it is essential to have high fluorescence efficiency.
Basing on the systematical analysis of absorption spectral properties, how about the flu-
orescence properties of Alectinib and Rilpivirine? Thus, the fluorescence spectra of the
molecules Alectinib and Rilpivirine in different solvents (100%DMSO, 75%DMSO-25%PBS,
50%DMSO-50%PBS and 25%DMSO-75%PBS) were measured by fluorescence experiments,
respectively, and were drawn in Figure 4. As shown in Figure 4, we noticed that the emission
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wavelength of Alectinib and Rilpivirine were about 450 nm and 500 nm, respectively, and
the fluorescence efficiency of Alectinib was higher than that of Rilpivirine (Φ: 7.5% > 1.1%).
Furthermore, the fluorescence intensity in 100%DMSO was strongest for the two com-
pounds, and it exhibited an obvious decreasing tendency along with the increase in PBS
content. What is the reason? Of particular note was that in the fluorescent experiments, the
solution became more turbid for the compounds Alectinib and Rilpivirine upon adding
25%PBS, which was in agreement with the reported poor/medium soluble [23]. Thus, the
fluorescence spectra were further obtained in different concentrations for Alectinib and
Rilpivirine, respectively, which were displayed in Figure S4. It could be clearly seen that,
following the increased sample concentration (50 µM→ 100 µM→ 150 µM), the emission
intensity was increased gradually. Those demonstrated that the decreased fluorescent
intensities of Alectinib and Rilpivirine in more PBS proportion were due to their lower solu-
bility. Additionally, there was a red shift of fluorescence peak following with the increased
sample concentration in Figure S4. Most of the chemo drugs benefited the florescence
properties due to their aromatic rings. The red shift of fluorescence peak took place at
a dense solution due to the photon reabsorption effects when the stokes shift between
absorption/fluorescence spectra was sufficiently small as it happened for the chemo drugs
of interest here [45,46]. According to Figure S4, the small Stokes shift lucidly appeared
that was the origin of photon reabsorption effects and subsequent red shift. To explore the
origin of these emission spectra, the theoretical study was analyzed next.
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340 nm and 310 nm, respectively.

To deeply explore the origins of the fluorescence properties about these two molecules,
we adapted the following TD-DFT//B3LYP/6-31+G(d) calculations and obtained the
detailed excited properties. As we all known, the fluorescence quantum yield (Φ) is an
important index for measuring fluorescence efficiency, which is determined by the radiative
decay rate (Kr) and the nonradiative decay rate (Knr) theoretically. According to Kasha’s
rule, the electron can transfer from the first singlet excited state (S1) to the ground state (S0)
through the radiative and non-radiative decay processes. Thus, we thoroughly explored
the S1 excited-state properties for the compounds Alectinib and Rilpivirine, and the results
including emission wavelength (λEMI), oscillator strengths (fE), transition dipole moment
(µ f 0

EMI), charge transfer quantity (qCT
EMI), charge transfer distance (dCT

EMI) and transition
characteristics, and were listed in Table 6. It could be found that the maximum emission
wavelength of Alectinib was at 456.7 nm (450 nm Exp.), which was originated from the
S1 → S0 electron transition with a major contribution of LUMO→HOMO (98.3%). For
Rilpivirine, its maximum emission wavelength was also derived from the electron transition
S1 → S0, which was mainly constructed by LUMO→HOMO (97.6%).
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Table 6. Fluorescence quantum yield (Φ) from experiments and calculated emission spectra prop-
erties of Alectinib and Rilpivirine concluding emission wavelength (λEMI), oscillator strengths (fE),
transition dipole moment (µ f 0

EMI), charge transfer quantity (qCT
EMI), charge transfer distance (dCT

EMI)
and transition characteristics using B3LYP functional and 6-31+G(d) basis set.

Molecule λEMI/nm f E µ
f0
EMI/Debye qCT

EMI/e dCT
EMI/Å Transition Characteristics Φ/%Exp

Alectinib 456.7
450Exp. 0.7469 8.41 0.682 2.568 S1 → S0 (LUMO→ HOMO 98.3%) 7.5

Rilpivirine 435.4
500Exp. 1.3784 6.33 0.502 2.627 S1 → S0 (LUMO→ HOMO 97.6%) 1.1

Exp. referred to the results from fluorescence experiments.

From above fluorescence experiment, Alectinib had a larger fluorescence quantum
yield than Rilpivirine (Φ: 7.5% > 1.1%) which might come from the larger electronic transi-
tion dipole moment and charge transition quantity during the emission process in Table 6
(µ f 0

EMI : 8.41 Debye > 6.33 Debye, qCT
EMI : 0.682 e > 0.502 e). Additionally, we also analyzed

this phenomenon by means of reorganization energy, which was an important parameter
for evaluating geometric relaxation and energy component in internal conversion process.
From Figure 5, it could be summarized that (i) the total reorganization energy of Alec-
tinib was smaller than that of Rilpivirine (Reorg. Energy: 2821.6 cm−1 < 5176.9 cm−1),
implying the smaller geometric relaxation for Alectinib. (ii) In Alectinib, the four main
vibration models (> 200 cm−1), including molecular skeleton scissoring vibration mode
at 13.62 cm−1, benzene ring stretching vibration mode at 1486.36 cm−1, 1676.46 cm−1 and
1681.77 cm−1, made the contributions to the total reorganization energy. The C-O bond
of benzene ring stretching vibration mode at 1486.36 cm−1 had a higher reorganization
energy up to 330.34 cm−1, and occupied 11.71% of the total reorganization energy. (iii) For
the molecule Rilpivirine, in the high-frequency regions, the C-C bond of the benzene ring
attached to a double bond stretching vibration mode at 1708.87 cm−1 exhibited particular
large reorganization energy up to 940.95 cm−1, which contributed 55.06% to its total reorga-
nization energy. Concluding, compared to the compound Rilpivirine, molecule Alectinib
possessed larger electronic transition dipole moment and charge transition quantity, which
were beneficial for the radiative decay process, and the smaller geometric relaxation, which
weakened the nonradiative decay process. On the other hand, the molecular aromatic rings
had important influences on the fluorescence properties [39,41,47]. The Alectinib possessed
stronger molecular planarity due to the appropriate aromatic ring substitution than that of
Rilpivirine (46.6◦ < 111.0◦), which also contributed the higher fluorescence quantum yield.
Thus, Alectinib had higher fluorescence quantum yield than Rilpivirine in organic solvent.
Lastly, how were their fluorescence properties in cell imaging?

2.6. Cell Imaging Application

To evaluate the bio-imaging ability, the compounds Alectinib and Rilpivirine to stain
living cells of HeLa cell line were studied by confocal laser scanning fluorescence mi-
croscopy. HeLa cells were cultured onto glass-bottom Petri dishes for 12 h before treatment.
Live cells were treated with the compounds Alectinib and Rilpivirine at 20 µM for 16 h,
washed with PBS three times, fixed in 4% paraformaldehyde solution for 15 min, and
washed with PBS again, respectively. Cell images were obtained by confocal laser scanning
fluorescence microscopy (CLSM, Nikon, Ti2-E+A1, Japan) using both 405 nm and 488 nm
as the excitation wavelengths. As displayed in Figure 6, HeLa cells stained with the com-
pounds Alectinib and Rilpivirine showed green fluorescence. It suggested that Alectinib
and Rilpivirine had better imaging performances in cell imaging, although Rilpivirine had
a lower fluorescence quantum yield than Alectinib (1.1% < 7.5%) in an organic solvent.
These might come from the complex cellar environments, which formed some interaction
with small molecules and enhanced the fluorescence intensity of Rilpivirine. So, Alectinib
and Rilpivirine had the potential abilities for biological imaging applications. Compared
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with commercial dyes or drugs sharing with a single function, drug molecules Alectinib
and Rilpivirine have potential practical applications in integrated diagnosis and treatment.
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3. Material and Methods

In this work, the optimization and frequency calculations of ground-state and geome-
tries structures for Alectinib and Rilpivirine were obtained at the level of M06-2X/6-31+G(d)
with the help of Gaussian 16 program package [48,49]. Furthermore, their stable molecular
geometries were displayed in Table 1. The three smallest vibrational frequencies of Alectinib
and Rilpivirine at the real local minima points were positive values, confirming the stabil-
ities of studied Alectinib and Rilpivirine geometries. The one-photon absorption (OPA)
and emission spectral properties were simulated according to the time-dependent density
functional theory (TD-DFT) based on stable molecular structures. The M06-2X/6-31+G(d)
and B3LYP/6-31+G(d) level were used for OPA and emission spectral simulation, respec-
tively. At the same time, the solvent effect was taken into account within the self-consistent
reaction field (SCRF) theory through applying SMD model [24]. On the other hand, the two-
photon absorption (TPA) properties were calculated with the help of quadratic response
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theory in the DALTON program [40]. The reorganization energies with the parameters of
normal mode displacements were carried out by the MOMAP program [50,51].

The OPA transition probability (δOPA) is able to evaluate the OPA intensity. The OPA
oscillator strength (f ), as an important index for measuring various OPA property of a
fluorescent compound, is related to δOPA. The expression of δOPA from the ground state S0
to the excited state Sn is obtained by [52]:

δOPA =
2ωn

3 ∑α
|〈0|µ̂α|n〉|2 (α ∈ x, y, z) (2)

here, ωn represents the excited energy. 〈0|µ̂α|n〉 is the transition dipole moment along with
the different coordinate directions, which is related to the wave function integral. These
physical parameters about the OPA spectra can be calculated with the help of Gaussian
16 program [49].

The TPA cross-section (δTPA) is used to evaluate TPA intensity, which is determined
by two-photon transition probability (σTPA) and can be given by [53]:

δTPA =
4π2αα5

0ω2

15cΓ
σTPA (3)

here, α, α0 and c are on behalf of the fine structure constant, Bohr radius, and the speed of
light, respectively; ω represents the photon energy in atomic units, and Γ is the broadening
factor, describing spectral broadening of an excitation, which has been assumed to be
0.05 eV to make the theoretical simulation process consistent with the experimental spectra.
σTPA can be calculated as [54]:

σTPA =
1
30 ∑ab

(
FSaaSbb + GSabSab + HSabSba

)
(4)

a, b ∈ {x, y, z}, and F, G and H are 2, 2, and 2 for linearly polarized light and were
−2, 3 and 2 for the circular case, respectively. Taking electric dipole approximation into
consideration, the TPA transition tensor Si f between the initial state i and the final state f
can be expressed as [53]:

Si f
ab = ∑

n 6=i

{
〈 i|µα|n〉〈n|µb| f 〉

ωin −ω1
+
〈 i|µb|n〉〈n|µa| f 〉

ωin −ω2

}
(5)

where 〈i|µα|n〉 is the ath compound of the transition dipole moment between the initial
electric state i and the intermediate state n. ωin is excitation energy. In addition, ω1 and ω2
presents the energies of two photons. These physical parameters about the TPA spectra can
be obtained by quadratic response theory with the help of DALTON software [40].

Fluorescence intensity is determined by the competition of radiative decay and non-
radiative decay process [42,55]. The fluorescence efficiency could be evaluated by fluo-
rescence quantum yield (Φ), which was obtained from experiment directly in this inves-
tigation. The stronger of radiative decay, the larger of the Φ. Conversely, the smaller the
non-radiative decay process, the larger of the Φ. Internal conversion (IC), as a non-radiative
decay from the first excited state to ground state, is the most important component during
the non-radiative process [56]. The IC rate can be calculated under harmonic oscillator
approximation though Fermi’s golden rule and is expressed as [57]:

Kic =
2π

}

∣∣∣H′f i

∣∣∣2δ
(

E f i + E f ν f
− E f νi

)
(6)

The Kic is closely related to electron–vibration coupling and geometric relaxation of
the excited state, which can be evaluated by reorganization energy (λ) or Huang−Rhys
factor (HR). These above parameters of fluorescence spectra can be calculated by applying
Gaussian 16 and MOMAP program [49,51].
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The UV-vis excitation and fluorescence spectroscopy were carried out at room temper-
ature and by the instrument of SHIMADZU 2550 UV–vis spectrophotometer (SHIMADZU,
Kyoto, Japan) and SHIMADZU RF-6000 Fluorolog instrument (SHIMADZU, Kyoto, Japan),
respectively. The slit bandwidth and sampling interval for Shimadzu RF-600 was 5 nm and
0.5 nm, respectively. Cell images were obtained by confocal laser scanning fluorescence
microscopy (CLSM, Nikon, Ti2-E+A1, Tokyo, Japan) using 405 nm and 488 nm as the
excitation wavelength. The HeLa cells were human cervical cancer cells in DMEM and
EMEM culture medium from Human Fenghui Biotechnology Co. Ltd. (Nanjing, China),
and its accession number was CL0134. HeLa cells were cultured onto glass-bottom Petri
dishes for 12 h before treatment. Live cells were treated with Alectinib and Rilpivirine at
20 µM for 16 h, washed with PBS for 3 times, fixed in 4% paraformaldehyde solution for
15 min, and washed with PBS again.

4. Conclusions

In conclusion, the optical properties of two drugs Alectinib and Rilpivirine were
deeply explored firstly, through the simulation of molecular structures, electrostatic po-
tential, OPA/TPA and emission spectral properties, and experiment of UV-vis spectra,
fluorescence and cell imaging. Moreover, the relationships between molecular structures
and optical properties for Alectinib and Rilpivirine have been minutely investigated based
on molecular modeling. The results suggested that the drugs Alectinib and Rilpivirine
with planar parent skeleton, stronger π-conjugation effect in S1 and electron acceptors
connecting conjugated structures could be excited by UV-vis spectra, and subsequently
emitted fluorescence at 450 nm and 500 nm, respectively. It was noted that the intensi-
ties of UV-vis excited and emission spectra for Alectinib and Rilpivirine were decreased
during the increased PBS proportion, which were ascribed to the poor/medium solubility.
Meanwhile, we found that the fluorescence quantum yield of Alectinib was higher than
that of Rilpivirine (Φ: 7.5% > 1.1%) in organic solvent, which might come from the larger
electronic transition dipole moment (µ f 0

EMI : 8.41 Debye > 6.33 Debye) and charge transition
quantity (qCT

EMI : 0.682 e > 0.502 e) during the emission process. Additionally, the smaller
geometric relaxation of Alectinib due to the lower reorganization energy than Rilpivirine
(2821.6 cm−1 < 5176.9 cm−1) weakened the non-radiative decay process, and also led to
its higher fluorescence intensity. For TPA properties, we found that the action TPA cross-
section (δTPA

max *Φ) of Alectinib was 201.75 GM at 772.5 nm excited wavelength, which was
larger than 50 GM in NIR region and was suitable for applications in biological samples
with reasonable incident laser power [31]. Lastly, Alectinib and Rilpivirine displayed the
same green fluorescence in HeLa cells, suggesting their potential bio-imaging applications.
We hope that this investigation can provide useful guidance for the design and synthesis of
more excellent fluorescent activated molecules.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28166172/s1. Tables S1–S4: The main selected bond
length (Å) and dihedral angles (◦) at the optimized S0 and S1 geometries for compounds Alectinib
and Rilpivirine. Transition index of Alectinib and Rilpivirine from S0 to S1 in OPA spectra, in-
cluding centroid distance of the electrons and holes (D), electron-hole overlap index (Sr), average
distribution breadth of the electrons and holes (H), hole delocalization index (HDI) and electron
delocalization index (EDI). Calculated TPA properties including the maximum TPA cross-section
(δTPA

max ), corresponding TPA wavelength (λTPA
max ), and transition nature of Alectinib and Rilpivirine in

gas (a) and water (b) by Cam-B3LYP functional. The transition energy gaps (ETEG) of Alectinib in
H2O and DMSO (polarity: H2O > DMSO).; Figure S1–S5: The UV-vis spectra of molecule Alectinib
(A) and Rilpivirine (B) with the concentration of 100 µM in different solvent (100%DMSO, 50%DMSO-
50%PBS and 10%DMSO-90%PBS). Contour surfaces of eight frontier molecular orbitals of Alectinib
and Rilpivirine. Atomic numbers for compounds Alectinib and Rilpivirine. Fluorescence spectra of
Alectinib (A) and Rilpivirine (B) in 25%DMSO-75%PBS solvent by excitation at 340 nm and 310 nm,
respectively. UV-vis spectra of Alectinib (C) and Rilpivirine (D) in 25%DMSO-75%PBS solvent. The

https://www.mdpi.com/article/10.3390/molecules28166172/s1
https://www.mdpi.com/article/10.3390/molecules28166172/s1
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plot of fluorescence intensity (red) and wavelength (black) versus concentration for Alectinib (A) and
Rilpivirine (B) in 25%DMSO-75%PBS solvent [58].
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