Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review
Abstract
:1. Introduction
2. Methodology of Data Collection
3. AOP-Based REEs for CECs Removal
3.1. Pharmaceutical Degradation
3.2. Dye Degradation
3.3. Degradation of Other Target Pollutants
4. Potential Environmental Impacts of REE Catalysts
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lofrano, G.; Libralato, G.; Casaburi, A.; Siciliano, A.; Iannece, P.; Guida, M.; Pucci, L.; Dentice, E.; Carotenuto, M. Municipal wastewater spiramycin removal by conventional treatments and heterogeneous photocatalysis. Sci. Total Environ. 2018, 624, 461–469. [Google Scholar] [CrossRef]
- Priya, A.K.; Gnanasekaran, L.; Rajendran, S.; Qin, J.; Vasseghian, Y. Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment-A review. Environ. Res. 2022, 204, 112298. [Google Scholar] [CrossRef] [PubMed]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef] [PubMed]
- Lofrano, G.; Libralato, G.; Carotenuto, M.; Guida, M.; Inglese, M.; Siciliano, A.; Meriç, S. Emerging concern from short-term textile leaching: A preliminary ecotoxicological survey. Bull. Environ. Contam. Toxicol. 2016, 97, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Ugwu, E.I.; Karri, R.R.; Nnaji, C.C.; John, J.; Padmanaban, V.; Othmani, A.; Ikechukwu, E.L.; Helal, W.M. Application of green nanocomposites in removal of toxic chemicals, heavy metals, radioactive materials, and pesticides from aquatic water bodies. In Sustainable Nanotechnology for Environmental Remediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 321–346. [Google Scholar]
- Karri, R.R.; Ravindran, G.; Dehghani, M.H. Wastewater—Sources, toxicity, and their consequences to human health. In Soft Computing Techniques in Solid Waste and Wastewater Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–33. [Google Scholar]
- Pedrazzani, R.; Bertanza, G.; Brnardić, I.; Cetecioglu, Z.; Dries, J.; Dvarionienė, J.; García-Fernández, A.J.; Langenhoff, A.; Libralato, G.; Lofrano, G. Opinion paper about organic trace pollutants in wastewater: Toxicity assessment in a European perspective. Sci. Total Environ. 2019, 651, 3202–3221. [Google Scholar] [CrossRef] [PubMed]
- Werkneh, A.A.; Rene, E.R. Applications of nanotechnology and biotechnology for sustainable water and wastewater treatment. In Water and Wastewater Treatment Technologies; Springer: Berlin/Heidelberg, Germany, 2019; pp. 405–430. [Google Scholar]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Spasiano, D.; Siciliano, A.; Race, M.; Marotta, R.; Guida, M.; Andreozzi, R.; Pirozzi, F. Biodegradation, ecotoxicity and UV254/H2O2 treatment of imidazole, 1-methyl-imidazole and N, N’-alkyl-imidazolium chlorides in water. Water Res. 2016, 106, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Lofrano, G.; Rizzo, L.; Grassi, M.; Belgiorno, V. Advanced oxidation of catechol: A comparison among photocatalysis, Fenton and photo-Fenton processes. Desalination 2009, 249, 878–883. [Google Scholar] [CrossRef]
- Wang, S. A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dye Pigment 2008, 76, 714–720. [Google Scholar] [CrossRef]
- Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 2016, 4, 762–787. [Google Scholar] [CrossRef]
- Kuang, J.C. Characteristics of Electron Structure and 4f Orbital of Rare Earths and Their Reinforcement of Wastewater Degradation. Adv. Mater. Res. 2014, 1022, 72–75. [Google Scholar] [CrossRef]
- Atalay, S.; Ersöz, G. Novel Catalysts in Advanced Oxidation of Organic Pollutants; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Acharya, B.K.; Pathak, H.; Mohana, S.; Shouche, Y.; Singh, V.; Madamwar, D. Kinetic modelling and microbial community assessment of anaerobic biphasic fixed film bioreactor treating distillery spent wash. Water Res. 2011, 45, 4248–4259. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Shah, M.P. Advanced oxidation processes for complex wastewater treatment. In Advanced Oxidation Processes for Effluent Treatment Plants; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–31. [Google Scholar]
- Oturan, M.A.; Aaron, J.-J. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, J.; Fang, Z.; Tsang, E.P. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline. Chem. Eng. J. 2019, 369, 588–599. [Google Scholar] [CrossRef]
- Oliverio, M.; Nardi, M.; Costanzo, P.; Di Gioia, M.L.; Procopio, A. Erbium salts as non-toxic catalysts compatible with alternative reaction media. Sustainability 2018, 10, 721. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Emsaki, M.; Hosseinzadeh, G. Innovative construction of a novel lanthanide cerate nanostructured photocatalyst for efficient treatment of contaminated water under sunlight. J. Colloid Interface Sci. 2022, 619, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ambaye, T.G.; Vaccari, M.; Castro, F.D.; Prasad, S.; Rtimi, S. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: A review on progress, challenges, and perspectives. Environ. Sci. Pollut. Res. 2020, 27, 36052–36074. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.H.S.; Yeong Wu, T.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef]
- Onozuka, K.; Kawakami, Y.; Imai, H.; Yokoi, T.; Tatsumi, T.; Kondo, J. Perovskite-type La2Ti2O7 mesoporous photocatalyst. J. Solid State Chem. 2012, 192, 87–92. [Google Scholar] [CrossRef]
- Assila, O.; Barros, Ó.; Fonseca, A.M.; Parpot, P.; Soares, O.S.; Pereira, M.F.; Zerrouq, F.; Kherbeche, A.; Rombi, E.; Tavares, T. Degradation of pollutants in water by Fenton-like oxidation over LaFe-catalysts: Optimization by experimental design. Microporous Mesoporous Mater. 2023, 349, 112422. [Google Scholar] [CrossRef]
- Song, J.; Ma, N.; Chen, W.; Chen, J.; Dai, Q. Insights into mechanism of catalytic ozonation of cinnamyl alcohol over core–shell Fe3O4@SiO2@La2O3 catalyst. Sep. Purif. Technol. 2022, 282, 119969. [Google Scholar] [CrossRef]
- Tokunaga, S.; Haron, M.J.; Wasay, S.A.; Wong, K.F.; Laosangthum, K.; Uchiumi, A. Removal of fluoride ions from aqueous solutions by multivalent metal compounds. Int. J. Environ. Stud. 1995, 48, 17–28. [Google Scholar] [CrossRef]
- Liu, S. Electronic structure of rare earth metals. Handb. Phys. Chem. Rare Earths 1978, 1, 233–335. [Google Scholar]
- Been, E.; Lee, W.-S.; Hwang, H.Y.; Cui, Y.; Zaanen, J.; Devereaux, T.; Moritz, B.; Jia, C. Electronic structure trends across the rare-earth series in superconducting infinite-layer nickelates. Phys. Rev. X 2021, 11, 011050. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, L.; Li, Y.-Y.; Hu, C. Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2. J. Hazard. Mater. 2015, 294, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Younes, H.A.; Taha, M.; Khaled, R.; Mahmoud, H.M.; Abdelhameed, R.M. Perovskite/metal-organic framework photocatalyst: A novel nominee for eco-friendly uptake of pharmaceuticals from wastewater. J. Alloys Compd. 2023, 930, 167322. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, M.; Qin, H.; Zhou, J.; Shen, Q.; Wang, K.; Chen, W.; Liu, M.; Li, N. Synergy effect between adsorption and heterogeneous photo-Fenton-like catalysis on LaFeO3/lignin-biochar composites for high efficiency degradation of ofloxacin under visible light. Sep. Purif. Technol. 2022, 280, 119751. [Google Scholar] [CrossRef]
- Assumpção, M.H.M.T.; Moraes, A.; De Souza, R.; Reis, R.M.; Rocha, R.S.; Gaubeur, I.; Calegaro, M.L.; Hammer, P.; Lanza, M.R.d.V.; Santos, M.C.d. Degradation of dipyrone via advanced oxidation processes using a cerium nanostructured electrocatalyst material. Appl. Catal. A Gen. 2013, 462, 256–261. [Google Scholar] [CrossRef]
- Chong, S.; Zhang, G.; Zhang, N.; Liu, Y.; Zhu, J.; Huang, T.; Fang, S. Preparation of FeCeOx by ultrasonic impregnation method for heterogeneous Fenton degradation of diclofenac. Ultrason. Sonochem. 2016, 32, 231–240. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Q.; Qin, F.; Dai, Q.; Wang, X. Fe doped CeO2 nanosheets as Fenton-like heterogeneous catalysts for degradation of salicylic acid. Chem. Eng. J. 2018, 333, 226–239. [Google Scholar] [CrossRef]
- Wang, X.; Jin, Y.; Chen, W.; Zou, R.; Xie, J.; Tang, Y.; Li, X.; Li, L. Electro-catalytic activity of CeOx modified graphite felt for carbamazepine degradation via E-peroxone process. Front. Environ. Sci. Eng. 2021, 15, 122. [Google Scholar] [CrossRef]
- Hu, B.; Tang, Y.; Wang, X.; Wu, L.; Nong, J.; Yang, X.; Guo, J. Cobalt-gadolinium modified biochar as an adsorbent for antibiotics in single and binary systems. Microchem. J. 2021, 166, 106235. [Google Scholar] [CrossRef]
- Luan, J.; Liu, W.; Yao, Y.; Ma, B.; Niu, B.; Yang, G.; Wei, Z. Synthesis and Property Examination of Er2FeSbO7/BiTiSbO6 Heterojunction Composite Catalyst and Light-Catalyzed Retrogradation of Enrofloxacin in Pharmaceutical Waste Water under Visible Light Irradiation. Materials 2022, 15, 5906. [Google Scholar] [CrossRef] [PubMed]
- Fida, H.; Zhang, G.; Guo, S.; Naeem, A. Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst. J. Colloid Interface Sci. 2017, 490, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Cui, C.; Zhang, L.; Zhang, J.; Liu, G. FeOCl/Ln (Ln = La or Y): Efficient photo-Fenton catalysts for ibuprofen degradation. New J. Chem. 2019, 43, 16273–16280. [Google Scholar] [CrossRef]
- Tahir, M.B.; Sagir, M. Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production. Sep. Purif. Technol. 2019, 209, 94–102. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, P.; Li, H.; Li, W.; Zhu, Y.; Zhu, N. Synthesis and catalytic properties of La or Ce doped hydroxy-FeAl intercalated montmorillonite used as heterogeneous photo Fenton catalysts under sunlight irradiation. RSC Adv. 2014, 4, 6500–6507. [Google Scholar] [CrossRef]
- Sharma, R.; Bansal, S.; Singhal, S. Augmenting the catalytic activity of CoFe2O4 by substituting rare earth cations into the spinel structure. RSC Adv. 2016, 6, 71676–71691. [Google Scholar] [CrossRef]
- Divya, T.; Renuka, N. Modulated heterogeneous Fenton-like activity of ‘M’doped nanoceria systems (M = Cu, Fe, Zr, Dy, La): Influence of reduction potential of doped cations. J. Mol. Catal. A Chem. 2015, 408, 41–47. [Google Scholar] [CrossRef]
- Fan, J.; Jiang, X.; Min, H.; Li, D.; Ran, X.; Zou, L.; Sun, Y.; Li, W.; Yang, J.; Teng, W. Facile preparation of Cu–Mn/CeO2/SBA-15 catalysts using ceria as an auxiliary for advanced oxidation processes. J. Mater. Chem. A 2014, 2, 10654–10661. [Google Scholar] [CrossRef]
- Xie, Y.; Yuan, C. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Appl. Catal. B Environ. 2003, 46, 251–259. [Google Scholar] [CrossRef]
- Singh, L.; Rekha, P.; Chand, S. Cu-impregnated zeolite Y as highly active and stable heterogeneous Fenton-like catalyst for degradation of Congo red dye. Sep. Purif. Technol. 2016, 170, 321–336. [Google Scholar] [CrossRef]
- Cao, R.; Huang, H.; Tian, N.; Zhang, Y.; Guo, Y.; Zhang, T. Novel Y doped Bi2WO6 photocatalyst: Hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for Rhodamine B degradation and photocurrent generation. Mater. Charact. 2015, 101, 166–172. [Google Scholar] [CrossRef]
- Seroglazova, A.S.; Popkov, V.I. Synthesis of highly active and visible-light-driven PrFeO3 photocatalyst using solution combustion approach and succinic acid as fuel. Nanosyst. Phys. Chem. Math. 2022, 13, 649–654. [Google Scholar] [CrossRef]
- Seroglazova, A.S.; Chebanenko, M.I.; Nevedomskyi, V.N.; Popkov, V.I. Solution combustion synthesis of novel PrFeO3/CeO2 nanocomposite with enhanced photo-Fenton activity under visible light. Ceram. Int. 2023, 49, 15468–15479. [Google Scholar] [CrossRef]
- Ahmadi, S.; Rahdar, A.; Igwegbe, C.A.; Mortazavi-Derazkola, S.; Banach, A.M.; Rahdar, S.; Singh, A.K.; Rodriguez-Couto, S.; Kyzas, G.Z. Praseodymium-doped cadmium tungstate (CdWO4) nanoparticles for dye degradation with sonocatalytic process. Polyhedron 2020, 190, 114792. [Google Scholar] [CrossRef]
- Yayapao, O.; Thongtem, T.; Phuruangrat, A.; Thongtem, S. Ultrasonic-assisted synthesis of Nd-doped ZnO for photocatalysis. Mater. Lett. 2013, 90, 83–86. [Google Scholar] [CrossRef]
- Dhiman, M.; Singhal, S. Effect of doping of different rare earth (europium, gadolinium, dysprosium and neodymium) metal ions on structural, optical and photocatalytic properties of LaFeO3 perovskites. J. Rare Earths 2019, 37, 1279–1287. [Google Scholar] [CrossRef]
- Keerthana, S.; Yuvakkumar, R.; Kumar, P.S.; Ravi, G.; Velauthapillai, D. Rare earth metal (Sm) doped zinc ferrite (ZnFe2O4) for improved photocatalytic elimination of toxic dye from aquatic system. Environ. Res. 2021, 197, 111047. [Google Scholar] [CrossRef]
- Chahal, S.; Rani, N.; Kumar, A.; Kumar, P. Electronic structure and photocatalytic activity of samarium doped cerium oxide nanoparticles for hazardous rose bengal dye degradation. Vacuum 2020, 172, 109075. [Google Scholar] [CrossRef]
- Wang, M.; You, M.; Guo, P.; Tang, H.; Lv, C.; Zhang, Y.; Zhu, T.; Han, J. Hydrothermal synthesis of Sm-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B. J. Alloys Compd. 2017, 728, 739–746. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, H.; Zhou, S.; Liu, Y.; Yan, C. Fabrication of europium-nitrogen co-doped TiO2/Sepiolite nanocomposites and its improved photocatalytic activity in real wastewater treatment. Appl. Clay Sci. 2020, 197, 105791. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Xu, Y.; Wang, Y. Europium doped nanocrystalline titanium dioxide: Preparation, phase transformation and photocatalytic properties. J. Mater. Chem. 2003, 13, 2261–2265. [Google Scholar] [CrossRef]
- Hernández, J.V.; Coste, S.; Murillo, A.G.; Romo, F.C.; Kassiba, A. Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2. J. Alloys Compd. 2017, 710, 355–363. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, J. Effects of europium doping on the photocatalytic behavior of BiVO4. J. Hazard. Mater. 2010, 173, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Ju, L.; Chen, Z.; Fang, L.; Dong, W.; Zheng, F.; Shen, M. Sol–gel synthesis and photo-Fenton-like catalytic activity of EuFeO3 nanoparticles. J. Am. Ceram. Soc. 2011, 94, 3418–3424. [Google Scholar] [CrossRef]
- Xu, X.; Ge, Y.; Li, B.; Fan, F.; Wang, F. Shape evolution of Eu-doped Bi2WO6 and their photocatalytic properties. Mater. Res. Bull. 2014, 59, 329–336. [Google Scholar] [CrossRef]
- Sharmin, F.; Basith, M. Highly efficient photocatalytic degradation of hazardous industrial and pharmaceutical pollutants using gadolinium doped BiFeO3 nanoparticles. J. Alloys Compd. 2022, 901, 163604. [Google Scholar] [CrossRef]
- Marwani, H.M.; Ahmad, S.; Rahman, M.M. Catalytic reduction of environmental pollutants with biopolymer hydrogel cross-linked gelatin conjugated tin-doped gadolinium oxide nanocomposites. Gels 2022, 8, 86. [Google Scholar] [CrossRef]
- Ismail, M.; Akhtar, K.; Khan, M.; Kamal, T.; Khan, M.A.; M Asiri, A.; Seo, J.; Khan, S.B. Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr. Pharm. Des. 2019, 25, 3645–3663. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, W.; Wang, F.; Liu, X.; Ren, C.; Miao, X. Fabrication of Pt nanoparticles decorated Gd-doped Bi2MoO6 nanosheets: Design, radicals regulating and mechanism of Gd/Pt-Bi2MoO6 photocatalyst. Appl. Surf. Sci. 2018, 427, 1046–1053. [Google Scholar] [CrossRef]
- Yu, C.; Wu, Z.; Liu, R.; He, H.; Fan, W.; Xue, S. The effects of Gd3+ doping on the physical structure and photocatalytic performance of Bi2MoO6 nanoplate crystals. J. Phys. Chem. Solids 2016, 93, 7–13. [Google Scholar] [CrossRef]
- Wu, D.; Li, C.; Zhang, D.; Wang, L.; Zhang, X.; Shi, Z.; Lin, Q. Enhanced photocatalytic activity of Gd3+ doped TiO2 and Gd2O3 modified TiO2 prepared via ball milling method. J. Rare Earths 2019, 37, 845–852. [Google Scholar] [CrossRef]
- Vinosha, P.A.; Vinsla, J.A.; Madhavan, J.; Devanesan, S.; AlSalhi, M.S.; Nicoletti, M.; Xavier, B. Impact of dysprosium doped (Dy) zinc ferrite (ZnFe2O4) nanocrystals in photo-fenton exclusion of recalcitrant organic pollutant. Environ. Res. 2022, 203, 111913. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.-H.; Hou, M.-F.; Zhou, S.-G.; Li, F.-B.; Liu, C.-S.; Liu, T.-X.; Gao, Y.-X.; Wang, X.-G.; Lü, J.-L. The effect of erbium on the adsorption and photodegradation of orange I in aqueous Er3+-TiO2 suspension. J. Hazard. Mater. 2006, 138, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Tikhanova, S.M.; Lebedev, L.A.; Martinson, K.D.; Chebanenko, M.I.; Buryanenko, I.V.; Semenov, V.G.; Nevedomskiy, V.N.; Popkov, V.I. The synthesis of novel heterojunction h-YbFeO3/o-YbFeO3 photocatalyst with enhanced Fenton-like activity under visible-light. New J. Chem. 2021, 45, 1541–1550. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Liu, X.; Geng, L.; Fan, H.; Ma, X.; Dong, M.; Qiu, H. The construction of Yb/Er/Pr triple-doped Bi2WO6 superior photocatalyst and the regulation of superoxide and hydroxyl radicals. Appl. Surf. Sci. 2022, 592, 153311. [Google Scholar] [CrossRef]
- Gu, S.; Li, W.; Bian, Y.; Wang, F.; Li, H.; Liu, X. Highly-visible-light photocatalytic performance derived from a lanthanide self-redox cycle in Ln2O3/BiVO4 (Ln: Sm, Eu, Tb) redox heterojunction. J. Phys. Chem. C 2016, 120, 19242–19251. [Google Scholar] [CrossRef]
- Li, H.; Li, W.; Wang, F.; Liu, X.; Ren, C. Fabrication of two lanthanides co-doped Bi2MoO6 photocatalyst: Selection, design and mechanism of Ln1/Ln2 redox couple for enhancing photocatalytic activity. Appl. Catal. B Environ. 2017, 217, 378–387. [Google Scholar] [CrossRef]
- Fouad, K.; Alalm, M.G.; Bassyouni, M.; Saleh, M.Y. Optimization of catalytic wet peroxide oxidation of carbofuran by Ti-LaFeO3 dual photocatalyst. Environ. Technol. Innov. 2021, 23, 101778. [Google Scholar] [CrossRef]
- Garcia-Muñoz, P.; Lefevre, C.; Robert, D.; Keller, N. Ti-substituted LaFeO3 perovskite as photoassisted CWPO catalyst for water treatment. Appl. Catal. B Environ. 2019, 248, 120–128. [Google Scholar] [CrossRef]
- Ho, C.-C.; Kang, F.; Chang, G.-M.; You, S.-J.; Wang, Y.-F. Application of recycled lanthanum-doped TiO2 immobilized on commercial air filter for visible-light photocatalytic degradation of acetone and NO. Appl. Surf. Sci. 2019, 465, 31–40. [Google Scholar] [CrossRef]
- Gogoi, A.; Navgire, M.; Sarma, K.C.; Gogoi, P. Fe3O4-CeO2 metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol. Chem. Eng. J. 2017, 311, 153–162. [Google Scholar] [CrossRef]
- Heckert, E.G.; Karakoti, A.S.; Seal, S.; Self, W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709. [Google Scholar] [CrossRef] [PubMed]
- Orge, C.A.; Órfão, J.J.; Pereira, M.F.; de Farias, A.M.D.; Fraga, M.A. Ceria and cerium-based mixed oxides as ozonation catalysts. Chem. Eng. J. 2012, 200, 499–505. [Google Scholar] [CrossRef]
- Ouyang, W.; Zhou, Y.; Fei, X.; Bai, Y.; Wang, H.; Wu, Z. Simultaneous removal of NO and dichloromethane (CH2Cl2) over Nb-loaded cerium nanotubes catalyst. J. Environ. Sci. 2022, 111, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ. Sci. Technol. 2012, 46, 10145–10153. [Google Scholar] [CrossRef]
- Karunakaran, C.; Gomathisankar, P.; Manikandan, G. Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Mater. Chem. Phys. 2010, 123, 585–594. [Google Scholar] [CrossRef]
- Sin, J.-C.; Lam, S.-M.; Lee, K.-T.; Mohamed, A.R. Preparation and photocatalytic properties of visible light-driven samarium-doped ZnO nanorods. Ceram. Int. 2013, 39, 5833–5843. [Google Scholar] [CrossRef]
- Cymes, B.A.; Almquist, C.B.; Krekeler, M.P. Europium-doped cryptomelane: Multi-pathway synthesis, characterization, and evaluation for the gas phase catalytic oxidation of ethanol. Appl. Catal. A Gen. 2020, 589, 117310. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Kajjumba, G.W.; Marti, E.J. A review of the application of cerium and lanthanum in phosphorus removal during wastewater treatment: Characteristics, mechanism, and recovery. Chemosphere 2022, 309, 136462. [Google Scholar] [CrossRef] [PubMed]
- Kajjumba, G.W.; Attene-Ramos, M.; Marti, E.J. Toxicity of lanthanide coagulants assessed using four in vitro bioassays. Sci. Total Environ. 2021, 800, 149556. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V.; Vignati, D.A.; Leyval, C.; Giamberini, L. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environ. Int. 2014, 71, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Ghadiri, M.; Ghasemi Darehnaei, M.; Sabbaghian, S.; Shirazian, S. Computational simulation for transport of priority organic pollutants through nanoporous membranes. Chem. Eng. Technol. 2013, 36, 507–512. [Google Scholar] [CrossRef]
Element | Atomic Number | Valence Shell Electronic Configuration |
---|---|---|
Y | 39 | [Ar] 3d1 4s2 |
La | 57 | [Ar] 4d1 5s3 |
Ce | 58 | [Xe] 4f1 5d1 6s2 |
Pr | 59 | [Xe] 4f3 5d0 6s2 |
Nd | 60 | [Xe] 4f4 5d0 6s2 |
Pm | 61 | [Xe] 4f5 5d0 6s2 |
Sm | 62 | [Xe] 4f6 5d0 6s2 |
Eu | 63 | [Xe] 4f7 5d0 6s2 |
Gd | 64 | [Xe] 4f7 5d1 6s2 |
Tb | 65 | [Xe] 4f9 5d0 6s2 |
Dy | 66 | [Xe] 4f10 5d0 6s2 |
Ho | 67 | [Xe] 4f11 5d0 6s2 |
Er | 68 | [Xe] 4f12 5d0 6s2 |
Tm | 69 | [Xe] 4f13 5d0 6s2 |
Yb | 70 | [Xe] 4f14 5d0 6s2 |
Lu | 71 | [Xe] 4f14 5d1 6s2 |
Type of Reaction | REEs Studied |
---|---|
Photocatalysis | Y, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb |
Fenton-like catalysis | Y, La, Ce, Pr, Nd, Eu, Gd, Dy, Yb |
Catalyst Doped REE | Target | Dose of Catalyst | Dose of Target | Time (min) | Conditions | Proposed Mechanism | Removal (%) | Reference |
---|---|---|---|---|---|---|---|---|
LaFeO3 | Sulfamethoxazole | 1.4 g/L | 3 mg/L | 120 | pH = 6.48, T = 30 °C | Production of •OH and superoxide radicals (O2−/HOO) | 100% | [31] |
LaFeO3/MIL-125-NH2 | Carbamazepine (CBZ) and Caffeine (CAF) | 250 mg/L | 5 mg/L CBZ and 1 mg/L CAF | 60 | Visible light | Production of •OH and O2− | 74% CBZ 87% CAF | [32] |
LaFeO3/lignin-biochar (LFO/LG) | Ofloxacin (OFX) | 250 mg/L | 30 mg/L | 75 | Visible light, addition of H2O2 | Production of •OH | 95.60% | [33] |
CeO2/C gas diffusion electrode (GDE) | Dipyrone | - | 100 mg/L | 20 | - | Production of •OH | 100% | [34] |
FeCeOx | Diclofenac | 0.5 g/L | 20 mg/L | 40 | pH = 5, addition of H2O2, ambient temperature | Production of •OH | 83% | [35] |
CeO2 nanosheets doped with Fe | Salicylic acid | 250 mg/L | 50 mg/L | 120 | Addition of H2O2, pH = 4, T = 55 °C | Production of superoxide radicals (O2−/HOO) | 96% by 2wt% Fe-CeO2 | [36] |
CeOx modified graphite felt | Carbamazepine | - | 10 mg/L | 60 | pH = 5, T = 25 °C | Production of •OH | 69.40% | [37] |
Sponge-like structure of Co- and Gd-modified biochar (MBC) | Ciprofloxacin (CIP)/Tetracycline (TC) | 1.1 g/L | 20 mg/L | 180 | pH = 9 | - | 99% of CIP or TC | [38] |
Er2FeSbO7/BiTiSbO6 heterojunction (EBH) catalyst | Enrofloxacin (ENR) | 0.75 g/L | 0.025 mM | 150 | Visible light, T = 20 °C, | Production of •OH | 99,16% | [39] |
FeOCl doped with Y or LA | Ibuprofen | 0.5 g/L | 5 mg/L | 20 | Neutral pH, addition of H2O2, room temperature, dark | Production of •OH | 84–82% by 0.9wt% FeOCl/La and 1.2wt% FeOCl/Y, respectively | [40] |
Gd doped BiFeO3 nanoparticles (BGFO) | Ciprofloxacin (CIP)/Levofloxacin (LFX) | - | - | 240 | Solar illumination | Production of O2− | 80%/79% | [64] |
Catalyst Doped REE | Target | Dose of Catalyst | Dose of Target | Time (min) | Conditions | Proposed Mechanism | Removal (%) | Reference |
---|---|---|---|---|---|---|---|---|
La–Fe MMT | Rhodamine B (RhB)/Methylene Blue (MB) | 1 g/L | 100 mg/L | 60 | Neutral pH, addition of H2O2 | Production of •OH | 97% MB 96% RhB | [40] |
Tungsten oxide composites (WO3) doped with La, Gd, or Er | Organic dyes | 300 mg/L | - | 90 | Visible light, | Production of O2− | 98% for MB and >90% for MT, MO, TC and CV by 2% Gd-doped WO3 | [42] |
FeAl/Ce-Mts and FeAl/La-Mts | Reactive Blue 19 | 0.5 g/L | 0.12 mM | 180 | Sunlight, addition of H2O2, pH = 3.0 | Production of •OH | 100% by FeAl/Ce1.0-Mt and 99.7% with FeAl/La1.0-Mt | [43] |
CoFe2O4 doped with La or Ce | Remazol black 5, remazol brilliant yellow, o-nitrophenol, m-nitrophenol (MNP) and p-nitrophenol | 0.5 g/L | - | ott-30 | Visible light, room temperature, pH = 2.5, addition of H2O2 | Production of •OH | - | [44] |
Nanoceria doped with Cu, Fe, Zr, Dy or La | MB | 80 mg/L | 55.2 mg/L | 420 | pH = 9.6, T = 27 °C, UV light | Production of •OH | >99% by CuO/CeO2 | [45] |
Cu-Mn/CeO2/SBA-15 | RhB | 200 mg/L | 2 g/L | 210 | pH = 7.0, addition of H2O2, atmospheric pressure and constant temperature | Production of •OH | 0.99 | [46] |
Ce4+-TiO2 sol and nanocrystallites | Brilliant red dye (X-3B) | 1 g/L | 100 mg/L | 120 | Visible light | Production of •OH and O2− | 83.1% by Ce4+-TiO2 nanocrystallines and 99.9% by Ce4+-TiO2 sol | [47] |
Cu/zeolite Y | Congo red (CR) | 1 g/L | 0.143 mM | 150 | Addition of H2O2, pH = 7.0 | Production of •OH | 93.58% by 7.5wt% Cu | [48] |
PrFeO3 | Methyl violet (MV) | 250 mg/L | 23.2 mg/L | 60 | Addition of H2O2, visible light | Production of •OH | - | [50] |
PrFeO3/CeO2-based nanocomposites | MV | 250 mg/L | 23.2 mg/L | 30 | Visible light, addition of H2O2 | Production of •OH | 80.1% by 9 wt% CeO2 | [51] |
Pr-CdWO4 NPs | Remazol Black B | 350 mg/L | 100 mg/L | 100 | pH = 3.0, T = 25 °C, addition of enhancers | Production of •OH | 93.90% | [52] |
ZnO nanoneedles doped with Nd | MB | 5 g/L | 10−5 M | 300 | UV light | Production of O2− | 92% by 1% Nd-doped ZnO | [53] |
LaFeO3 perovskites doped with Eu, Gd, Dy, or Nd | Safranine-O and remazol brilliant yellow | 0.5 g/L | 15 mg/L SO and 60 mg/L RBY | 20, 35, 35, 20 | Visible light, pH = 2.0, adding H2O2 | Production of •OH | More than 90% | [54] |
ZnFe2O4 nanocrystals doped with Sm | MB | 0.1 g/L | 1 mg/L | 60 | Visible light | Production of •OH | 65% by 2 wt% Sm | [55] |
Sm doped CeO2 nanoparticles | Rose bengal dye | 1 g/L | 5 mg/L | 90 | UV light | Production of •OH | 84% by 4 wt% Sm and 89% by 6 wt% Sm | [56] |
Eu-N co-doped TiO2/Sepiolite NCs | Orange G | 0.8 g/L | 10 mg/L | 540 | Visible light, pH = 3.0 | Production of •OH | More than 98% by 0.6 wt% Eu | [58] |
Eu3+–TiO2 | RhB | 2 g/L | 10−5 M | 30 | UV light | Formation of a complex between the doped lanthanide ions and substrates | 96% | [59] |
Eu2+–TiO3 | MB | 0.125 M | 2 × 10−5 M | 60 | UV light, pH = 8.3 | Induced surface plasmon resonances | - | [60] |
Eu2+,3+−BiVO4 | Methyl orange (MO) | 2 g/L | 10 mg/L | 180 | Visible light | Trapping of photogenerated electrons in the catalyst by Eu dopant | 93.6% by 1.46 wt% Eu | [61] |
EuFeO3 NPs | RhB | 1 g/L | 5 mg/L | 180 | Visible light, room temperature, addition of H2O2 | Production of •OH | 71% | [62] |
Gd doped BiFeO3 NPs (BGFO) | RhB/MB | - | 240/180 | Solar illumination | Production of O2− | 96%/97% | [64] | |
Sn-Gd2O3 NPs | 4-NP, 2,6-DNP, 2-NP, MB, MO and CR | 8 g/L | 0.07 mM | 18 | Addition of NaBH4 | Electron transfer from the catalyst to the dye | - | [65] |
ZnFe2O4 nanocrystals doped with Dy | MB | 1 g/L | 20 mg/L | 45 | Visible light, addition of H2O2 | Production of •OH | 97.30% | [66] |
Er3+–TiO2 | Orange I | 1 g/L | 6 × 10−5 M | 60 | T = 25 °C, UV light or visible light, pH = 7.0 | Production of •OH | About 100% under UV and about 80% under visible light by 1.5 wt% Er | [70] |
Heterojunction h-YbFeO3/o-YbFeO3 | MV | 125 mg/L | 0.25 mM | 180 | Visible light, addition of H2O2 | Production of •OH | 64% | [72] |
Yb/Er/Pr-Bi2WO6 catalyst | CR/TC/RhB/MB | 1 g/L | - | 60 | Visible light | Reactive oxide species production and photocarrier separation | 90.2%/52.3%/95.5%/64.6% | [73] |
BiVO4 composites doped with Ln2O3 (Ln = Sm, Eu, or Tb) | RhB | 1 g/L | 10 mmol/L | 210 | Visible light, 25 °C | Production of •O2−, holes in the valence band (h+), and •OH | 55.1%, 51.8%, and 57.3% by 2% Sm2O3/BiVO4, 2% Eu2O3/BiVO4, and 10% Tb2O3/BiVO4, respetively | [74] |
Y-Bi2WO6 photocatalyst | RhB | 1 g/L | 0.01 mM | 240 | Visible light | Production of holes (h+) and O2− | 85% by 1% Y-Bi2WO6 | [49] |
Gd/Pt-Bi2MoO6 composites | RhB/TCs | 1 g/L | 12 mg/L RhB/20 mg/L TCs | 80 for RhB and 90 for TCs | UV visible light | Production of •O2−, holes in the valence band (h+), and •OH | 95% of RhB and 77.6% of TCs by 2%Gd/2%Pt-Bi2MoO6 | [67] |
Eu-doped Bi2WO6 composites | RhB | 1 g/L | 10 mg/L | 60 | Visible light, 25 °C, addition of H2O2 | Production of OH radicals | 98% | [63] |
Ln1/Ln2 co-doped Bi2MoO6 photocatalysts (Ln1/Ln2 = Tb/Eu, Dy/Sm, Er/Nd) | RhB | 1 g/L | 12 mg/L | 240 | UV visible light | Production of OH, holes (h+) and superoxide radicals O2− | 95.9% by 3%Tb/3%Eu, 98.5% by 3%Dy/3%Sm and 91.6% by 2%Er/2%Nd | [75] |
Gd3+ doped Bi2MoO6 nanoplate crystals | RhB | 0.5 g/L | 20 mg/L | 10 | Visible light, 20 °C | Production of OH and holes (h+) | 84% by 6%Gd/Bi2MoO6 | [68] |
Gd3+/TiO2 and Gd2O3/TiO2 NPs | MV/RhB | 0.2 g/L for MV and 0.1 mg/L for RhB | 25 mg/L/30 mg/L | 60 | UV visible light | Production of •O2−, holes in the valence band (h+), and •OH | 97.9% by 2.5% Gd3+/TiO2 | [69] |
Sm-doped Bi2MoO6 photocatalyts | RhB | 0.2 g/L | 5 mg/L | 50 | Visible light | Production of •O2− and holes (h+) | 89% by 0.8% Sm-doped Bi2MoO6 | [57] |
Catalyst Doped REE | Target | Dose of Catalyst | Dose of Target | Time (min) | Conditions | Proposed Mechanism | Removal (%) | Reference |
---|---|---|---|---|---|---|---|---|
Ti-LaFeO3 | Carbofuran | 700 mg/L | 7 mg/L | 180 | Adding H2O2, pH = 3.0 | Production of •OH | 91% | [76] |
Ti-substituted LaFeO3 | 4-Chlorophenol | 0.5 g/L | 25 mg/L | - | Circumneutral pH, ambient atmospheric pressure and temperature, UV-A light, addition of H2O2 | Production of •OH | 100% by 3.2% Ti | [77] |
Fe3O4-CeO2 | Catechol | 1 g/L | 10 mg/L | 60 | Adding H2O2, room temperature, pH = 2.4 | Production of ROS | 100% by Fe3O4-CeO2 (15 wt%) | [79] |
Ce-Sm, Ce-La, Ce-Zr | Oxalic acid/Aniline/C.I. Reactive Blue 5 | - | C0,oxalic acid = C0,aniline = 1 mM, C0,dye = 50 mg L−1 | 180/30/15 | pH0,oxalic acid ≈ 3.0, pH0,aniline ≈ 6.5, pH0,dye ≈ 5.5, constant gas (oxygen + ozone) flow rate and constant inlet ozone concentration, 25 °C | Production of •OH | 100% of oxalic acid with more than 25% of Sm, La or Zr/100% of aniline by Ce0.75Zr0.25O2/100% by Ce0.75Zr0.25O2 | [80] |
Fe3O4/CeO2 composite | 4-Chlorophenol | 2 g/L | 0.78 mM | 90 | Addition of H2O2, T = 30 °C, pH = 3.0 | Production of •OH | 100% | [81] |
ZnO nanoparticles doped with Ce | Cyanide | 4 g/L | - | 60 | UV-A light or natural sunlight, pH = 12.5 | Production of •OH | - | [84] |
Sm/ZNRs | Phenol | 1 g/L | 20 mg/L | 480 | Visible light, room temperature | Production of •OH radicals | 89.5% by 1 wt% Sm/ZNRs | [85] |
Cryptomelane doped with Eu | Ethanol | 50 mg | - | - | Dark, T = 175–200 °C | Production of O2− | 100% | [86] |
Cerium nanotubes catalysts (CeNTs) | NOx | - | 600 mg/L | 600 | Addition of CH2Cl, 200 °C | Production of •OH | 100% by 10% Nb-CeNTs | [82] |
Gd/Pt-Bi2MoO6 composites | 4-Chlorophenol | 1 g/L | 15 mg/L | 300 | UV visible light | Production of •O2−, holes in the valence band (h+), and •OH | 80% by 2%Gd/2%Pt-Bi2MoO6 | [49] |
Ln1/Ln2 co-doped Bi2MoO6 photocatalysts (Ln1/Ln2 = Tb/Eu, Dy/Sm, Er/Nd) | Phenol | 1 g/L | 15 mg/L | 300 | UV visible light | Production of •O2−, holes in the valence band (h+), and •OH | 76.2%, 79.1% and 70.7% by 3%Tb/3%Eu, 3%Dy/3%Sm and 2%Er/2%Nd, respectively | [75] |
La-doped TiO2 photocatalyst | Acetone/NO | - | 1000 ppb/500 ppb | 30 | UV visible light | Production of •O2− and •OH | 38% of acetone and 98% of NO by 0.5%La-TiO2 | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saviano, L.; Brouziotis, A.A.; Padilla Suarez, E.G.; Siciliano, A.; Spampinato, M.; Guida, M.; Trifuoggi, M.; Del Bianco, D.; Carotenuto, M.; Romano Spica, V.; et al. Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review. Molecules 2023, 28, 6185. https://doi.org/10.3390/molecules28176185
Saviano L, Brouziotis AA, Padilla Suarez EG, Siciliano A, Spampinato M, Guida M, Trifuoggi M, Del Bianco D, Carotenuto M, Romano Spica V, et al. Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review. Molecules. 2023; 28(17):6185. https://doi.org/10.3390/molecules28176185
Chicago/Turabian StyleSaviano, Lorenzo, Antonios Apostolos Brouziotis, Edith Guadalupe Padilla Suarez, Antonietta Siciliano, Marisa Spampinato, Marco Guida, Marco Trifuoggi, Donatella Del Bianco, Maurizio Carotenuto, Vincenzo Romano Spica, and et al. 2023. "Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review" Molecules 28, no. 17: 6185. https://doi.org/10.3390/molecules28176185
APA StyleSaviano, L., Brouziotis, A. A., Padilla Suarez, E. G., Siciliano, A., Spampinato, M., Guida, M., Trifuoggi, M., Del Bianco, D., Carotenuto, M., Romano Spica, V., Lofrano, G., & Libralato, G. (2023). Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review. Molecules, 28(17), 6185. https://doi.org/10.3390/molecules28176185