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Abstract: Natural products play a key role in innovative drug discovery. To explore the potential
application of natural products and their analogues in pharmacology, total synthesis is a key tool that
provides natural product candidates and synthetic analogues for drug development and potential
clinical trials. Deconstructive synthesis, namely building new, challenging structures through bond
cleavage of easily accessible moieties, has emerged as a useful design principle in synthesizing
bioactive natural products. Divergent synthesis, namely synthesizing many natural products from
a common intermediate, can improve the efficiency of chemical synthesis and generate libraries of
molecules with unprecedented structural diversity. In this review, we will firstly introduce five recent
and excellent examples of deconstructive and divergent syntheses of natural products (2021–2023).
Then, we will summarize our previous work on the deconstructive and divergent synthesis of natural
products to demonstrate the high efficiency and simplicity of these two strategies in the field of
total synthesis.
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1. Introduction

Since the synthesis of urea in 1828, humans have opened the door to organic synthesis.
With the development of isolation and identification techniques and organic synthesis
methods, people are pushing the limits of complex molecular synthesis, especially complex
natural products, such as vitamin B12 and anemone toxin. Natural products are the main
source of innovative medicines, such as artemisinin and paclitaxel. From 1981 to 2020,
over 50% of the small molecule drugs approved by the FDA were derived from natural
products or the parent molecular structure of natural products [1]. It can be seen that
innovative drug development based on active natural products has played a crucial role
in the field of original drug research and development. However, active natural products
are often very scarce in nature and have low direct druggability. Therefore, research on
the total synthesis of active natural products can not only solve the problem of limited
natural resources and prepare a large amount of active natural products but also enable
the rapid synthesis of natural product analogues with diverse skeletons and functional
groups, building a natural product-like compound library to conduct extensive biological
activity screening and drug development research. It has important scientific significance
and potential application value in the field of natural product synthesis and new drug
development. Thus, the development of practical synthetic methods and efficient synthetic
strategies in natural product total synthesis has always been an active field in organic
synthesis and has attracted great attention from synthetic chemists.

Deconstructive synthesis, namely building new (and often more challenging) struc-
tures through bond cleavage and the formation of easily accessible moieties, has emerged
as a useful design principle in preparing complex bioactive natural products and other
target molecules [2]. The basic logic of deconstructive synthesis is to construct a “hardly

Molecules 2023, 28, 6193. https://doi.org/10.3390/molecules28176193 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28176193
https://doi.org/10.3390/molecules28176193
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0009-0006-7188-9443
https://doi.org/10.3390/molecules28176193
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28176193?type=check_update&version=3


Molecules 2023, 28, 6193 2 of 15

accessible” skeleton from an “easily accessible” skeleton through skeletal reorganization.
Meanwhile, the rapid construction of polycyclic molecular frameworks, the precise instil-
lation of multi-stereocenters bearing crowed quaternary carbon centers, and the efficient
induction of versatile functional groups should also be highlighted. It also facilitates the
continuous modification of key advanced intermediates to improve the overall efficiency
of the synthetic route. The subtlety of deconstructive synthesis often lies in its creative
approach of building intricate molecular frameworks, resulting in the design of easily
accessible intermediates that could significantly reduce the challenge of total synthesis. The
development of deconstructive synthesis strategies is often inspired by the molecular struc-
tural characteristics of natural products, which also tests the creativity and personalized
perspective of synthetic chemists.

Divergent synthesis, in short, involves working from one common intermediate to
many natural products (Figure 1). In general, a class of natural products often shares a sim-
ilar chemical structure with various functional groups or different molecular frameworks
that can be constructed from a common intermediate in biosynthesis. The original defini-
tion of divergent synthesis was proposed and demonstrated by Boger in 1984 (Scheme 1) [3].
“Divergent” is defined as a common intermediate (preferably an advanced intermediate)
being converted, separately, to at least two natural products. Applications of divergent
synthesis include not only preparing molecules in the same family but also accessing
natural products that have the same molecular skeletons from different families. Divergent
total synthesis, also defined as “collective total synthesis” by MacMillan, is when multiple
skeletons of natural products are prepared from a versatile common intermediate [4].
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Compared with linear synthesis that can only achieve one natural product at a time,
the divergent strategy provides a more efficient approach to access many natural products
with similar or different molecular skeletons from a versatile molecule through a number
of routine chemical operations. In addition, the divergent synthesis of natural products
is also more conducive to building a natural-product-like compound library to conduct
more biological activity screening and innovative drug development based on the bioactive
natural products.
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The application of both strategies requires organic chemists to be familiar with the
skeleton, functional group, oxidation state, and other characteristics of the target molecules.
One of the most challenging steps is to design a suitable advanced intermediate that can be
easily prepared and quickly converted to as many target molecules as possible. Meanwhile,
the common intermediate should also be close to the target molecule to reduce the total
number of synthesis steps.

During the past decade, many research groups have developed diverse, novel synthetic
methodologies to realize a lot of impressive approaches for the divergent and deconstructive
synthesis of natural products. Previous literature on the divergent strategy in natural
product total syntheses from 2013 to June 2017 has been summarized in Chemical Reviews [5].
Excellent reviews focusing on deconstructive synthesis through rearrangement reactions
already exist, providing more comprehensive perspectives for authors who have interests
in this field [6–12].

In the last three years, many research groups have accomplished a lot of creative
synthetic routes to syntheses of natural products with complex structures and broad
biological activities. In this review, we will first introduce five excellent examples to
demonstrate the synthetic utilities of the deconstructive and divergent strategies in natural
product total synthesis. Then, we will summarize our previous work on the deconstructive
and divergent synthesis of bioactive natural products to demonstrate the high efficiency
and simplicity of these two strategies in natural product total synthesis. After a brief
introduction of the respective bioactive natural products, we will discuss the details of
the synthetic routes and how to combine the deconstructive and divergent strategies
in target molecules.

2. Selected Deconstructive and Divergent Syntheses of Natural Product (2021–2023)

In 2021, the Reisman group from the California Institute of Technology reported
the divergent total syntheses of three C19 diterpenoid alkaloids: (−)-talatisamine, (−)-
liljestrandisine, and (−)-liljestrandinine from phenol (Scheme 2a) [13]. The highlights of
this work include (1) a 1,2-addition/semipinacol rearrangement sequence to efficiently
couple two complex fragments and construct the quaternary carbon center and (2) an
intramolecular aziridination and radical cyclization to assemble the pentacyclic skeleton of
the target alkaloids.

In 2022, the Ma group from the Shanghai Institute of Organic Chemistry reported an
asymmetric divergent approach to the total synthesis of six napelline-type C20-diterpenoid
alkaloids in a convergent manner (Scheme 2b) [14]. The highlights of this work include
(1) a diastereoselective intermolecular Cu-mediated conjugate addition to couple the two
fragments; (2) an intramolecular Michael addition reaction to construct the tetracyclic
skeleton; and (3) an intramolecular Mannich cyclization to rapidly construct the azabicyclo
[3.2.1] octane motif of the target molecules.
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In 2023, the Fan group from Lanzhou University published a deconstructive and
divergent synthesis of nine C8-ethano-bridged diterpenoids based on late-stage skeletal di-
versification in the longest linear 8 to 11 steps starting from readily available chiral materials
(Scheme 2c) [15]. Crucial advanced intermediates with different structural skeletons were
rapidly constructed through regioselective and diastereoselective metal-hydride hydro-
gen atom transfer (MHAT) cyclization from the multi-reactivity of densely functionalized
polycyclic substrates.

In 2022, the Ding group from Zhejiang University developed deconstructive and diver-
gent syntheses of eight tetraquinane diterpenoids through a HAT-initiated Dowd−Beckwith
rearrangement reaction for the efficient assembly of diversely functionalized polyquinane
frameworks (Scheme 2d) [16].

In 2023, the Ding group finished the deconstructive and divergent syntheses of nine
grayanane diterpenoids that belong to five distinct subtypes from a common advanced
tetracyclic intermediate which was prepared through a tandem intramolecular oxidative
dearomatization-induced (ODI) [5 + 2] cycloaddition/pinacol rearrangement to construct
[3.2.1]-bicyclic skeleton and a photosantonin rearrangement to assemble the 5/7 bicyclic
framework (Scheme 2e) [17].

3. Divergent Syntheses of Fawcettimine-Class Lycopodium Alkaloids

Lycopodium alkaloids are structurally complex natural products with quinolizine, pyri-
dine, or α-pyridone, originally identified in the Lycopodium genus. Lycopodium alkaloids
exhibit important biological activities. For example, Huperzine A is a potent inhibitor
of acetylcholinesterase (AChE) and shows promise in the treatment of Alzheimer’s dis-
ease (AD). The fawcettimine-class Lycopodium alkaloids are a class of structurally unique
alkaloids with complex and unique skeletons bearing quaternary carbon centers, such
as fawcettimine (1); fawcettidine (2); lycojaponicumins C (3); and 8-deoxyserratinine
(4) (Scheme 3) [18]. In particular, lycojaponicumins C (3), isolated by Yu and co-workers in
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2012 from the traditional Chinese medicine Lycopodium japonicum, exhibits lipopolysaccha-
ride (LPS)-induced pro-inflammatory factors in BV2 macrophages [19]. The fawcettimine-
class Lycopodium alkaloids feature fused tetracyclic skeletons, including two common
cis-hydroindene (6/5 bicycle) motifs and two diverse ring systems bearing quaternary
carbon centers. The Lycopodium alkaloids have attracted great attention from synthetic
chemists and medicinal chemists for their unique chemical structures and broad biological
activities. During the past decade, several elegant approaches for the total synthesis of
Lycopodium alkaloids have been reported [20].
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In 2013, Tu’s group reported a creative approach to divergent synthesis of four
fawcettimine-class Lycopodium alkaloids, namely, fawcettimine (1), fawcettidine (2), ly-
cojaponicumins C (3), and 8-deoxyserratinine (4) [21]. In this work, the authors designed a
common intermediate which can transform to alkaloids 1–4 in a divergent manner. Mean-
while, a practical methodology to quickly construct the cis-hydroindene skeleton was
designed and developed to demonstrate that natural product total synthesis can promote
the development of novel synthetic methodologies and synthetic strategies.

After optimization of the Mukaiyama–Michael addition conditions, coupling of two
simple building blocks 5 and 6 was realized in the presence of triflimide to afford silyl
ether 7 with excellent yield and high diastereoselectivity (Scheme 4). Then, Cu(tbs)2-
catcalyzed carbene cyclization designed by our group was successfully conducted, and
decarboxylation of the resulting cyclization product provided the desired ketone 9 with a
cis-6/5 bicyclic skeleton and a quaternary carbon center with a 55% yield [22]. The bicycle
9 could also be scalable prepared with good yield by using a one-pot operation. Notably,
this novel methodology offers an efficient way to construct the cis-6/5 bicyclic skeleton
from simple building blocks which can apply to the total synthesis of other complex
natural products. Then, Dickmann condensation of the ketone ester 9 gave an enolate
of tricyclic trione 10, which in situ reacted with π-allylpalladium complex to deliver the
tricyclic compound 11 with angular 6/5/5 tricyclic molecular framework bearing two
quaternary carbon centers. Selective protection of the ketone on the six-membered ring
and hydroboration of the terminal double bond of 11 gave the desired alcohol 12, which
could readily be converted into the common intermediate, the tricyclic azide 13, through
the Mitsunobu reaction.

The tricyclic azide 13 possesses an angular 6/5/5 tricyclic framework, two contiguous
quaternary carbon centers, two carbonyl groups, and an azide chain and can serve as a
versatile common intermediate to divergent synthesis alkaloids, namely, fawcettimine (1),
fawcettidine (2), lycojaponicumins C (3), and 8-deoxyserratinine (4), via the deconstructive
strategy. On the one hand, the regioselective aza-Wittig reaction and reduction of 13 yielded
tetracyclic amine 14, which was transformed to (−)-lycojaponicumins C (1) through several
chemical operations to install the double bond and N-methyl group of the target molecule
(Scheme 5). On the other hand, the regioselective Schmidt rearrangement of 15, obtained
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from deprotection of 14, was realized and provided the desired tetracyclic lactam 16 in a
useful synthetic yield. Treatment of 16 with Lawesson’s reagent followed by a reduction
of the resulting sulfo-lactam with Raney Ni gave tetracyclic amine 17 with a 66% yield.
Then, a late-stage skeletal diversification of tetracyclie 17 was conducted to synthesize three
alkaloids with different skeletons. Thus, compound 17 could divergently transform to the
following: (−)-8-deoxyserratinine (4) via selective NaBH4-reduction; (+)-fawcettimine (1)
under an SmI2/THF reductive condition via selective C4-N cleavage/aza-ketalization; and
(+)-fawcettidine (2) under a Zn /HOAc harsh reductive condition via C4-N cleavage/aza-
ketalization/dehydration.
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In this work, the Tu group have explored a divergent and deconstructive strategy for
the total syntheses of four fawcettimine-class Lycopodium alkaloids, namely, fawcettimine (1,
10 steps), fawcettidine (2, 12 steps), lycojaponicumins C (3, 12 steps), and 8-deoxyserratinine
(4, 12 steps) from simple building blocks 5 and 6. A major innovation of this strategy
involved the design of a versatile common intermediate 13, which can synthesize not only
the fawcettimine-class Lycopodium alkaloids but also other complex natural products. Other
highlights of this work include (i) two consecutive one-pot procedures to rapidly assemble
the angular 6/5/5 tricyclic framework bearing two contiguous quaternary carbon centers at
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the early stage; (ii) a highly regioselective aza-Wittig reaction, Schmidt rearrangement, and
selective C4-N cleavage to construct the differently sized rings of target natural products
for late-stage skeletal diversification.

4. Deconstructive Syntheses of Cyclopiane Class Tetracyclic Diterpenes

The Cyclopiane class tetracyclic diterpenes are a class of unique bioactive natural
products isolated from fermentation of marine-derived entophytic fungi of the Penicil-
lium genus [23–25]. Conidiogenone (19) and conidiogenol (20) exhibit potent conidiation-
inducing activity, while conidiogenone B (21) shows high antibacterial activities (Figure 2).
The structures of the Cyclopiane class tetracyclic diterpenes feature a highly fused and
strained tetracyclic (6/5/5/5) skeleton, 6–8 consecutive chiral centers, and four steri-
cally hindered quaternary carbon centers. The Cyclopiane-class tetracyclic diterpenes
have attracted great attention for their unprecedented chemical structures and impor-
tant biological activities. During the past decade, several elegant approaches for the total
syntheses of Cyclopiane class tetracyclic diterpenes have been reported [26–29]. The first
total syntheses of three Cyclopiane class tetracyclic diterpenes, namely, conidiogenone (19),
conidiogenol (20), and conidiogenone B (21), was accomplished by the Tu group in 2016
through the use of a well-designed semipinacol rearrangement as a key step to construct
the requisite spirocyclic (6/5) skeleton and sterically hindered quaternary carbon center of
the target molecules [26].
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This work started with the preparation of enantioenriched cyclobutanone 25 that
was obtained via chiral resolution of racemic 25, which was prepared in two steps from
simple building blocks 22 and 23 via 1, 4-addition, and [2 + 2] cyclization (Scheme 6).
The well-designed vinyl cyclobutanol silylether precursor 27 was successfully synthe-
sized by coupling known vinyl bromide A and phenylthiol-cyclobutanone 26, which was
obtained from enantioenriched 25 and phenyl disulphide in the presence of LDA. The
phenylthioether group was firstly introduced to adjust the electron density of expected
carbon in semipinacol rearrangement, aiming to enhance a dominated migration of the
expected carbon of the rearrangement precursor 27. Fortunately, under the BF3·OEt2/DCM
condition, the expected semipinacol rearrangement occurred and provided the desired
spirocyclic product 28 bearing the correct quaternary carbon center with an 80% yield
and with a ratio of 1.2:1 at the C9 position. The structure and stereocenters of 28 were
confirmed via X-ray crystallographic analysis of its derivative 32 (vide infra). After serval
chemical operations, the last five-membered ring of the target molecule was successfully
constructed via acid-promoted Aldol cyclization of aldehyde, which was obtained from
terminal olefin 31 through Ozonization. After removal of the unnecessary functional group
on the triquinane (5/5/5 tricyclic) motif, tetracycle 35 was obtained with a high yield.
Then, stereoselective installation of a methyl group in the presence of LDA and LiAlH4
reduction of the resulting ketone, followed by quenching with HCl aqueous solution to
install the enone motif, provided conidiogenone B (21) with a 70% yield. However, the
positive optical rotation and CD spectrum data of synthetic conidiogenone B were opposite
to those of the natural occurring one. Thus, the correct absolute configuration of naturally
occurring conidiogenone B (21) is, in fact, the enantiomer of the originally assigned abso-
lute configuration. Meanwhile, stereoselective epoxidation of conidiogenone B, followed
by reduction of the resulting epoxide with NaSePh, afforded conidiogenone (19) with a
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54% yield over two steps. Finally, diastereoselective reduction of conidiogenone (19) with
L-selectride gave another diterpene conidiogenol (20) with a 77% yield.
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In this work, the Tu group achieved the first total synthesis of the cyclopiane class
tetracyclic diterpene conidiogenone B and its transformation into conidiogenone and
conidiogenol by installing a SPh “directing” group on the expected migratory carbon of
the precursor to perform regio- and diastereo-selective semipinacol-type rearrangement.
The absolute configuration of naturally occurring conidiogenone B (21) is also corrected
through this synthesis. More importantly, the 6/5/5 tricyclic ring system of the target
molecule was rapidly constructed via well-designed semipinacol rearrangement in one
step, which not only constructed a crowded ring system bearing a quaternary carbon center
but also reserved versatile functional groups for the introduction of the last ring and vicinal
quaternary carbon center (C9), making the synthetic route more pretrial and efficient.

5. Asymmetric Total Syntheses of Serrulatane and Amphilectane Diterpenoids

Serrulatane and amphilectane diterpenoids are a class of polycyclic natural products
that exhibit broad biological activities, such as anti-malarial, anti-tuberculosis, and anti-
bacterial properties. (Figure 3). (−)-Microthecaline A (37) is a unique nitrogen-containing
serrulatane-type diterpenoid that exhibits anti-malarial activity against Plasmodium falciparum
(IC50 = 7.7 µM) [30]. (−)-Leubethanol (38) is a serrulatane diterpene isolated from the roots of
Leucophyllum frutescens with important anti-tuberculosis activity (MIC 6.25–12.50 µg/mL) [31].
Because of their wide-ranging biological activities and challenging structures, synthesis of
serrulatane and amphilectane diterpenoids have attracted great attention from synthetic
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chemists, and several total syntheses have been accomplished in the past decade. In 2020,
the Dong group developed a divergent and innovative approach to quickly access diverse
serrulatane diterpenoids, namely, (−)-microthecaline A (37), (−)-leubethanol (38), (+)-seco-
pseudopteroxazole (39), amphilectane diterpenoids (+)-pseudopteroxazole (40), (+)-pseudopt
erosin G–J aglycone (41), and (−)-pseudopterosin A–F aglycone (42), by using a Rhodium
catalytic C–C/C–H cascade reaction to construct the common skeleton, α-tetralone [32].
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In this work, asymmetric Rhodium-catalyzed 1,4-addition was applied to the prepara-
tion of the enantioenriched 3-arylcyclopentanone 45, which was the precursor of the C–C
activation reaction (Scheme 7). Compound 45 could be conveniently accessed with a 87%
yield with 95% ee through asymmetric 1,4-addition of 2-cyclopentenone with fresh prepared
arylborate salt 44, which was obtained from commercially available 1-bromo-2-methoxy-4-
methylbenzene 43 and B(OMe)3 in the presence of n-BuLi. Under the previously reported
C–C/C–H activation conditions, the desired α-tetralone 46 was obtained with a 76% yield
and 92% ee. Aniline 47 was isolated with a 79% yield from 46 through Kurti/Falck’s
Rhodium-catalyzed amination. The quinoline 49 was prepared via Friedländer conden-
sation of aniline 47 and aldehyde 48 in the presence of (PhO)2PO2H with an excellent
yield. Finally, removal of the methyl group by NaSEt provided (−)-microthecaline A (37)
with a 91% yield. Meanwhile, α-tetralone 46 could also convert into carbamate 50 through
Noyori asymmetric reduction and carbamoylation of the resulting alcohol. Notably, under
Aggarwal’s lithiation-borylation reaction condition, compound 52 was obtained with a 66%
yield by coupling the freshly prepared chiral organoborane 51 with carbamate 50. Finally,
removal of the methyl group with NaSEt gave (−)-leubethanol (38) with an 80% yield.

Using the synthetic route of preparation of compound 52, the common advanced
intermediate 58 was obtained from aryl boronic acid 53, 2-cyclopentenone, and chiral
organoborane 51 in five steps with a 30% overall yield (Scheme 8). Then, a direct cross-
dehydrogenative-coupling (CDC) of 58 was realized under o-chloranil/MeCN conditions
to afford the desired tricyclic cyclization products 59 and 60 with a 40% combined yield
with a ratio of 1.4:1. Finally, (+)-seco-pseudopteroxazole (39) and (+)-pseudopteroxazole (40)
were synthesized from 58 and 59 via deprotection and one-pot oxidative oxazole formation,
respectively. Pseudopterosin G–J aglycone (41) and (−)-pseudopterosin A–F aglycone (42)
were prepared from 59 and 60 through deprotection, respectively.

In this work, the use of catalytic C–C/C–H activation of 3-arylcyclopentanones as
a key step has been illustrated in the enantioselective total synthesis of a range of diter-
penoids, namely, (−)-microthecaline A (37, five steps), (−)-leubethanol (38, six steps),
(+)-seco-pseudopteroxazole (39, seven steps), (+)-pseudopteroxazole (40, eight steps), (+)-
pseudopterosin G–J aglycone (41, eight steps), and (−)-pseudopterosin A–F aglycone (42,
eight steps). This strategy can accelerate asymmetric construction of the poly-substituted
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tetrahydronaphthalene cores, therefore significantly simplifying the overall synthesis. This
is a nice example of the design of common advanced intermediates for divergent synthesis
of two classes of bioactive natural products through a deconstruction strategy. With the
power of the new synthetic methodology and strategy, the synthetic approach to these
diterpenoids is significantly shorter than that in previous work, which could remark-
ably accelerate the investigation of their potential as drug candidates in drug discovery
and development.
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6. Deconstructive Synthesis of Morphine Alkaloid (−)-Thebainone A

Morphine and codeine have attracted great attention for their powerful biological
activity and medical applications (Figure 4). Modification of the morphine alkaloids is still
an active field in drug discovery. Therefore, developing a new asymmetric synthetic route
of morphine alkaloids and their analogues is highly desirable for exploring their potential
utilities in drug discovery and development. In 2021, the Dong group reported a concise
enantioselective deconstructive synthesis of the morphine alkaloid thebainone A for the
first time, as well as formal synthesis of codeine and morphine from commercially available
materials [2,33]. The high efficiency of the synthetic strategy is enabled by an asymmetric
Rh-catalyzed C–C activation reaction (cut-and-sew) to access the all-carbon fused-rings
structure and quaternary carbon center.
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present in the natural products. Compound 71 transformed into styrene 72 with a 78% 
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bromide 73. Then, a one-pot sequence of ketal installation and SN2 amination of alkyl 
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According to the previously synthetic route, benzocyclobutenone 67 was prepared
from commercially available compound 65 in three steps on a decagram scale with a 70%
overall yield, while alcohol 69 was accessed through Birch reduction and ketal formation
of commercially available anisole 68 (Scheme 9). Mitsunobu coupling of phenol 67 and
alcohol 69 delivered the desired precursor 70 with a 93% yield. Because of the acid-sensitive
ketal, sterically hindered trisubstituted olefin, and relatively long linker of compound 70,
the efficiency of C–C activation is a challenge. After screening a series of C–C activation
reaction conditions, we successfully realized Rh-catalyzed enantioselective C–C activation
and obtained the desired tetracyclic compound 71 with a 76% yield with 97:3 er on a
gram scale. Notably, compound 71 contains the all-carbon fused 6/6/6 rings bearing the
quaternary carbon centers of the target molecules. This step not only sets the requested
stereochemistry at the C13 and C14 positions but also forms all the C−C bonds present
in the natural products. Compound 71 transformed into styrene 72 with a 78% yield via
LAH-reduction, elimination, and deprotection. Cleavage of the C−O bond with BBr3,
followed by methylation of the resulting diphenol provided the desired alkyl bromide
73. Then, a one-pot sequence of ketal installation and SN2 amination of alkyl bromide
smoothly delivered sulfonamide 74, which could provide the common intermediate 75
through formal hydroamination under a sodium naphthalenide condition to construct
the piperidine and selectively deprotect the more sterically hindered methyl ether in the
presence of NaSEt. The common intermediate 75 could not only transform into morphine
alkaloid (−)-thebainone A (64) through desaturation under Stahl’s condition but also serve
as a known precursor for the syntheses of codeine (61) and morphine (62) [13].

In this work, the Dong group developed a novel strategy for the synthesis of the
morphine alkaloid (−)-thebainone A (67). Key steps included (i) construction of the all-
carbon 6/6/6 tricyclic skeleton bearing a quaternary carbon center through an asymmetric
Rh-catalyzed C–C bond activation reaction from easily accessible benzocyclobutenone;
(ii) construction of a piperidine ring from dihydropyran through C–O bond cleavage with
BBr3 and C-N bond formation in the presence of sodium naphthalenide. This creative
approach is an excellent example of the application of the deconstructive strategy in the total
synthesis of natural products. Furthermore, a reoptimized catalytic C–C bond activation
condition was also discovered, with good substrate scope and potential application in the
synthesis of other polycyclic natural products.
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Scheme 9. Deconstructive synthesis of morphine alkaloids (−)-thebainone A (67).

7. Conclusions and Future perspective

Divergent and deconstructive synthesis are becoming common and important strate-
gies in the total synthesis of natural products. How to effectively combine the two strategies
has attracted the attention of synthetic chemists, which often results in the two strategies
playing a role of “1 + 1 > 2”, such as bringing greater convenience in the innovative total
synthesis of natural products.

The synthesis of complex natural products has always been a challenging objective in
the Organic Chemistry field. It is exciting to see that more and more complex products, such
as complex alkaloids and terpenoids, are being synthesized in the laboratory. Efficient and
simple synthesis can provide reliable access to natural products thus facilitating innovative
drug discovery and development. We hope that this review will attract more synthetic
chemists to pay more attention to deconstructive and divergent synthesis, and to design
elegant approaches to synthesize more natural products with complex polycyclic structures
and broad biological activities.
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