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Abstract: Porous-activated carbons have drawn great attention due to their important role in CO2

capture. Ni(NO3)2/KOH, as co-catalysts under different temperatures, were studied to obtain porous
graphitized carbon from Sargassum horneri feedstock. The results indicated that the properties of
the porous graphitized carbon generated at 850 ◦C were greatly enhanced, showing a large specific
surface area of 1486.38 cm3·g−1 with narrowly distributed micropores (~0.67 nm) and abundant
functional groups, which endowed high CO2 uptake; moreover, the high CO2 uptake was mainly
attributed to the synergistic effect of Ni(NO3)2 and KOH, both in chemical modification and pore
formation. The fitted values of the four kinetic models showed that the double exponential model
provided the best description of carbon adsorption, indicating both physical and chemical adsorption.
It is worth noting that carbon could be reused four times in the adsorption/desorption procedure
in this research with good stability. This work focuses on the high-value-added comprehensive
utilization of macroalgae, which not only is important for high-performance adsorbent preparation
but also has positive benefits for the development and utilization of macroalgae resources.

Keywords: microporous; KOH; macroalgae; CO2 adsorption

1. Introduction

To alleviate food shortage and meet the world’s energy demands, increasing attention
is being paid to the utilization of various marine biomasses. Macroalgae, a kind of marine
biomass that can be easily cultivated with no need for land or fertilizer, has quick growth
cycles, is of low cost, and is considered a promising and long-term precursor to ensure the
availability of raw materials for large-scale industrial utilizations. Various products are
prepared from macroalgae and applied in fields such as biomedicine and electrochemistry,
the bio-fuel industry, and sewage treatment, and all of these productions have shown good
performance [1–5]; however, to date, it is estimated that <1% of the total marine biomass
has been utilized for human activities, presenting enormous untapped opportunities. Mean-
while, there are also some negative stories about macroalgae. Since 2011, the continuous
explosion of golden tides caused by Sargassum horneri (SH) in West Africa and in the Yellow
Sea of China has ceaselessly destroyed coastal ecosystems, leading to serious economic
loss due to its terrible influence on water quality, ocean transportation, and tourism [6,7].
The Caribbean-wide SH clean-up in 2018 cost USD 120 million, exclusive of the decreased
revenues from the lost tourism. SH biomass strandings can also cause respiratory issues
during their decaying process and other human health problems, such as increased vibrio
bacteria [8]; therefore, it is necessary to take advantage of this emerging abundance of
biomass strandings of SH effectively.

Molecules 2023, 28, 6242. https://doi.org/10.3390/molecules28176242 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28176242
https://doi.org/10.3390/molecules28176242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-9489-7274
https://doi.org/10.3390/molecules28176242
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28176242?type=check_update&version=2


Molecules 2023, 28, 6242 2 of 17

SH is artificially cultivated for aquatic eutrophication restoration due to its superior
absorption capability of metal cations (i.e., Ni2+, Fe3+, and Mg2+) to form metal alginates
(M-alginates) via the alginate polymers on its cell walls. These metal cations have been
proven to be capable of synthesizing special carbon materials with a porous structure,
and they can be easily removed via acid washing after carbonization [9–11]. Meanwhile,
the disordered structure of biochar can be converted to graphitized carbon materials
using metal catalysts at moderate temperatures to form specific functional groups [12,13].
Therefore, it is possible to reduce the amount of additional metals needed, or even eliminate
the need for additional metal entirely, if SH is used as a precursor. On the other hand, SH is
also a kind of protein-rich marine biomass, which means it has abundant nitrogen that can
lead to a self-modulated nitrogen-doping effect. Recently, a new report pointed out that the
nitrogen contents in SH continue to increase [14]. Thus, by choosing SH as a precursor, the
serious economic loss caused by the occurrence of massive golden tides can be avoided, and
this can also give full play to its own advantages in preparing high-value-added products.

Generally, carbon materials prepared via direct carbonization cannot meet the actual
demand. An activation step is always required for the generation of activated carbon
as the chemical process can benefit from the generation of significant porous structures
and considerable function groups on the surface of carbon [15]. Among the common
chemical agents, such as ZnCl2, FeCl3, KOH, K2CO3, and H3PO4, KOH has been widely
used to prepare activated carbon with good performance [16–19]; however, the need for a
massive dose of KOH is still a hindrance to up-scale utilization. Considering that SH is a
high potassium species, it is possible to reduce the amount of KOH to prepare activated
carbon. On the other hand, inspired by the synergistic effect of metal salts and KOH in
carbon activation [12,20], Ni(NO3)2·6H2O was added to obtain a higher yield with more
graphitized carbon materials, to reduce the dosage of KOH needed under lower activation
temperatures to form well-developed porous structures. Meanwhile, it was proven that
Ni(NO3)2 was easier to remove in previous research because it could be decomposed into
Ni oxides, which were subsequently reduced to metallic Ni at elevated temperatures [21,22],
while the transition metals Fe and Co could form FeNx and CoNx composites [23,24] with
the introduction of a N-containing substance.

In this study, SH was selected as the precursor, and a porous graphitized carbon was
synthesized with a fixed Ni(NO3)2/KOH co-catalyst dosage under different activation
temperatures. The activated carbon that was generated was characterized and applied to the
process of CO2 capture. The adsorption performance of CO2 was carefully investigated at
incremental temperatures. The kinetic mechanism underlying the adsorption of CO2 in the
generated porous graphitized carbon was also studied, and the cyclic adsorption/desorption
behavior was assessed to evaluate the composite’s feasibility for long-term application. The
activated carbon generated via Ni(NO3)2/KOH activation from N-and-K-riched macroalgae
opens a new horizon and has great potential application in CO2 capture in the future.

2. Results and Discussion
2.1. Material Characterization
2.1.1. Component Analysis of the Samples

The elemental analysis results of SH with different biomasses are listed in Table 1. As
shown in Table 1, the C content of SH is lower than those of the terrestrial biomasses but
slightly higher than those of other marine biomasses, while the H contents of all biomasses
are similar. Our original intention was to turn carbon precursors from terrestrial biomasses to
marine biomasses and resolve the golden tide effects; therefore, choosing SH from these three
kinds of macroalgae as the carbon precursor is a good decision to obtain a higher carbon yield.
In addition, the N content of SH is the highest among all biomasses, which may provide high-
quality N-doped activated carbons with special surface functional groups that can enhance the
CO2 uptake capacity. This was further verified via FTIR and XPS spectroscopy. It is interesting
that the K content of SH is the highest, reaching 100 times more than that of the terrestrial
biomass Populus wood. Studies have shown that K species can etch carbon frameworks to
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generate a pore network at high temperatures. The formed K plays a vital role in forming a
large specific surface area because it can intercalate into the carbon lattice to make it expand,
which is unable to recover even after the formed K has been washed away [16]. Generally, this
process can be described using Equations (1)–(5). Therefore, SH has the possibility of self-
assembly in this sense. This was confirmed through subsequent comparative experiments.

6KOH + 2C→ 2K + 3H2 + 2K2CO3 (1)

K2CO3 → K2O + CO2 (2)

CO2 + C→ 2CO (3)

K2CO3 + 2C→ 2K + 3CO (4)

K2O + C→ 2K + CO (5)

Table 1. Elemental analysis of SH and other biomasses.

Biomass C (wt.%) H (wt.%) N (wt.%) K (mg·kg−1) Reference

SH 29.25 5.96 3.29 104,007.6 This work
Enteromorpha 27.85 5.53 2.70 92,740 [25]

Laminariadigitata 28.23 3.73 2.31 - [26]
Beech 49.10 5.70 0.15 - [26]

Populus wood 46.61 6.32 0.25 4300 [27]

The elemental compositions of SH, SH-850, and ASH-850 are presented in Table 2.
After Ni(NO3)2/KOH activation, the relative carbon content of the samples significantly
increased from 29.25% to 84.24%, while the nitrogen content exhibited a decrease, which
might be related to the decomposition of unstable nitrogen-containing groups under high
temperatures; however, they could form useful nitrogenous functional groups on the
surface of ASH-850, which could generate more active sites to improve the CO2 adsorption
capacity. In addition, the hydrogen content also decreased, probably because hydrogen
turns into water steam at high temperatures via the oxidizing reaction. These series of
redox reactions can generate a pore network and enhance the porosity of the samples,
which is also helpful for CO2 capture.

Table 2. Elemental analysis of the samples.

Samples C (wt.%) H (wt.%) N (wt.%)

SH 29.25 5.96 3.29
SH-850 81.82 1.37 2.54

ASH-750 76.21 2.36 3.19
ASH-850 84.24 0.92 1.72

2.1.2. Morphological Analysis of the Samples

Figure 1 and Table 3 show the N2 sorption–desorption isotherms of the samples and
their pore-size distribution. It can be seen from Table 3 that SH-850 and ASH-650 both
have a low surface area, while others all have large surface areas of more than 1000 m2·g−1.
Meanwhile, SH-850 still has a surface area of 133 m2·g−1, with an average pore size of
4.3 nm. This demonstrates that SH can self-assemble under the activation process, which
indicates that the dosage of KOH can be reduced. This is consistent with our assumptions.
It is worth mentioning that the surface area of ASH-850 is the highest and that of ASH-750
is the second highest, at 1486 m2·g−1 and 1307 m2·g−1, respectively. It is interesting that the
largest total pore volume of the activated carbon we obtained is 2.27 cm3·g−1 in ASH-750,
which is twice that of ASH-850; however, about only one-third micropore volume was
found in ASH-750, while nearly 80% micropore volume was found in ASH-850. This is
shown in Figure 1a, where we can find all three types (micro-, meso-, and macro-pores)
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of pores in ASH-750, while ASH-850 presents a relatively narrow microporous structure
(~0.67 nm), as shown in Figure 1b. These representative porous structures were further
confirmed using scanning electron microscopy (SEM). The original sample SH has a tubular
pipe shape without any porous structure (Figure 2a). On the other hand, Figure 2b–d
display a completely different morphology, with a high number of holes developed due to
preferential etching by activator KOH in the amorphous portions of carbon. In order to see
the nanostructures more clearly, characterization using transmission electron microscopy
(TEM) was performed, and the results are shown in Figure 2e–i. We can see wrinkled
nanostructures, nano-porous structures, and high graphitic carbon structures. Specifically,
there are wrinkled layers in both samples of ASH-750 and ASH-850 but a diversity of
connected porous structures is found in ASH-750 (Figure 2e,f), and massive micropores
with few macro-porous structures can be seen in ASH-850 (Figure 2h,i). These results
are in good agreement with the data of BET and SEM. In addition, the ASH-850 sample
is composed of filmy carbon layers with about 10 layers being homogeneously stacked
together, and a microporous structure with a narrow size is found in every layer (Figure 2h).
These micropores play a key role in increasing the adsorption of CO2. The main factor is that
the rich, narrow micropores can quickly enhance the interaction energy of CO2 molecules
and adsorbent due to the overlapping of the potential fields from adjacent walls [28].
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Figure 1. N2 adsorption–desorption isotherm results of the samples: (a) whole-pore-size distribution,
and (b) micropore-size distribution.
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Table 3. Textural properties of the samples.

Sample SBET/m2·g−1 Vtotal/cm3·g−1 Vmicro/cm3·g−1 Average Pore Size/nm

SH 0.43 0.01 0.00 21.77
SH-850 133.53 0.14 0.06 4.30

ASH-650 280.81 0.29 0.14 4.11
ASH-750 1307.30 2.27 0.64 6.97
ASH-850 1486.38 0.93 0.74 2.51
ASH-950 1149.20 0.87 0.47 3.04

ASH-1050 1071.41 1.13 0.39 4.20
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Figure 2. SEM and TEM of SH, ASH-750, and ASH-850: (a) SEM of SH; (b) SEM of ASH-750;
(c,d) SEM of ASH-850; (e,f) TEM with different magnifications of ASH-750; and (g–i) TEM with
different magnifications of ASH-850.

2.1.3. Characterization of the Samples Using Fourier-Transform Infrared Spectra

The infrared spectral results are shown in Figure 3. The broad absorption peak between
500 cm−1 and 800 cm−1 corresponds to the N-H deformation vibration. These nitrogenous
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functional groups might originate from the N-riched precursor SH, and they are beneficial
for CO2 capture. Meanwhile, there are absorption peaks near 3430 cm−1 (corresponding to
the O-H stretching vibration of hydroxyl and carboxyl groups) and absorption peaks at
about 1629 cm−1 (corresponding to the C=C bond stretching vibration peak). In addition,
these absorption peaks are stronger in ASH-850 and ASH-750 than in SH-850, leading
to better adsorption performance. This means that Ni(NO3)2/KOH as co-catalysts can
effectively create more functional groups to enhance the adsorption capacity of CO2.
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Figure 3. FTIR spectra of the SH-850, ASH-750, and ASH-850 samples.

2.1.4. Characterization of the Samples Using X-ray Photoelectron Spectroscopy

To clarify the effects of Ni(NO3)2/KOH co-catalysts and activation temperature on
the chemical composition, X-ray photoelectron spectroscopy was performed to investigate
the surface chemical ingredients and analyze the surface functional groups of the SH-850,
ASH750, and ASH-850 samples. Figure 4 shows the full-scan spectra, which indicate that
all samples mainly consist of C, N, and O. The significant changes indicate that not only
activation temperature can regulate the surface composition but it also has a synergistic
effect with the Ni(NO3)2/KOH dose. As shown in Table 4, the relative percentages of
pyridinic-N increased from 14.59% to 17.51%, whereas the relative percentages of pyrrolic-
N gradually decreased from 53.28% to 46.08%, when the activation temperature rose.
On the other hand, the relative percentages of graphitic-N also increased from 18.20%
to 22.62% with a rise in activation temperature, which indicated that higher activation
temperatures could promote graphitization. This is also consistent with the findings of
our previous study [11]. Compared to the SH-850 and ASH-850 samples, the synergistic
effect of Ni(NO3)2/KOH is mainly reflected in the contents of graphitic-N (increased from
16.54% to 22.62%) and oxidized-N (decreased from 19.32% to 13.79%). The increase in
graphitic-N in ASH-850 intensified the spin–orbit coupling structure of the carbon material
because of the charge-compensated n-p co-doping, which overcame the main shortcoming
arising from single-element adsorption in the carbon material. Figure 4 shows the fitted
high-resolution C1s and N1s spectra of these samples. The C1s spectrum was resolved into
five peaks, centered at 284.6 eV, 285.7 eV, 286.8 eV, 288.5 eV, and 290.5 eV, which represent
C-C/C=C, C-N, C-O, O-C=O bonds, and the π-π* shake-up line, respectively. For the N1s
spectrum, four peaks were assigned to pyridinic-N at 398.2 eV, pyrrolic-N at 400.1 eV,
graphitic-N at 401.1 eV, and oxidized-N at 401.9 eV. Compared to the synergistic effect
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of Ni(NO3)2/KOH, the changes in the surface nitrogen-containing functionalities relied
more on the activation temperature (Table 4). As shown in Figure 4, with an increase in
activation temperature, the content of pyrrolic-N decreases while the contents of pyridinic-
N and oxidized-N increase according to the N1s spectrum, implying that pyrrolic-N was
transformed into pyridinic-N and oxidized-N. At the same time, the peak area of C-N is
obviously reduced in the C1s spectrum, which is mainly due to the unstable volatilization
of nitrogen at higher temperatures.

Molecules 2023, 28, x FOR PEER REVIEW 8 of 18 
 

 

 

 

 
Figure 4. XPS paĴerns of the SH-850, ASH-750, and ASH-850 samples. 

Table 4. Content of surface nitrogen species of the samples after fiĴing the N1s peak. 

Sample Pyridinic-N (%) Pyrrolic-N (%) Graphitic-N (%) Oxidized-N (%) 
SH-850 17.39 46.75 16.54 19.31 

ASH-750 14.59 53.28 18.20 13.93 
ASH-850 17.51 46.08 22.62 13.79 

2.1.5. Characterization of the Samples Using X-ray Diffraction 
The XRD paĴerns of the SH-850, ASH-750, and ASH-850 samples are shown in Figure 

4. All samples exhibit two peaks at about 2θ ≈ 24° and 44°, corresponding to the diffraction 
from the (002) planes and (101) planes according to the standard paĴern for carbon. The 
position of this peak is always affected by the activation temperature and catalyst addi-
tion, consequently leading to the expansion of the carbon laĴice, random distribution of 
the aromatic carbon sheets, and decomposition of ordered structures on the surface of the 
carbon laĴice [29]. Figure 4 shows that ASH-850 and ASH-750 both yield a stronger peak 

292 290 288 286 284 282

 I
nt

en
si

ty
 (

a.
u

.)

 

Bonding Energy (eV)

C 1s

π-π*
O-C=O

C-O

C-C/C=C

C-N

SH-850

406 404 402 400 398 396

Oxidized-N

 I
n

te
n

si
ty

 (
a.

u.
)

 

Bonding Energy (eV)

N 1sSH-850

Pyridinic-N

Pyrrodic-NGraphitic-N

Figure 4. XPS patterns of the SH-850, ASH-750, and ASH-850 samples.

Table 4. Content of surface nitrogen species of the samples after fitting the N1s peak.

Sample Pyridinic-N (%) Pyrrolic-N (%) Graphitic-N (%) Oxidized-N (%)

SH-850 17.39 46.75 16.54 19.31
ASH-750 14.59 53.28 18.20 13.93
ASH-850 17.51 46.08 22.62 13.79
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2.1.5. Characterization of the Samples Using X-ray Diffraction

The XRD patterns of the SH-850, ASH-750, and ASH-850 samples are shown in Figure 4.
All samples exhibit two peaks at about 2θ ≈ 24◦ and 44◦, corresponding to the diffraction
from the (002) planes and (101) planes according to the standard pattern for carbon. The
position of this peak is always affected by the activation temperature and catalyst addition,
consequently leading to the expansion of the carbon lattice, random distribution of the
aromatic carbon sheets, and decomposition of ordered structures on the surface of the
carbon lattice [29]. Figure 4 shows that ASH-850 and ASH-750 both yield a stronger peak
(002) than SH-850, which implies that ASH-850 and ASH-750 both have better crystallinity
with very small crystals. These results clearly indicate that significant changes in the crystal
structure and grain size have occurred; furthermore, the peak at about 2θ = 44◦ of ASH-850
and ASH-750 becomes flat and free of miscellaneous peaks, which implies that the degree
of ordered structures in ASH-850 and ASH-750 has increased. In addition, the upside angle
of ASH-750 and ASH-850 is both bigger than SH-850 when 2θ < 10◦ in Figure 5, and this is
attributed to the abundant pores in the activated sample, which is in accordance with the
SEM characterization and N2 adsorption–desorption isotherm results.
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2.1.6. Characterization of the Samples Using Raman Spectroscopy

The results of the Raman spectroscopy are shown in Figure 6. The Raman spec-
trum shows that both ASH-750 and ASH-850 samples have a typical partly disordered
graphitic system with three band features, namely the D band (~1365 cm −1), the G band
(~1589 cm −1), and the 2D band (~2649 cm−1). The D band located at 1340 cm−1 is at-
tributed to the disordered graphite with A1g symmetry. The G band centered at 1580 cm−1

corresponds to the first-order scattering of the E2g mode of sp2 carbon domains. Meanwhile,
the intensity ratio of the G band to the D band (ID/IG) of ASH-750, ASH-850, and SH-850
is 1.56, 1.26, and 1.18, respectively, which means that ASH-750 and ASH-850 contain more
graphitized structures than disordered carbon. The results indicate that the co-catalyst
Ni(NO3)2/KOH has positive effects at 750 ◦C and 850 ◦C, which are much lower than
the conventional graphitization temperature (2500–3000 ◦C) [30,31]. The 2D peak is a
prominent feature of graphene in Raman spectra, and its position and shape can be used to
distinguish single-layer, bilayer, or few-layer graphene. In this study, both ASH-750 and
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ASH-850 show a weak 2D band, although it is much broader than single-layer graphene,
while SH-850 shows no 2D band. This reveals that porous, activated carbon can be formed
in a laminate type of structure using SH as the precursor, followed by activation with
Ni(NO3)2/KOH at lower temperatures.
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2.2. Characters of CO2 Capture
2.2.1. CO2 Uptake Capacity

The CO2 uptake capacities of SH-850, ASH-750, and ASH-850 were examined at
30 ◦C, 45 ◦C, and 60 ◦C, respectively. ASH-850 showed higher CO2 adsorption capacities
of 110.35 mg·g−1, 94.09 mg·g−1, and 72.62 mg·g−1, which were higher than ASH-750 at
1 bar, as shown in Table 5. This is due to the fact that the CO2 uptake of activated carbon
was mainly determined by the high ultra-micropore volume. Though ASH-750 had a
larger total porous volume, its further CO2 adsorption was limited as a consequence of
its lower micropore volume. Previous studies showed that when the pore size of the
adsorbent was two times larger than the kinetic diameter of the adsorbate molecule, the
highest adsorption energy could be reached [31]. The kinetic diameter of CO2 is 0.33 nm;
hence, superior CO2 adsorption capacity can be achieved by ASH-850 due to its abundant,
narrow micropores of 0.67 nm. This was also confirmed by the adsorption experiments.
Additionally, the CO2 uptake capacities of ASH-750 and ASH-850 were both superior to
SH-850. Meanwhile, the CO2 uptake capacity of ASH-850 was approximately the same as
ASH-4-850, as shown in Tables S1 and S2. These results illustrate that without Ni(NO3)2,
a dosage of KOH at four times higher is needed to achieve similar BET results and CO2
uptake capacity; thus, there is a synergistic effect of Ni(NO3)2/KOH for preparing high-
performance activated carbon.



Molecules 2023, 28, 6242 10 of 17

Table 5. CO2 equilibrium adsorption capacities of the samples at different temperatures.

Samples
CO2 Adsorption Capacity (qmax)/mg·g−1 (mmol·g−1)

30 ◦C 45 ◦C 60 ◦C

SH-850 45.32 (1.03) 30.80 (0.70) 28.60 (0.65)
ASH-750 102.51 (2.33) 91.09 (2.07) 68.63 (1.56)
ASH-850 110.35 (2.51) 94.09 (2.13) 72.62 (1.65)

The Ni(NO3)2/KOH co-catalyst method exhibited CO2 adsorption capacity as high as
110.35 mg/g at 30 ◦C in ASH-850 and 102.51 mg/g at 30 ◦C in ASH-750. These samples
both had a considerably higher CO2 adsorption capacity than other carbon materials, as
shown in Table 6. The Ni(NO3)2/KOH co-catalyst was produced from marine waste via
a facile method and was used as a CO2 adsorbent to increase its added value, aiming to
alleviate Sargassum horneri golden tides.

Table 6. Comparisons of adsorbent capacity.

Material T/K CO2 Adsorption
Capacity/mg·g−1 (mmol·g−1) Ref.

Porous graphene nanosheet 298 101.2 (2.30) [32]
Mesoporous sucrose-based activated 298 76 (1.7) [33]

Metal-rich, wood-based activated
carbon 298 83 (1.9) [34]

A material composed of zeolite and
activated carbon 298 116 (2.63) [35]

Sargassum horneri-based porous
carbon 303 101.64 (2.31) [10]

B-Zeolite 303 77.44 (1.76) [36]
Waste ion-exchange resin-based

activated carbon 303 81.2 (1.8) [37]

Siliceous zeolites 303 52.8 (1.20) [38]
ASH-750 303 102.51 (2.50) This work
ASH-850 303 110.34 (2.13) This work

2.2.2. Adsorption Kinetics

Figure 7 shows that the double exponential model had the best fitness for CO2 ad-
sorption capacity of ASH-850 at 30 ◦C, 45 ◦C, and 60 ◦C due to its highest value of R2

(>99%), while other methods had values less than 80%; the relevant kinetic parameters
are listed in Tables 7 and 8. Thus, the double exponential kinetic model provided the best
description over the entire adsorption process. It suggests that physical adsorption and
chemical adsorption occur simultaneously [39]. The almost vertical adsorption curve at
the beginning of adsorption illustrates that CO2 is rapidly adsorbed within 6 min, which
may be because of a good number of active adsorption sites on the surface of the samples.
These active sites are probably the functional groups that are shown using FIRT. Gradually,
these active sites are occupied, leading to a decreased adsorption rate. As adsorption
continues, CO2 begins to diffuse inside the particles until the adsorption process reaches
an equilibrium.
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Figure 7. The diagrams of CO2 adsorption being fitted using four kinetic models: (a) ASH-850 at
30 ◦C; (b) ASH-850 at 45 ◦C; and (c) ASH-850 at 60 ◦C.
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Table 7. The kinetic parameters of CO2 adsorption on activated carbon.

Kinetic
Parameters

Kinetic Models

Pseudo-First-Order
Kinetic Model

Pseudo-Second-Order
Kinetic Model

Double Exponential
Model

Intraparticle
Diffusion Model

qe
(mmol·g−1) 7.0234 7.3565 13.5715

k k1 = 0.2981 (min−1)
k2 = 0.0504

(mmol·min−1)

k3 = 0.5515
(min−1)

k4 = 0.0018
(mmol·min−1)

k5 = 0.2500
(mmol·(g·s0.5)−1)

A
(mmol·g−1)

A1 = 6.1462
A2 = 7.7120

C 4.6431
R2 (%) 62.8624 79.1138 99.1483 74.6191

Table 8. The kinetic parameters of CO2 adsorption of ASH-850 at 30 ◦C, 45 ◦C, and 60 ◦C after fitting
using the double exponential model.

Double Exponential
Model Parameter

CO2 Adsorption Temperature

30 ◦C 45 ◦C 60 ◦C

qe
(mmol·g−1) 2.53 2.15 1.68

k3
(min−1) 0.5515 0.4699 0.247832

k4
(mmol·min−1) 0.0018 0.0039 0.002529

A1
(mmol·g−1) 6.1462 5.9662 3.387032

A2
(mmol·g−1) 7.7120 7.2156 4.997272

R2

(%)
99.1483 99.5432 99.0814

2.2.3. Adsorbent Regeneration

Aside from high CO2 adsorption capacity, cyclic stability and ease of regeneration
are also important criteria for efficient CO2 capture in practical applications. A cyclic test
was performed by alternatingly repeating the adsorption–desorption cycles at 30 ◦C and
1 bar, as shown in Figure 8. It can be seen that adsorbed CO2 is easily desorbed via purging
with N2. In fact, more than 93% of CO2 could be desorbed within 3 min under desorption
conditions. Besides that, no noticeable decrease, or even an increase, in the CO2 adsorption
capacity was observed after four successive cycles of adsorption and desorption. Thus,
ASH-850 could be successfully regenerated at 30 ◦C and 1 bar and showed high cyclic
stability, which is highly desirable for potential industrial applications.
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Figure 8. CO2 adsorption–desorption cycles obtained for ASH-850 at 30 ◦C and 1 bar.

3. Materials and Methods
3.1. Materials

Nickel (II) nitrate hexahydrate (CAS 13478-00-7 99.5%, wt.%), potassium hydroxide
(CAS 1310-58-3, ≥99.0 wt.%), and hydrochloric acid (CAS 7641-01-0, 36.0 wt.%) were
purchased from Sinopharm Ltd. (Hangzhou, China). N2 (CAS 7727-37-9,99.9%) and
CO2 (CAS 124-38-999.99%) gases were purchased from Hangzhou Special Gas Co., Ltd.
(Hangzhou, China). SH was sampled from a coastal area in Wenzhou, Zhejiang province,
China. SH was washed with deionized water several times and dried, which was followed
by grinder crushing and sieving to select particle sizes in the range of 400–600 µm. The
pretreated SH was carefully oven-dried at 105 ◦C for 12 h to eliminate moisture before use.

3.2. Preparation of Activated Carbon

A fixed amount of Ni(NO3)2·6H2O (0.3625 g) was dissolved in water, which was
transferred into a crucible with dried SH (5 g). The mixture was placed for 1 h at room
temperature, dried at 105 ◦C for 12 h, and then put into a muffle furnace to be carbonized
at 400 ◦C under an N2 atmosphere for 60 min to decompose nitrate hexahydrate. The
as-prepared product (2 g) was cooled down and soaked with potassium hydroxide solution
(5 mL, 7.5 mol/L) for 1 h. This mixture was then put into an oven, accompanied by system
heating up to a fixed temperature (650, 750, 850, 950, and 1050 ◦C) separately for 1 h
with the protection of 300 mL·min−1 N2 flow. After activation, the device was cooled
to collect activated carbon, during which the solid residue was carefully washed with
water, filtered, and dried. The generated carbon was again washed with HCl (100 mL,
1 mol/L) at 150 ◦C to eliminate K species and other metal irons. The final product was
stored for characterization and further utilization. The carbon materials prepared from
SH were marked with the corresponding activation temperature, such as “ASH-850”. For
comparison, activated carbon without nickel nitrate and potassium hydroxide that was
prepared using the same procedure at 850 ◦C was labeled “SH-850”.

3.3. Characterization

Elemental analysis (C, H, and N) of SH was characterized using a common elemental
analyzer (Vario Macro cube) from Elementar (Hanau, Hessian, Germany). Metal irons in
SH were detected using an inductively coupled plasma-source mass spectrometer (Elan
DRC-e) from PerkinElmer (Norwalk, CT, USA). N2 adsorption–desorption isotherms were
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measured at 77 K using an automatic surface area and pore size analyzer (3H-2000PS1), and
CO2 adsorption experiment was performed at 273 K. Prior to the sorption measurements,
the samples were degassed at 200 ◦C for 3 h. The BET surface area and pore volume
were determined using the N2 adsorption–desorption Hindawi Template version: May
isotherms. The specific surface area was calculated using the Brunauer–Emmett–Teller
(BET) method at relative pressure (P/P0) values ranging from 0.04 to 0.32; the total pore
volume (Vt) was determined based on the adsorption amount at a relative pressure of 0.99;
the micropore surface area (S micro) and micropore volume (V micro) were calculated
using the t-plot analysis; and the pore-size distributions (PSDs) were obtained using the
density functional theory (DFT) method. The surface morphology of microporous carbon
was characterized using a Hitachi S-4700 scanning electron microscope (SEM) at 5.0 kV and
15.0 kV and a Tencnai G2 F30 S-Twin transmission electron microscope (TEM) at 300 kV.
The infrared spectra of the samples were acquired using a Nicolet 6700 (FTIR) spectrometer
by averaging 24 scans in the 4000–400 cm−1 spectral range at 4 cm−1 resolution, and a
KBr pellet was used as the reference sample. The XRD patterns were collected using a
PANalytical X’Pert PRO diffractometer with Cu-Kα radiation (40 kV, 40 mA). The Raman
spectra were obtained using a LabRam HR UV 800 Laser Raman Micro spectral probe
with an excitation wavelength at 632.81 nm via a diode-pumped solid-state laser. X-ray
photoelectron spectroscopy was used to detect the elemental composition and electron
valence states on the surface of the samples using a ThermoFischer’s ESCALAB 250Xi
X-ray photoelectron spectrometer (Waltham, MA, USA). The excitation source was an Al
Kα (1486.6 eV) ray, and the binding energy was calibrated with C1s at 284.6 eV.

3.4. CO2 Adsorption Experiments

The CO2 adsorption performance of the carbon samples was measured using a ther-
mogravimetric analyzer. Initially, about 10 mg of each sample was placed in an alumina
crucible loaded in a TGA furnace. Prior to each adsorption experiment, the carbon sample
was heated up to 130 ◦C (10 ◦C/min) and kept for 30 min to remove moisture under N2 flow
(40 mL·min−1). Then, the carbon sample was cooled to a desired adsorption temperature,
i.e., 30 ◦C, 45 ◦C, and 60 ◦C, under which the CO2 adsorption studies were performed for
180 min with rate of 50 mL·min−1. Moreover, adsorbent regeneration was carried out by
heating the sample to 140 ◦C for 30 min at 10 ◦C·min−1 under N2 flow (40 mL·min−1). To
check the adsorbent stability, the adsorption–desorption procedure was repeated 4 times.

3.5. CO2 Adsorption Kinetic Analysis

Four typical kinetic models, namely, pseudo-first-order model [40,41] (used to describe
the physical adsorption process), pseudo-second-order model [40,42,43] (used to describe
the chemical adsorption process), double exponential model [42] (used to describe both
the physical and chemical adsorption processes), and intraparticle diffusion model [44]
(used to describe the adsorption process in a solid adsorbent with abundant pores), were
studied in this research. The regression coefficient (R2) was verified according to the fitting
degree of each theoretical model and the actual data. The highest regression coefficient
indicates the most appropriate theoretical model, which can demonstrate the adsorption
kinetic mechanism. The equations for each model are displayed in order as follows:

qt = qe

(
1− e−k1t

)
(6)

qt =
q2

e k2t
1 + qek2t

(7)

qt = qe −A1 exp(−k3t)−A2 exp(−k4t) (8)

qt = k5t1/2 + C (9)
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where t (min) is the time of adsorption; qt (mmol·g−1) and qe (mmol/g) are the amounts of
solute adsorbed at time t and at saturation; k1 (min−1) and k2 (g·mmol−1·min−1) are the
rate constants for pseudo-first-order and pseudo-second-order adsorption, respectively;
k3 (min−1) and k4 (g·(mmol min) −1) are the adsorption rate constants of the first and
second adsorption mechanisms in the double exponential kinetic expression, while k5
(mol/(g·s0.5)) is the intraparticle diffusion rate constant; A1 (mmol·g−1) and A2 (mmol·g−1)
can be viewed as the maximum adsorption capacity in the double exponential model;
and C is a constant for the intraparticle diffusion model, which is related to the boundary
layer’s thickness.

4. Conclusions

In summary, we reported a facile method for preparing porous graphitized carbon
from SH via Ni(NO3)2/KOH co-catalysts, which reduces the dosage of the activating
agent and lowers the reaction temperature. Compared to ASH-750, ASH-850 presented
a higher specific surface area (1486 cm3·g−1), an extremely higher micropore volume
(0.74 cm3·g−1), and more abundant functional groups, which led to an outstanding capacity
of CO2 capture. The highest CO2 uptake of 2.51 mmol/g was achieved at 30 ◦C and 1 bar.
Moreover, ASH-850 exhibited a rapid CO2 adsorption rate, excellent cyclic stability, and
easy regeneration. In addition, the kinetic study at different temperatures indicated that
both physical adsorption and chemisorption existed during the process of adsorption of
the samples. This facile and cost-effective carbon synthesis route is beneficial to large-
scale preparation of adsorbents of CO2. It also plays an important role in improving the
high-value-added utilization of macroalgae, which promotes the development of ecological
restoration using macroalgae.
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