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Abstract: Monitoring the quality consistency of traditional Chinese medicines, or herbal medicines
(HMs), is the basis of assuring the efficacy and safety of HMs during clinical applications. The
purpose of this work was to characterize the difference in hydrophilic antioxidants and related
bioactivities between Flos Chrysanthemum (JH) and its wild relatives (Chrysanthemum indicum L.; YJH)
based on the establishment of fingerprint–efficacy relationship modeling. The concentrations of
the total phenolics and flavonoids of JH samples were shown to be generally higher than those of
YJH, but the concentration distribution ranges of YJH were significantly greater compared to JH
samples, possibly related to environmental stress factors leading to the concentration fluctuations
of phytochemicals during the growth and flowering of Chrysanthemum cultivars. Correspondingly,
the total antioxidant capabilities of JH were greatly higher than those of YJH samples, as revealed
by chemical assays, including DPPH and ABTS radical scavenging activities and FRAP assays. In
addition, cellular-based antioxidant activities confirmed the results of chemical assays, suggesting that
the differences in antioxidant activities among the different types of Chrysanthemums were obvious.
The extracts from YJH and JH samples showed significant α-glucosidase inhibitory activity and lipase-
inhibitory activity, implying the modulatory effects on lipid and glucose metabolisms, which were
also confirmed by an untargeted cell-based metabolomics approach. The selected common peaks by
similarity analysis contributed to the discrimination of YJH and JH samples, and the modeling of the
fingerprint–bioactivity relationship identified neochlorogenic acid, isochlorogenic acid A, and linarin
as efficacy-associated chemical markers. These results have demonstrated that integrating HPLC
fingerprints and the analysis of similarity indexes coupled with antioxidant activities and enzyme-
inhibitory activities provides a rapid and effective approach to monitoring the quality consistency of
YJH/JH samples.

Keywords: Chrysanthemum; antioxidant; cellular antioxidant activity; α-glucosidase inhibitory activity;
lipase-inhibitory activity; fingerprint–activity relationship

1. Introduction

Flos Chrysanthemum (Juhua, JH) is the Latin term for Chrysanthemum flower, refer-
ring to cultivated chrysanthemum flowering heads used as food and traditional Chinese
medicines (TCMs). Wild chrysanthemums (Yejuhua, YJH), on the other hand, are the
naturally occurring, uncultivated species of chrysanthemums found in the wild [1]. Both
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types of Chrysanthemums can used as inherent components in different TCM formulas,
attributed to their multiple bioactivities such as antibacterial, anti-inflammatory, anticancer,
hepatoprotective, antiallergy, antioxidant, immunomodulatory, neuroprotective, and an-
timicrobial activities [2–4]. Chrysanthemum belongs to the Asteraceae genera, as one of the
biggest plant families, showing significant chemical variability accompanied by different
origins, cultivars, and environment conditions [2]. Although there are many similarities
shared in appearance, bioactivities (e.g., heat-cleaning, brightening eyes, toxin expelling),
and bioactive components related to pharmaceutical properties as identified in recent years
for JH and YJH [5–7], their comparative studies aimed at achieving quality consistency
monitoring have been scarcely reported hitherto.

As a typical metabolic disease, diabetes mellitus (DM) is related to either impaired
insulin secretion or insulin resistance, with the majority of DM patients being type II
diabetes associated with pancreatic β-cell abnormalities and insulin resistance [8,9]. To aid
in controlling blood sugar levels for type II diabetes, the use of an α-glucosidase inhibitor is
a general strategy to suppress carbohydrate absorption and prevent blood sugar elevation
by competitively inhibiting the enzyme α-glucosidase responsible for converting complex
dietary carbohydrates into absorbable monosaccharides [10]. Obesity is often interacted
with by DM. So, when examining the potential bioactivities of plant extracts, α-glucosidase
and lipase-inhibitory activities are in general characterized simultaneously in terms of
their capability to inhibit pancreatic lipase for reduced lipid absorption via suppressing the
conversion of triglycerides to free fatty acids [11].

Due to the extreme complexity of phytochemicals occurring in TCM materials and
the integrated role of multicomponent and multitargets during clinical practices, only
identifying and quantifying several limited bioactive components for chemical profiling
and pharmacological characterization is not adequate or effective to evaluate the quality
consistency of TCMs [12]. Therefore, fingerprint–efficacy relationship modeling has been
widely used for the quality evaluation of TCM materials. The general strategy to discover
quality-associated markers by fingerprint–efficacy relationship modeling involves chemical
profiling, bioactivity characterization, and fingerprinting–efficacy model establishment, as
well as discovery–verification of markers [12,13]. To establish the model, different types of
multivariate analysis, such as partial least-squares regression (PLSR) analysis and artificial
neural network (ANN), are employed to discover efficacy-associated markers [14,15].

This work aimed at achieving accurate quality discrimination between different types
of Chrysanthemum cultivars, relying on the methodology of fingerprint–activity relationship
modeling to search for potential chemical markers. Initially, the antioxidant activities and
glucosidase and lipase-inhibitory activities were analyzed. Then, the chromatographic
fingerprints were obtained by high-performance liquid chromatography coupled with
diode-array detection (HPLC-DAD) with subsequent identification of common featured
chromatographic peaks by measuring similarity indexes. Finally, the potential correlation
model between the common characteristic peaks distinguished within the fingerprints and
the bioactivities expressed as antioxidant capabilities and enzyme-inhibitory activities was
established by PLSR and BP-ANN.

2. Results and Discussion
2.1. Chromatographic Fingerprints and the Analysis of Similarity

The chromatographic fingerprints of 16 Chrysanthemum samples with different origins
were obtained, where 110 and 65 chromatographic peaks were identified for YJH and JH
samples, respectively (Figure 1A,B), suggesting that the metabolite composition of YJH
was possibly more complex than that of JH samples. On the other hand, the relative peak
abundance of the identified compounds found in YJH was significantly lower than that
in JH samples. This observation may support the claim that environmental stress factors
contribute to the biosynthesis of secondary metabolites under natural field conditions and
significant fluctuations in their contents thus explaining the complex composition and
rich distribution of secondary metabolites in YJH samples, simultaneously coinciding well
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with multiple pharmacological activities of YJH including antibacterial, anti-inflammatory,
anticancer, hepatoprotective, antiallergy, antioxidant, immunomodulatory, neuroprotective,
and antimicrobial activities [16–19]. As a wild resource, YJH is rich and widely distributed
in wild places such as mountain slopes, grasslands and shrubbery, and roadsides [18].
Comparatively, JH samples (Flos Chrysanthemum) are generally from cultivated farms, with
abiotic stresses scarcely encountered during growth, and therefore, completely differential
environmental conditions resulted in significant variations in the distribution of bioactive
phytometabolites and chemodiversity.
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Figure 1. Geographical information for the collected samples (A); HPLC-DAD chromatographic
profiles acquired at 280 nm for Chrysanthemum (B); similarity index (C); the chemical structures of the
isolated bioactive compounds (D); the PCA models established by HPLC fingerprint profile data (E)
and the identified (F).

To initially compare the differences between YJH and JH samples, the HPLC chro-
matography of all the Chrysanthemum samples was subjected to similarity analysis
(Figure 1B), with 16 compounds identified as the common peaks, including chlorogenic
acid, neochlorogenic acid, cryptochlorogenic acid, isochlorogenic acid A, isochlorogenic
acid B, linarin, luteolin 7-glucoside, apigenin-7-glucoside, luteolin, diosmetin, luteolin
7-glucuronide, diosmetin-7-glucoside, quercetin, apigenin, caffeic acid, and apigenin-7-
glucuronide (Figure 1). PCA score plots of the 16 chrysanthemum samples were successfully
separated according to all the peaks detected from HPLC chromatographic profiles, but
according to the major common peaks, the samples could be separated into sub-groups of
YJH and JH on the two-dimensional plane of the score (Figure 1E,F).

2.2. In Vitro Antioxidant Activity Characterization Based on Chemical Methodologies

Based on the relationship between the free radical scavenging rate of ABTS and DPPH
and the concentration of the extract (Figure 2B,D), the median effective concentrations
(EC50) values of the two were calculated (Figure 2C,E). The results showed that there
were significant differences among different samples, especially the different varieties of
wild chrysanthemum. Among the selected YJH samples, the EC50 values of S1–S4, and
S8 were significantly different (S1–S9), among which the EC50 values of the S1–S4 and S8
samples were higher, and the S5 sample was the lowest, indicating that S1–S4 and S8 had
weak antioxidant activities, and S5 presented higher antioxidant activities; while different
varieties The free radical scavenging rate among chrysanthemums is relatively uniform,
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and the difference is not significant (such as among the S11–S16 samples). Overall, the
free radical scavenging rate EC50 value of wild chrysanthemum is higher than that of
chrysanthemum, and the results of the two free radical scavenging rates are consistent,
indicating that the antioxidant capacity of chrysanthemum is stronger than that of wild
chrysanthemum, which corresponds to the distribution of flavonoids.
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Figure 2. Differential distribution of the contents of total phenolics (A) and total flavonoids (B) in
Flos Chrysanthemi Indici and Flos Chrysanthemi; (C) the free radical scavenging kinetics by bioactive
components of different samples; (D) the relationship between DPPH free radical scavenging capabil-
ity and the samples concentration ranging between 0.625 and 20 mg/mL; (E) EC50 values for DPPH;
(F) the relationship between ABTS free radical scavenging capability and the samples concentration;
(G) EC50 values for ABTS; (H) FRAP values of the extract from different samples. Different lower-case
letters in the figure denote significance with p < 0.05.

Free radical scavenging capability measurement suggested a linear concentration and
reaction time-dependent relationship. The free radical scavenging kinetics by bioactive
components were examined as kinetic behavior is affected by chemical composition, sample
sources, and concentration: a fast decay in absorbance in the first 5 min; all samples showed
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a steady state after 30–35 min. Based on the EC50 values calculated, Yejuhua presented sig-
nificantly higher EC50 values than Juhau extract, which exhibited no significant difference
among the different sources, suggesting the selected JH demonstrated stronger antioxidant
activities than YJH.

The results of total antioxidant capacity characterized by FRAP (Figure 2F) are consis-
tent with the results of antioxidant activity characterized by ABTS and DPPH free radical
activity, consistently indicating that the antioxidant capacity of the S1, S2, S3, and S8 sam-
ples was significantly weaker than other samples while S5 showed the highest values. The
chrysanthemum samples (JH) showed comparable antioxidant capacity to other chrysan-
themum samples; the FRAP values of chrysanthemums from different sources were less
varied than wild chrysanthemum samples, and the values of the S13 and S16 samples were
the lowest, which were completely consistent with the results of EC50 values expressed by
ABTS assays.

In addition, the distribution of the antioxidant activity of different samples character-
ized by different methods showed a close relationship with the results of the total flavonoid
contents and total phenolics. For example, the S5 sample with higher activity shows the
highest content of total flavonoids, corresponding with the relatively high EC50 values
characterized by DPPH for the S5 sample. Similarly, S8 demonstrated the lowest total
flavonoid contents, matched well with the highest EC50 values as expressed by DPPH
assays. The difference in antioxidant activity of chrysanthemum samples is weaker than
that of wild chrysanthemum, which can be attributed to the difference in flavonoid content
distribution.

2.3. Cellular-Based Antioxidant Activity Characterization

According to the dose–response curve and intermediate effect principle of the CCA
value under different concentration gradients of the major common peaks (Figure 3A), the
EC50 values of the extraction solution were obtained. The CCK-8 assay was used to detect
the cell viability of each group after adding the extraction solution. The concentration of the
extraction solution was determined based on the cell viability under different concentration
gradients. Under the selected concentrations, the cell survival rates were not significantly
(p ≥ 0.05) influenced, thus assuring the independence of the CAA values on the potential
toxicity of the YJH/JH extracts (Figure 3B). The EC50 values of YJH samples were shown to
be significantly higher than those of JH samples (Figure 3C), indicating that the antioxidant
activities of JH were higher than those of YJH, in line with the observation results obtained
from chemical-based evaluation approaches, including ABTS, FRAP, and DPPH. Although
universal and accurate approaches to antioxidant activities evaluation remain limited, it
has been well recognized by substantial research that using cell-based approaches has its
advantages over in vitro chemical evaluation approaches [20,21]. Similarly, CAA analysis
was used to characterize the antioxidant activities of the ethanol and water extracts of
Lactobacillus plantarum Y16 fermented soymilk, coinciding well with the results of the radical
scavenging ability of hydroxyl and DPPH radicals [22]. The consistence between multiple
in vitro chemical antioxidant assays and CAA assays further confirms that JH possesses
greatly higher antioxidant activities than those of YJH.



Molecules 2023, 28, 6254 6 of 16Molecules 2023, 28, 6254 6 of 17 
 

 

 
Figure 3. Antioxidative effects of different sample extract on 2,2-azobis (2-methylpropionamidine) 
dihydrochloride (ABAP)-damaged HepG2 cells: relation of CAA units with antioxidant contents 
(A); cck-8 cytotoxicity assay (B); EC50 values based on CAA methodology (C). Different lower-case 
letters in the figure denote significance with p < 0.05. 

2.4. Glucosidase Inhibitory Activity and Lipase-Inhibitory Activity 
The use of plant extracts is generally considered as an efficient methodology to 

manipulate the glucose contents of postprandial plasma through inhibiting the enzymes 
such as α-amylase and α-glucosidase [9,23]. The results of enzyme-inhibitory activities are 
presented in Figure 4. Regarding glucosidase inhibitory activity, the fluctuations in EC50 
values of YJH samples were more prominent than those of JH samples. Except for the S5 
sample, the inhibitory rates of wild chrysanthemum (YJH) extracts on glycosidase 
activities were significantly lower (p < 0.05) than those of chrysanthemum. Similarly, the 

Figure 3. Antioxidative effects of different sample extract on 2,2-azobis (2-methylpropionamidine)
dihydrochloride (ABAP)-damaged HepG2 cells: relation of CAA units with antioxidant contents (A);
cck-8 cytotoxicity assay (B); EC50 values based on CAA methodology (C). Different lower-case letters
in the figure denote significance with p < 0.05.

2.4. Glucosidase Inhibitory Activity and Lipase-Inhibitory Activity

The use of plant extracts is generally considered as an efficient methodology to ma-
nipulate the glucose contents of postprandial plasma through inhibiting the enzymes
such as α-amylase and α-glucosidase [9,23]. The results of enzyme-inhibitory activities
are presented in Figure 4. Regarding glucosidase inhibitory activity, the fluctuations in
EC50 values of YJH samples were more prominent than those of JH samples. Except for
the S5 sample, the inhibitory rates of wild chrysanthemum (YJH) extracts on glycosidase
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activities were significantly lower (p < 0.05) than those of chrysanthemum. Similarly, the
EC50 values of YJH samples to inhibit lipase activities were generally higher than those of
JH samples, suggesting that JH tended to possess more abundant bioactive components
than YJH for inhibiting the enzymes. On the other hand, the difference between different
wild chrysanthemum varieties (YJH) was much larger than those of chrysanthemum (JH),
and there was no significant difference in the glycosidase-inhibitory activities of different
chrysanthemums. The above-mentioned results were consistent with the results obtained
from the total flavonoids, as well as the distribution patterns of total phenolics. However,
the varied distribution of EC50 values in glycosidase-inhibitory activities among different
samples may suggest that the inhibition of glycosidase could be more dependent on the
distribution of total flavonoids compared with total phenolics, as previously observed in
α-glucosidase and lipase-inhibitory activity of the phenolic substances in black legumes
from different genera [24].
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2.5. Identification of Potential Bioactive Markers by PLSR and ANN

Chemometric methods such as PLSR and ANN are employed to search for efficacy-
associated bioactive components or quality control markers by establishing a fingerprint–
efficacy model [12,25]. The association between the bioactive attributes, including antioxi-
dant capability and α-glucosidase-/lipase-inhibitory activities, and the characteristic peaks
was modeled by PLSR and BP-ANN.

A PLSR model to elucidate the contribution of phytocomponents to bioactivities was
established by correlating antioxidant and enzyme-inhibitory activities (Y-matrix) to the
chromatographic data of the sample matrix (16 × 16). The 3D plot of the PLSR loading
scatter is shown in Figure 5A, where 89.5% of the variance in X-variables and 82.9% of the
variance in Y-variables are explained, with three latent variables explaining 48.1%, 19.6%,
and 5.46% of the variations for the first, second, and third latent variables, respectively.
Y-variables were situated around the selected X-variables. Particularly, the antioxidant and
enzyme-inhibitory activities were close to most of the chemical compounds and distributed
together in the same cluster, suggesting that Y-variables were positively related to X-
variables. Therefore, the values of variable importance for the projection (VIP) were used
to screen the X-variables which were quantitatively and statistically important to the Y-
variables [26]. In general, VIP values higher than 1.0 are considered important [27,28], and
according to this basis, the peaks C2, C4, and C6 were important loading contributions thus
corresponding to high correlation with the bioactivities of YJH and JH samples. Due to the
possible presence of synergistic or antagonism effects among different variables, a nonlinear
ANN model was established to further reveal the fingerprint–efficacy relationship in virtue
of its capability to achieve pattern recognition, self-adaptation, and parallel processing
of fingerprint data, related to the information processing of three layers, including the
input layer, the hidden layer, and the output layer [14]. The established BP-ANN model
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demonstrated good performance revealed by the MSE values of training, validation, and
testing: 0.0001, 0.0090, and 0.0352, respectively. The contribution ratios of the detected
common peaks further confirmed the results of the PLSR model. Therefore, based on the
results obtained from PLSR and BP-ANN, neochlorogenic acid, isochlorogenic acid A, and
linarin were chosen as antioxidant activities-related markers for JH and YJH samples.
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2.6. Effects of the Identified Bioactive Markers on the Cell Metabolome

Untargeted profiling of the metabolites of in vitro cultured HepG2 cells was per-
formed to further confirm the metabolic changes and potential biomarkers associated with
glycometabolism and lipid metabolism as influenced by the identified major bioactive
components, including neochlorogenic acid, isochlorogenic acid A, and linarin. PCA is
an unsupervised data analysis method that utilizes an orthogonal transformation to con-
vert the original random vectors with correlated components into new random vectors
with uncorrelated components [27,29–31]. This transformation aims to retain as much of
the original variable information as possible, thereby achieving dimensionality reduction.
Simultaneously, system stability was evaluated. As shown in Figure 6, the PCA model
graph obtained through sevenfold cross-validation demonstrated that the QC samples were
closely clustered together (Figure 6A,B), indicating good instrument detection stability
during the experimental process.
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To process the extracted data, ion peaks with missing values (0 values) exceeding
50% within each group were removed. Those 0 values with half of the minimum values
were replaced. Then, based on the qualitative results of compound identification, a score
(Score) and filter of the compounds were assigned, with a score of 36 (out of a maximum of
60 points) as the screening criterion. Compounds scoring below 36 are considered to have
inaccurate qualitative results and should be removed. Finally, the positive and negative
ion data were merged into a single-data matrix table, which included all the information
extracted from the original data that could be used for analysis.

A combined approach of multivariate and univariate analyses was employed to iden-
tify differentially expressed metabolites between groups (Figure 6C), with permutation
testing to confirm the quality of the established model (Figure 6D). In the orthogonal
projection to latent structure-discriminant analysis (OPLS-DA), the variable important in
projection (VIP) values were used to assess the impact strength and explanatory power
of each metabolite’s expression pattern on the classification and discrimination of sam-
ples between groups. Significant metabolites with biological relevance were identified
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by exploring VIP values and further validated for significance using a t-test to determine
inter-group differences (Figure 6F). The generated S-plot could be used to further validate
the potential metabolites of great interest (Figure 6E). The clear separation between HepG
samples without extract addition and the cells with additions suggested significantly differ-
ential effects on the HepG2 cell metabolome, according to the significantly altered contents
of intracellular metabolites after exposing the cells to the YJH/JH extracts. In addition,
the complete separation of PCA contributed to the increased reliability of the conclusions
obtained from OPLS-DA [27,31,32]. In order to visualize the relationships between samples
and the expression differences of metabolites across different samples, we performed hier-
archical clustering on all significantly differentially expressed metabolites. The results are
shown in the diagram of Figure 6G. The horizontal axis represents sample names, while
the vertical axis represents differentially expressed metabolites. The color gradient from
blue to red indicates the abundance of metabolite expression, with red indicating higher
expression levels of differentially expressed metabolites. A total of 69 lipids and lipid-like
molecules of 184 differential metabolites were identified (Figure 6G). Among the major
pathways affected by the extracts, glycerophospholipid and central carbon metabolism
were included (Figure 6H). So far, to our best knowledge, there is no literature examining
the effects of extracts from Flos Chrysanthemum and wild Chrysanthemum (Chrysanthemum
indicum L.) on the cell metabolism of HepG2. Previously, it has been demonstrated that
a cell-based metabonomics approach is effective in investigating the potential metabolic
effects of phytometabolites on the modifications of differential intracellular metabolites
and the disrupted metabolic pathways, as exemplified in the case of chrysophanol-8-O-β-D-
glucoside [33] and drug-induced causes of hepatotoxicity during preclinical testing using
liver cell models [34]. The cell-based metabonomics corresponded well with the results
of α-glucosidase- and lipase-inhibitory activities, exhibiting the regulatory effects of the
Chrysanthemum extracts on lipid and glucose metabolism.

3. Materials and Methods
3.1. Materials, Sample Preparation, and Chemicals

The powder of the samples (0.50 g) was accurately weighed through a 10-mesh sieve
and added by 25 mL of 70% methanol in a stoppered conical flask, followed by an ultrasonic
extraction step (SCIENTZ SB-300 DTY, Ningbo Scientz Biotechnology, Ningbo, China) at
300 W and 45 kHz for 40 min. After the extraction was finished, the methanol (70%, v/v)
was supplemented to achieve the initial volume, with the filtrate to obtain the final product.
All chemicals and solvents were of analytical or HPLC grade. Water, methanol, acetonitrile,
and formic acid were obtained from Thermo Fisher Scientific (Waltham, MA, USA). L-2-
chlorophenylalanine was from Shanghai Hengchuang Bio-Technology Co., Ltd. (Shanghai,
China). Chloroform was from Titan Chemical Reagent Co., Ltd. (Shanghai, China). The
standard compounds, including chlorogenic acid (C1), neochlorogenic acid (C2), cryp-
tochlorogenic acid (C3), isochlorogenic acid A (C4), isochlorogenic acid B (C5), linarin (C6),
luteolin 7-glucoside (C7), apigenin-7-glucoside (C8), luteolin (C9), diosmetin (C10), luteolin
7-glucuronide (C11), diosmetin-7-glucoside (C12), quercetin (C14), apigenin (C15), caffeic
acid (C17), and apigenin-7-glucuronide (C19), were obtained from Chengdu Purify and
Pufei De Biotech Co., Ltd. (Chengdu, China). The free radicals used for antioxidant activity
assays, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline
6-sulfonate; ABTS), were purchased from Aladdin Bio-Chem Technology Co., Ltd. (Shang-
hai, China). A total of 16 samples, involving Flos Chrysanthemum and wild Chrysanthemum,
were collected and the sample information is shown in Table S1.

3.2. Chromatographic Conditions

The bioactive components of the extracts from Flos Chrysanthemum and wild Chrysan-
themum samples were isolated using an Agilent 1200 HPLC equipped with a diode-array
detector, C18 column (4.6 mm × 250 mm, 5 µm), autosampler, column compartment, and
Agilent ChemStation for data analysis. The mobile phase included the combination of
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B (0.1% formic acid in acetonitrile) and A (0.1% formic acid in ultra-purified water) us-
ing a linear gradient elution as follows: 0–40 min (90–74% A); 40–70 min (74–35% A);
70–71 min (30–0% A); and 71–75 min (0% A). The flow rate was set at 0.8 mL/min. The
column and sample temperatures were 25 ◦C. The injection volume was 10 µL. More than
8000 theoretical plates were obtained for 3,5-di-O-caffeoylquinic acid. The HPLC-DAD
at 280, 320, 350, and 520 nm was performed for real-time monitoring of the intensities of
chromatographic peaks. The detected major peaks were qualitatively and quantitatively
identified by comparing them with the standard compounds of which the separate stock
solutions (10–100 µg/mL) were prepared.

3.3. Determination of Antioxidant Components

Total flavonoids of the extracts from Flos Chrysanthemum and wild Chrysanthemum
samples were measured according to the previously well-established method. Rutin
standard curve (y = 0.7604x − 0.2294, R2 = 0.9889). To determine the contents, a total of
100 µL of diluted sample was added to 2 mL of 2% Na2CO3 aqueous solution. After 2 min,
100 µL of 50% Folin–Ciocalteau reagent was added. The final mixture was shaken and then
incubated at room temperature for 30 min in the dark at room temperature. The absorbance
of all samples was measured at 750 nm using a microplate reader, and the results are
expressed in mg chlorogenic acid equivalents per gram extract (mg ChE/mL extract) with
eight replicates of measurements. The standard curve of the equivalent compound for
calibration purposes was obtained (y = 1.323x − 0.0869, R2 = 0.9923).

3.4. Chemical Evaluation of In Vitro Antioxidant Activities

Total antioxidant capacities of different samples were assessed by determining DPPH
and ABTS radicals scavenging activities and ferric-reducing antioxidant power (FRAP)
assays, according to the previously reported methodologies [28]. Fifty microliters of oil
sample at various concentrations (10–200 µg/mL) was added to a methanol solution of
DPPH. A 50 µL volume of the sample was reacted with 150 µL of 0.2 mM DPPH solution.
Absorbance measurements were taken 6 min after the reaction at 517 nm using a Flex
Station III Multi-Mode Microplate Reader (Molecular Devices, San Jose, CA, USA). The
radical scavenging activity was calculated by the DPPH inhibition percentage as follows:
%DPPH radical scavenging = 100(1 − B/A), where A and B are the blank and oil sample
absorbance.

The ABTS was measured by pre-formed radical monocation. The mixtures, along with
7.4 mM ABTS solution and 2.6 mM potassium persulfate, were incubated at room tempera-
ture in the dark for 24 h. The ABTS solution was diluted with phosphate-buffered saline
(pH 7.4) to achieve an absorbance of 0.7 ± 0.02 at 734 nm. Each sample was suspended
in distilled water, and 40 µL of the sample was reacted with 160 µL of the ABTS solution.
Absorbance was taken 6 min after the reaction at 734 nm.

FRAP assay was performed using a commercial kit (A015-3-1, Nanjing Jiancheng
Bioengineering Institute, Nanjing, China). 10 µL of each sample solution was mixed with
180 µL of newly prepared FRAP reagent. After incubation at 37 ◦C for 5 min, the absorbance
of every reaction mixture was recorded at 593 nm.

3.5. Cellular-Based Antioxidant Capacity Evaluation

Following the method of Wolfe and Liu [35], a cellular antioxidant activity (CAA) assay
was performed using HepG2 cells cultured in minimum Eagle’s medium, including the
blank group, the control group, and the experimental group supplemented with the extracts
containing bioactive components. Three parallel wells were set up in each group. The
cell suspension was inoculated at 100 µL per well (5 × 103 cells per well) and cultured for
24 h. After the incubation, the growth medium was discarded, and the cells were washed
to eliminate dead and unattached cells. Then, 100 µL of extracts containing different
concentrations of the bioactive ingredients (1.25, 2.50, 5.00, 10.00, and 20.00 µmol·L−1)
and 25 µmol 2′,7′-dichlorofluorescein diacetate (DCFH-DA) solutions to the experimental
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group. For the blank and control group, 100 µL of solutions containing only 25 µ mol/L
DCFH -DA was added. After an incubation process at 37 ◦C and 5% CO2 for 1 h, cells
were washed to remove the spare DCFH-DA. The control group and the experimental
group were treated by adding 100 µL of HBSS solution containing 600 µmol/L 2,2-azobis
(2-amidinopropane) dihydrochloride (AAPH) as a free radical generator [36], and the blank
group was added with 100 µL of HBSS solution. The real-time fluorescence of the wells
was recorded using a fluorescent microplate reader at the excitation wavelength of 485 nm
and emission wavelength of 528 nm (Tecan, Infinite™ M200 PRO, Männedorf, Switzerland)
with the fluorescence value measured every 5 min for 1 h. The CAA unit for quantitatively
assessing cellular antioxidants was defined with the following equation:

CAA unit = 1 − (
∫

SA/
∫

CA) (1)

where
∫

SA represents the cumulative area of the sample curve, and
∫

CA indicates the
cumulative area of the control curve.

3.6. Measurement of α-Glucosidase Inhibitory Activities

α-Glucosidase inhibition activities of the different sample extracts were characterized
based on the procedures described by Uraipong and Zhao [37]. Aliquots of 100 µL of
the extracted solutions were mixed evenly with 250 µL α-glucosidase solution (2 IU/mL),
followed by an incubation in a constant-temperature water bath at 37 ◦C for 10 min,
then 250 µL p-nitrophenyliu-D-galactopyranoside (PNPG) was added. The reaction was
initiated with glucopyranoside (pNPG) (5.0 mM) solution, 250 µL of Na2CO3 (1 M) was
added immediately to terminate the reaction after a 15 min reaction process at 37 ◦C,
and the absorbance was detected at 405 nm with the following equation to calculate the
α-glucosidase inhibitory activities (GIAs)

GIA (%) = [1 − (As − An)/Ac] × 100 (2)

where AS, An, and Ac represent the absorbance value of the solutions added with the
enzyme, the extracts, and pNPG; the solutions added with the extracts and pNPG; and the
solutions of the enzyme and pNPG, respectively.

3.7. Measurement of Lipase-Inhibitory Activities

The lipase inhibitory activities of different extracts were compared following the
protocol as described by Ahmed [38] with few modifications. p-Nitrophenyl palmitate
(p-NPP) was used as the substrate, which was hydrolyzed to form p-nitrophenol, a colored
component that can be monitored under 405 nm. The extract solutions were mixed with
pancrelipase solution (1000 IU/mL) and incubated at 37 ◦C for 15 min, followed by the
addition of 200 µL of p-NPP solution (2.0 mM/L). After the reaction was completed, the
solutions were placed at 100 ◦C for 5 min to terminate the reaction. The terminated reaction
solution was centrifuged (5000× g, 5 min) to obtain the supernatant, and the absorbance
of the solution was recorded. Orlistat was used as the positive control, and each test
was performed in three duplicates. The following formula was used to calculate the
lipase-inhibitory activities:

Inhibition rate (%) = [1 − (As − An)/Ac] × 100 (3)

where As, An, and Ac represent the absorbance of the solutions containing lipase and
extracts, the extracts without lipase, and the extracts with lipase, respectively.

3.8. Modeling of Fingerprint–Activity Relationship

A PLSR model was built to explore the fingerprint–activity relationship and the dis-
crimination between Flos Chrysanthemum and wild Chrysanthemum. PLSR is a statistical
technique used for regression modeling, especially when dealing with high-dimensional
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data sets with a large number of predictor variables (features) and potential multicollinear-
ity among these variables, through obtaining linear combinations of the original predictor
variables (X) that best explain the variation in the response variable (Y). In this study, the
X-variables were the identified common peaks, while the Y-variables included antioxidant
activities expressed by chemical approaches, CCA values, and enzyme-inhibitory activities.

The BP-ANN algorithm was used to model nonlinear relationships between inputs
of HPLC fingerprint and outputs of bioactivities. The BP-ANN model was established
by coding in Python software programming language, where the Levenberg–Marquardt
back-propagation algorithm was used for network training:

Xk+1 = Xk − (JTJ + µI)−1JTe (4)

where J represents the Jacobian matrix, I means the identity matrix, and e indicates a vector
of network errors.

3.9. Metabolomic Analysis

Metabolite profiling analysis of HepG2 cells was performed to validate the potential
metabolic pathways, as influenced by the identified chemical markers. The methanol
solution (80%, v/v) was added to each sample and transferred to a 4 mL glass vial, followed
by the addition of chloroform and sample dispersion. The cells were subjected to an
ultrasonic homogenizer for 6 min at 500 W. All of the mixtures of each sample were
transferred to 1.5 mL Eppendorf tubes, and L-2-chlorophenylalanine (0.3 mg/mL) dissolved
in methanol was used as internal standard, then extracted by ultrasonication for 20 min
in an ice-water bath. The extract was centrifuged at 4 ◦C (13,000 rpm) for 10 min. The
supernatant in a glass vial was dried in a freeze-concentration centrifugal dryer. The
mixture of methanol and water (1/4, vol/vol) was added to each sample, samples vortexed
for 30 s, extracted by ultrasonic for 3 min in an ice-water bath, then placed at −20 ◦C for
2 h. Samples were centrifuged at 4 ◦C (13,000 rpm) for 10 min. The supernatants from
each tube were collected using crystal syringes, filtered through 0.22 µm microfilters, and
transferred to LC vials. The vials were stored at −80 ◦C until LC-MS analysis. QC samples
were prepared by mixing an aliquot of all the samples to form a pooled sample.

A Nexera UPLC system (Shimadzu Corporation, Kyoto, Japan) coupled with a Q-
exactive quadrupole-orbitrap mass spectrometer equipped with heated electrospray ion-
ization source (Thermo Fisher Scientific, Waltham, MA, USA) was used to analyze the
metabolic profiling in both ESI-positive and ESI-negative ion modes. An ACQUITYUPLC
HSS T3 column (1.8 µm, 2.1× 100 mm) was employed in both positive and negative modes.
The binary gradient elution system consisted of (A) water (containing 0.1% formic acid,
v/v) and (B) acetonitrile (containing 0.1% formic acid, v/v) and separation was achieved
using the following gradient: 0 min, 5%B; 2 min, 5%B; 4 min, 25% B; 8 min, 50% B; 10 min,
80% B; 14 min, 100% B; 15 min,100% B; 15.1 min, 5% and 16 min, 5%B. The flow rate was
0.35 mL/min, and the column temperature was 45 ◦C. All the samples were kept at 4 ◦C
during the analysis. The injection volume was 10 µL. The mass range was from m/z 125 to
1000. The resolution was set at 70,000 for the full MS scans and 17,500 for HCD MS/MS
scans. The collision energy was set at 10, 20, and 40 eV. The mass spectrometer operated as
follows: spray voltage, 3500 V (+) and 3500 V (−); sheath gas flowrate, 40 arbitrary units
(+) and 35 arbitrary units (−); auxiliary flowrate, 10 arbitrary units (+) and 8 arbitrary units
(−); capillary temperature, 320 ◦C. The QCs were injected every 6 samples throughout the
analytical run to provide a set of data from which repeatability can be assessed.

3.10. Data Processing and Statistical Analysis

The data reported in this work were the average of three independent experiments,
which are expressed as means± standard deviations. To detect whether there are significant
differences in the contents of antioxidant components and bioactivities, a one-way analysis
of variance using the procedures of Duncan’s multiple comparisons test of IBM SPSS
Statistics (SPSS Vers. 26.0; SPSS Inc., Chicago, IL, USA), similar to our recent work [39].
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HPLC fingerprinting was established by importing the chromatographic data of 16 batches
of samples into the Similarity Evaluation System for Chromatographic Fingerprint of
Traditional Chinese Medicine software (Vers. 2012), identifying common characteristic
peaks which were those detected in all the fingerprints of the samples. Based on the
simulative median chromatogram. The similarity index was also calculated to assess. The
models for unsupervised principal component analysis (PCA) and PLSR were established
by SIMCA-P + version 14.1 (UMETRICS AB, Ume, Vasterbotten, Sweden).

4. Conclusions

This investigation compared the chromatographic fingerprints and bioactivities of
antioxidants and enzyme-inhibitory activities between Flos Chrysanthemum (JH) and wild
Chrysanthemum (YJH), followed by the establishment of fingerprint–efficacy relationship
models. Both types of Chrysanthemums belong to the Asteraceae family and share some
similarities in appearance and medicinal properties, which are both used as traditional
Chinese medicine in many TCM formulas, although they may have different growth habits
and colors. However, the compositional differences have been scarcely characterized,
not to mention their fingerprint–efficacy relationship. This work concluded that relying
on chromatographic fingerprints achieved the complete separation of different types of
Chrysanthemum samples. The concentrations of total phenolics and flavonoids of JH samples
were shown to be generally higher than those of YJH, but the concentration distribution
ranges of YJH were significantly greater compared to JH, possibly related to environmental
stress factors leading to the concentration fluctuations of phytochemicals during the growth
and flowering of Chrysanthemum cultivars. Correspondingly, the total antioxidant capabili-
ties of JH were greatly higher than those of YJH samples, as revealed by chemical assays,
including DPPH and ABTS radical scavenging activities and FRAP assays. In addition,
cellular-based antioxidant activities confirmed the results of chemical assays, suggesting
that the differences in antioxidant activities among the different types of Chrysanthemums
were obvious. The extracts from YJH and JH samples showed significant α-glucosidase in-
hibitory activity and lipase-inhibitory activity, implying the modulatory effects on lipid and
glucose metabolisms, which were also confirmed by an untargeted cell-based metabolomics
approach. The selected common peaks by similarity analysis contributed to the discrimina-
tion of YJH and JH samples, and the modeling of the fingerprint–bioactivity relationship
identified neochlorogenic acid, isochlorogenic acid A, and linarin as efficacy-associated
chemical markers. It should be noted that although the fingerprint–efficacy relationship
was achieved and efficient for quality consistency evaluation and efficacy prediction, the
reproducibility of specific pharmacological attributes requires further verification in future
research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28176254/s1, Table S1: Information about the sources of
Flos Chrysanthemum and wild Chrysanthemum (Chrysanthemum indicum L.).
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