Development of Shortened miR-506-3p Mimics Exhibiting Strong Differentiation-Inducing Activity in Neuroblastoma Cells
Abstract
:1. Introduction
2. Results
2.1. Dose-Dependent Differentiation-Inducing Activity of Wild-Type (WT) miR-506-3p Determined in BE(2)-C Cells
2.2. Multiple 3′-End-Truncated miR-506-3p Analogs Show Strong Differentiation-Inducing Activities in Neuroblastoma Cell Line BE(2)-C
2.3. Deleting Two Nucleotides in the Middle Positions of the miR-506-3p Sequence Did Not Impair the Differentiation-Inducing Activity
2.4. Effect of Combined 3′-End and Middle-Position Deletions on the Differentiation-Inducing Activity
2.5. Effect of 5′ U Addition to the Truncated Analogs on Their Differentiation-Inducing Activities
2.6. Shortened miR-506-3p Analogs Exhibit Differentiation-Inducing Activity in Multiple Neuroblastoma Cell Lines
2.7. Shortened miR-506-3p Analogs Exhibit Potent Activity in Arresting the Long-Term Proliferation of Neuroblastoma Cells
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Materials
4.2. Reverse Transfection with miRNA and Controls
4.3. Detection and Quantification of Neurite Outgrowth
4.4. MTT Assay
4.5. Colony Formation Assay
4.6. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Maris, J.M.; Hogarty, M.D.; Bagatell, R.; Cohn, S.L. Neuroblastoma. Lancet 2007, 369, 2106–2120. [Google Scholar] [CrossRef] [PubMed]
- Park, J.R.; Eggert, A.; Caron, H. Neuroblastoma: Biology, prognosis, and treatment. Hematol. Oncol. Clin. N. Am. 2010, 24, 65–86. [Google Scholar]
- Brodeur, G.M.; Seeger, R.C.; Schwab, M.; Varmus, H.E.; Bishop, J.M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 1984, 224, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Matthay, K.K.; Villablanca, J.G.; Seeger, R.C.; Stram, D.O.; Harris, R.E.; Ramsay, N.K.; Swift, P.; Shimada, H.; Black, C.T.; Brodeur, G.M.; et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N. Engl. J. Med. 1999, 341, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Matthay, K.K.; Reynolds, C.P.; Seeger, R.C.; Shimada, H.; Adkins, E.S.; Haas-Kogan, D. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: A children’s oncology group study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 1007–1013. [Google Scholar] [CrossRef]
- Shenouda, S.K. and S.K. Alahari, MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009, 28, 369–378. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Ding, X.; He, M.; Cheng, S.Y. microRNA and cancer. AAPS J. 2010, 12, 309–317. [Google Scholar] [CrossRef]
- Du, L.; Pertsemlidis, A. microRNAs and lung cancer: Tumors and 22-mers. Cancer Metastasis Rev. 2010, 29, 109–122. [Google Scholar] [CrossRef]
- Du, L.; Pertsemlidis, A. microRNA regulation of cell viability and drug sensitivity in lung cancer. Expert Opin. Biol. Ther. 2012, 12, 1221–1239. [Google Scholar] [CrossRef]
- Trang, P.; Wiggins, J.F.; Daige, C.L.; Cho, C.; Omotola, M.; Brown, D.; Weidhaas, J.B.; Bader, A.G.; Slack, F.J. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther. 2011, 19, 1116–1122. [Google Scholar] [CrossRef]
- Kota, J.; Chivukula, R.R.; O’Donnell, K.A.; Wentzel, E.A.; Montgomery, C.L.; Hwang, H.-W.; Chang, T.-C.; Vivekanandan, P.; Torbenson, M.; Clark, K.R.; et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009, 137, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Makeyev, E.V.; Zhang, J.; Carrasco, M.A.; Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 2007, 27, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Annibali, D.; Gioia, U.; Savino, M.; Laneve, P.; Caffarelli, E.; Nasi, S. A new module in neural differentiation control: Two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2. PLoS ONE 2012, 7, e40269. [Google Scholar] [CrossRef] [PubMed]
- Le, M.T.N.; Xie, H.; Zhou, B.; Chia, P.H.; Rizk, P.; Um, M.; Udolph, G.; Yang, H.; Lim, B.; Lodish, H.F. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol. Cell. Biol. 2009, 29, 5290–5305. [Google Scholar] [CrossRef]
- Foley, N.H.; Bray, I.; Watters, K.M.; Das, S.; Bryan, K.; Bernas, T.; Prehn, J.H.M.; Stallings, R.L. MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ. 2011, 18, 1089–1098. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, X.; Hsiao, T.H.; Lin, G.; Kosti, A.; Yu, X. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation. Oncotarget 2014, 5, 2499–2512. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, D.-Y.; Huang, L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv. Drug Deliv. Rev. 2015, 81, 128–141. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef]
- Chalbatani, G.M.; Dana, H.; Gharagouzloo, E.; Grijalvo, S.; Eritja, R.; Logsdon, C.D.; Memari, F.; Miri, S.R.; Rad, M.R.; Marmari, V. Small interfering RNAs (siRNAs) in cancer therapy: A nano-based approach. Int. J. Nanomed. 2019, 14, 3111–3128. [Google Scholar] [CrossRef]
- Bakhtiyari, S.; Haghani, K.; Basati, G.; Karimfar, M.H. siRNA therapeutics in the treatment of diseases. Ther. Deliv. 2013, 4, 45–57. [Google Scholar] [CrossRef]
- Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2017, 16, 181–202. [Google Scholar] [CrossRef] [PubMed]
- Hecker, M.; Wagner, A.H. Transcription factor decoy technology: A therapeutic update. Biochem. Pharmacol. 2017, 144, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, C.; Wood, M.J.A. Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 2018, 14, 9–21. [Google Scholar] [CrossRef]
- Garzon, R.; Marcucci, G.; Croce, C.M. Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat. Rev. Drug Discov. 2010, 9, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Bader, A.G.; Brown, D.; Stoudemire, J.; Lammers, P. Developing therapeutic microRNAs for cancer. Gene Ther. 2011, 18, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Mollaei, H.; Safaralizadeh, R.; Rostami, Z. MicroRNA replacement therapy in cancer. J. Cell Physiol. 2019, 234, 15. [Google Scholar] [CrossRef]
- Ach, R.A.; Wang, H.; Curry, B. Measuring microRNAs: Comparisons of microarray and quantitative PCR measurements, and of different total RNA prep methods. BMC Biotechnol. 2008, 8, 69. [Google Scholar] [CrossRef]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef]
- Pratt, A.J.; MacRae, I.J. The RNA-induced silencing complex: A versatile gene-silencing machine. J. Biol. Chem. 2009, 284, 17897–17901. [Google Scholar] [CrossRef]
- TargetScan, Release 8.0. 2021. Available online: https://www.targetscan.org/cgi-bin/targetscan/vert_80/targetscan.cgi?species=Human&gid=&mir_sc=&mir_c=&mir_nc=&mir_vnc=&mirg=miR-124-3p.2 (accessed on 26 June 2023).
- Friedman, R.C.; Farh, K.K.-H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef]
- Batista, P.J.; Ruby, J.G.; Claycomb, J.M.; Chiang, R.; Fahlgren, N.; Kasschau, K.D.; Chaves, D.A.; Gu, W.; Vasale, J.J.; Duan, S.; et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 2008, 31, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Grimson, A.; Farh, K.K.-H.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell 2007, 27, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Mückstein, U.; Tafer, H.; Hackermüller, J.; Bernhart, S.H.; Stadler, P.F.; Hofacker, I.L. Thermodynamics of RNA-RNA binding. Bioinformatics 2006, 22, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Partridge, V.; Sousares, M.; Shelton, S.D.; Holland, C.L.; Pertsemlidis, A.; Du, L. microRNA-2110 functions as an onco-suppressor in neuroblastoma by directly targeting Tsukushi. PLoS ONE 2018, 13, e0208777. [Google Scholar] [CrossRef]
(1) Name | (2) Sequence (5′-3′) | (3) Carrier Sequence (5′-3′) |
---|---|---|
506-WT | UAAGGCACCCUUCUGAGUAGA | UACUCAGAAGGGUGCCUUAuu |
506-TRN1 | UAAGGCACCCUUCUGAGUAG- | -ACUCAGAAGGGUGCCUUAuu |
506-TRN2 | UAAGGCACCCUUCUGAGUA-- | --CUCAGAAGGGUGCCUUAuu |
506-TRN3 | UAAGGCACCCUUCUGAGU--- | ---UCAGAAGGGUGCCUUAuu |
506-TRN4 | UAAGGCACCCUUCUGAG---- | ----CAGAAGGGUGCCUUAuu |
506-TRN5 | UAAGGCACCCUUCUGA----- | -----AGAAGGGUGCCUUAuu |
506-TRN6 | UAAGGCACCCUUCUG------ | ------GAAGGGUGCCUUAuu |
506-5’TRN1 | -AAGGCACCCUUCUGAGUAGA | UACUCAGAAGGGUGCCUU-uu |
506-5’TRN2 | --AGGCACCCUUCUGAGUAGA | UACUCAGAAGGGUGCCU--uu |
506-TRN1-5’TRN1 | -AAGGCACCCUUCUGAGUAG- | -ACUCAGAAGGGUGCCUU-uu |
(1) Name | (2) Sequence (5′-3′) | (3) Carrier Sequence (5′-3′) |
---|---|---|
506-Mid#13 | UAAGGCACCCUU-UGAGUAGA | UACUCA-AAGGGUGCCUUAuu |
506-Mid#13-14 | UAAGGCACCCUU--GAGUAGA | UACUC--AAGGGUGCCUUAuu |
506-Mid#13-15 | UAAGGCACCCUU---AGUAGA | UACU---AAGGGUGCCUUAuu |
506-Mid#13-16 | UAAGGCACCCUU----GUAGA | UAC----AAGGGUGCCUUAuu |
506-Mid#15 | UAAGGCACCCUUCU-AGUAGA | UACU-AGAAGGGUGCCUUAuu |
506-Mid#16 | UAAGGCACCCUUCUG-GUAGA | UAC-CAGAAGGGUGCCUUAuu |
506-Mid#15-16 | UAAGGCACCCUUCU--GUAGA | UAC--AGAAGGGUGCCUUAuu |
(1) Name | (2) Sequence (5′-3′) | (3) Carrier Sequence (5′-3′) |
---|---|---|
TRN2-Mid #13 | UAAGGCACCCUU-UGAGUA-- | --CUCA-AAGGGUGCCUUAuu |
TRN2-Mid #15 | UAAGGCACCCUUCU-AGUA-- | --CU-AGAAGGGUGCCUUAuu |
TRN2-Mid#13,15 | UAAGGCACCCUU-U-AGUA-- | --CU-A-AAGGGUGCCUUAuu |
U+TRN3 | UUAAGGCACCCUUCUGAGU--- | ---UCAGAAGGGUGCCUUAAuu |
U+TRN2-Mid#13,15 | UUAAGGCACCCUU-U-AGUA-- | --CU-A-AAGGGUGCCUUAAuu |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesa-Diaz, N.; Smith, M.T.; Cardus, D.F.; Du, L. Development of Shortened miR-506-3p Mimics Exhibiting Strong Differentiation-Inducing Activity in Neuroblastoma Cells. Molecules 2023, 28, 6295. https://doi.org/10.3390/molecules28176295
Mesa-Diaz N, Smith MT, Cardus DF, Du L. Development of Shortened miR-506-3p Mimics Exhibiting Strong Differentiation-Inducing Activity in Neuroblastoma Cells. Molecules. 2023; 28(17):6295. https://doi.org/10.3390/molecules28176295
Chicago/Turabian StyleMesa-Diaz, Nakya, Mitchell T. Smith, Daniela F. Cardus, and Liqin Du. 2023. "Development of Shortened miR-506-3p Mimics Exhibiting Strong Differentiation-Inducing Activity in Neuroblastoma Cells" Molecules 28, no. 17: 6295. https://doi.org/10.3390/molecules28176295
APA StyleMesa-Diaz, N., Smith, M. T., Cardus, D. F., & Du, L. (2023). Development of Shortened miR-506-3p Mimics Exhibiting Strong Differentiation-Inducing Activity in Neuroblastoma Cells. Molecules, 28(17), 6295. https://doi.org/10.3390/molecules28176295