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Abstract: Bacterial pathogens cause pain and death, add significantly to the expense of healthcare
globally, and pose a serious concern in many aspects of daily life. Additionally, they raise signif-
icant issues in other industries, including pharmaceuticals, clothing, and food packaging. Due to
their unique properties, a great deal of attention has been given to biogenic metal nanoparticles,
nanocomposites, and their applications against pathogenic bacteria. This study is focused on bio-
genic silver and copper nanoparticles and their composites (UL/Ag, O-NPS, Ul/CuO-NPs, and
Ul/Ag/Cu-NCMs) produced by the marine green alga Ulva lactuca. The characterization of biogenic
nanoparticles UL/Agp O-NPS and Ul/CuO-NPs and their composites Ul/Ag/Cu-NCMs has been
accomplished by FT-IR, SEM, TEM, EDS, XRD, and the zeta potential. Minimum inhibitory concen-
tration (MIC) and minimum bactericidal concentration (MBC) experiments were conducted to prove
antibacterial activity against both Gram-positive and Gram-negative bacteria and anti-biofilm. The
FTIR spectroscopy results indicate the exiting band at 1633 cm ™!, which represents N-H stretching in
nanocomposites, with a small shift in both copper and silver nanoparticles, which is responsible for
the bio-reduction of nanoparticles. The TEM image reveals that the Ul/Ag/Cu-NCMs were hexago-
nal, and the size distribution ranged from 10 to 35 nm. Meanwhile, Ul/CuO-NPs are rod-shaped,
whereas UL/Agy O-NPS are spherical. The EDX analysis shows that Cu metal was present in a
high weight percentage over Ag in the case of bio-Ag/Cu-NCMs. The X-ray diffraction denotes that
Ul/Ag/Cu-NCMs, UL/CuO-NPs, and UL/Ag, O-NPS were crystalline. The results predicted by the
zeta potential demonstrate that Ul/Ag/Cu-NCMs were more stable than Ul/CuO-NPs. The antibac-
terial activity of UL/Ag, O-NPS, Ul/Ag/Cu-NCMs, and UL/CuO-NPs was studied against eleven
Gram-negative and Gram-positive multidrug-resistant bacterial species. The maximum inhibition
zones were obtained with UL/Ag, O-NPS, followed by Ul/Ag/Cu-NCMs and Ul/CuO-NPs in all
the tested bacteria. The maximum anti-biofilm percentage formed by E. coli KY856933 was obtained
with UL/Ag, O-NPS. These findings suggest that the synthesized nanoparticles might be a great
alternative for use as an antibacterial agent against different multidrug-resistant bacterial strains.

Copyright: © 2023 by the authors.
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nomycetes, yeasts, fungi, and plants [1-3]. The green biogenesis of nanoparticles (NPs)
utilizing either algae or plant extracts has appeared to be an economical and environmen-
tally beneficial technique [4-6]. Specifically, macro-algae cover various bioactive contents
with multiple constructions and promising biological applications [7,8]. Due to their po-
tential utility in the bio-manufacture of nanomaterials, algae have been referred to as
“nanofactories”. The main benefit of this environmentally friendly fabrication is the lack of
hazardous solvents and reagents, which prevents the production of waste and byproducts
during the synthesis of metal nanoparticles. In addition, the use of algae fosters the goal of
using natural, renewable resources [9,10]. The process of metal stabilization and reduction
is supported by a variety of substances found in the crude extracts of macroalgae, such
as amines, amides, alkaloids, terpenoids, pigments, proteins, etc. [11,12]. Ulva lactuca is a
type of green seaweed comprised of highly active substances with antitumor, antioxidant,
hypocholesterolemic, and antimicrobial capabilities [13]. Ag-NPs can be fabricated using
U. lactuca [14]. Ag-NPs fabricated using U. lactuca have antibacterial activities against
Escherichia coli and Pseudomonas aeruginosa [15]. The biosynthesis of nanoparticles by
U. lactuca is a reliable, economical, and eco-friendly process for the synthesis of metallic
nanoparticles [16].

A nanocomposite is a composite material in which at least one of the materials is
one dimension in size, around 10-9 nm [17]. They have high-performance materials that
exhibit rare characteristics. Their perspective is so notable that they are valuable in many
fields [18], from packaging to biomedical applications [19]. The antifungal effect resulting
from the copper—silver—chitosan nanocomposite was more significant than that of other
nanoparticles tested, which has had an essential influence on the growth of Candida albicans
in laboratory conditions compared to other nanoparticles [20]. Different studies showed that
the as-synthesized Ag/Cu-NMCs could be an efficient substitute for an antimicrobial agent
against drug-resistant microbes and plant-pathogenic bacteria [21,22]. The Ag—Cu—Co oxide
caused a maximum zone of inhibition against E. coli that was found to be 25 mm [23]. The
fabricated nanostructured surfaces (Ag-CuxO nanostructures) exhibit excellent bactericidal
efficiency against E. coli (Gram-negative) and Staphylococcus aureus (Gram-positive) [24].
Good antibacterial activity was noted against both bacteria in milk (Escherichia coli and
Staphylococcus aureus) with a sensitivity of 40-90% at CuO/Ag concentrations ranging from
6 to 200 mg/100 mL [25]. CuO/Ag,O NCPs synthesized by the leaf extract of Eichhornia
crassipes show good antibacterial activities against four human pathogenic bacteria, such as
K. pneumonia, E. coli, S. epidermides, and S. aureus [26].

Due to their unique characteristics, such as superior electrical conductivity, low
electrochemical migration behavior, a high melting point, and, most importantly, low
cost, copper nanoparticles have applications in many areas, such as industries, medicine,
electronics, etc. [27,28]. For more than 200 years, copper has been known for its ability to
inhibit the growth of microorganisms and lower microbial concentrations by 99.9% [29,30].
Numerous studies have shown that copper nanoparticles show excellent antimicrobial
activity against many bacteria [28,31]. Moreover, nano-copper oxide (Cu-O) works as an es-
sential antimicrobial agent against Staphylococcus aureus, Escherichia coli, Vibrio cholera, Pseu-
domonas aeruginosa, Bacillus subtilis, and Syphillis typhus [32-35]. The reputation of copper
has expanded lately with the COVID-19 pandemic, when it was noticed that SARS-CoV-2
on copper surfaces decomposes more rapidly (in four hours) than other materials, such as
plastic and stainless steel [36].

This study aims to investigate the efficacy of the marine green alga Ulva lactuca, col-
lected from the Jeddah seashore, as reducing and stabilizing agents for the biofabrication of
UL/Ag; O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NMCs. We have compared the characteris-
tics of silver and copper nanoparticles and their composites. We have also determined the
antibacterial activities of biofabricated nanoparticles and their composites against some
multi-drug-resistance bacterial strains.
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2. Results and Discussion
2.1. Characterisation of Ul/Ag»O-NPS, Ul/Ag/Cu-NCMs, and Ul/CuO-NPs
2.1.1. Fourier Transform Infrared (FTIR) of UL/Ag, O-NPS, Ul/Ag/Cu-NCMs and
Ul/CuO-NPs

Fourier transform infrared spectroscopy was conducted to reveal the functional groups
in the molecules characterized during the production of the newly synthesized nanoparti-
cles, which are responsible for the stabilization and coating of the nanoparticles in all three
nanoparticles. The FTIR spectra bands of the silver nanoparticles are shown in Figure 1
and Table 1. The silver nanoparticles (UL/Agy O-NPS) biofabricated by U. lactuca illustrate
10 peaks at 3752, 3419, 2426, 1765, 1636, 1383, 1202, 1097, 826, and 606 cm~!. The FT-IR
spectroscopy of the Ul/CuO-NPs shows 17 peaks at 3587, 3564, 3390, 2927, 1635, 1386, 1123,
1090, 988, 944, 876, 781, 724, 623, 601, 483, and 420 cm . The silver/ copper nanocomposites
exhibit 18 peaks at 3588, 3565, 3390, 2925, 1633, 1125, 1088, 1025, 987, 944, 874, 780, 733,
631, 600, 509, 483 and 417 cm~1. The band at 1633 cm ™!, which is present in all of the
synthesized nanoparticles (UL/Ag, O-NPS, Ul/Ag/Cu-NCMs, and Ul/CuO-NPs) with a
small shift, represents the N-H stretching band, which denotes the active group that acts as
reducing and stabilizing agents in biofabricated nanoparticles. Phytochemical compounds
found in biomass, such as alcohols, aldehydes, alkanes, and epoxy groups or ether groups,
can be responsible for the nucleation process to reduce Ag+ to Ag® [37]. The biosynthesis of
nanoparticles may be triggered by several compounds, such as carbonyl groups, phenolics,
flavonones, terpenoids, amides, amines, proteins, pigments, alkaloids, and other reducing
agents present in the biological extracts [11].

CU/Ag-NPS

2
p)

T (%)

4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (Cm™)

Figure 1. Fourier transform infrared spectroscopic data of Ul/Ag,O-NPS, Ul/Ag/Cu-NCMs, and
Ul/CuO-NPs derived from U. lactuca.

Table 1. Absorption peaks assigned to the active groups of Ul/Ag,O-NPS, Ul/Ag/Cu-NCMs, and
Ul/CuO-NPs derived from U. lactuca.

Wavenumber cm 1 Ul/Ag/Cu-NCMs  Ul/CuO-NPs  UL/Ag, O-NPS Assignment References
3752 Nd Nd D OH bonds [38]
3588 D -1 Nd OH bonds [39]
3565 D -1 Nd OH bonds [40]
Bonded N-H/C-H/O-H
3419 Nd Nd b stretching of amines and amides [41]
3390 D D Nd O-H Stretching [42]
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Table 1. Cont.

Wavenumber cm 1 Ul/Ag/Cu-NCMs  Ul/CuO-NPs  UL/Ag, O-NPS Assignment References
2925 D +2 Nd CH stretching bands [43]
2426 Nd Nd D Carboxyl acid [41]
1765 Nd Nd D Carbonyl stretching C=0 [44]
1633 D +2 +3 N-H stretching band [45]
1386 Nd D -3 C-H stretching [46]
1202 Nd Nd D Alkyl amine [47]
1125 D -2 Nd Amide III band region [48]
1088 D +2 9 C—N stretchipg ab.sorpt.ion of [49]

primary aliphatic amines
1025 D Nd Nd Aromatic C—H’in plane [50]
deformation
987 D +1 Nd Si-O stretching region [51]
944 D D Nd Phosphodiester region [51]
874 D +2 Nd Organosulfate C-O-5 [52]
826 Nd Nd D Stretching, C-C [41]
Pyridine (pyridine ring
780 b +1 Nd vibration and C-H deformation) [53]
733 D +1 Nd Cu-O [54]
631 D +1 Nd OH Stretching [55]
600 D +1 +6 Ring deformation of phenyl [54]
509 D Nd Nd Cu-O [56]
483 D D Nd Cu-O [56]
417 D +3 Nd Cu-O [56]

D: Detected; Nd: Not Detected; (—): shifted wavenumber by minus; (+): shifted wavenumber by addition.

2.1.2. Scanning and Transmission Electron Microscope (SEM and TEM) of UL/Ag, O-NPS,
Ul/CuO-NPs, and Ul/Ag/Cu-NCMs Derived from U. lactuca

The SEM image has been used to illustrate the size and shape of the produced nanopar-
ticles. As shown in the sample images in Figure 2A-C, the surface is rough due to the
presence of Cu, Ag, and Ag combined with Cu. The modification in morphology and
coarseness of the surface was due to the foundation of nanoparticles [57].

The TEM image shows that UL/AgyO-NPS are spherical in shape and range from 10
to 45 nm (Figure 2D and Table 2). The image proves that UL/Ag, O-NPS are polydispersed
and range in size from 15 to 20 nm, as shown in the frequency histogram (Figure 2G). The
Ag-NPs synthesized by Ulva fasciata were spherical and 50 nm in size [58]; by Enteromorpha
flexuosa were 2-32 nm/circular [59]; by Padina tetrastromatica were 14 nm/spherical [60];
and by Gracilaria corticata were 8-46 nm/spherical [61].

The TEM image of the Ul/CuO-NPs shows they are rod-shaped, one-dimensional
nanoparticles; the length of the rod ranged from 46 to 65 nm, and the width ranged from
10 to 40 nm (Figure 2E). The Ul/CuO-NPs are polydispersed and range in size, according
to width, from 20 to 25 nm (Figure 2E and Table 2). The size of the synthesized copper
nanoparticles using Zingiber officinale and Curcuma longa rhizome extract was in the nano-
range of approximately 20 to 100 nm [62], and the average size of the copper nanoparticles
synthesized by Eucalyptus leaf extract ranged from 10 to 130 nm. In contrast, the size
of the mint leaf extracts of the copper nanoparticles ranged from 23 to 39 nm [63]. The
results estimated that there was some aggregation of Ul/CuO-NPs; some nanoparticles
were well distributed, while most were found in the agglomerated form [63]. The results
agree with Ramzan et al. [64] when using Cedrus deodara aqueous extract to synthesize the
copper nanoparticles; only a few spherical-shaped and well-separated particles were found,
and most of them were agglomerated. Amaliyah et al. [65] used Piper retrofractum Vahl
extract to synthesize spherical Cu-NPs with the propensity to form a random aggregate.
Moreover, Mahmoud et al. [66] utilized orange peels to synthesize CuO-NPs, which appear
to aggregate. Meanwhile, when Ag and Cu were loaded to form Ul/Ag/Cu-NCMs, the
shape and size changed to a hexagonal shape, and they were well distributed in the
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solution with a size range of 10-35 nm (Figure 2G and Table 2). The image denotes
polydispersed Ul/Ag/Cu-NCMs with a frequency in the range of 15 to 20 nm with 39%.
The image demonstrates there is a core shell around the UL/Ag, O-NPS, Ul/CuO-NPs,
and Ul/Ag/Cu-NCMs; the shell appears faint and dark around the nanoparticles and is
denoted by arrows in the images. The shell may be related to organic compounds derived
from U. lactuca.
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Figure 2. The SEM (A-C) and TEM (D-F) images and frequency distribution (%) (G-I) of
UL/Ag, O-NPS, Ul/CuO-NPs, Ul/Ag/Cu-NCMs derived from U. lactuca. Arrows refer to the shell

around nanoparticles.
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Table 2. The main differences between biofabricated nanoparticles by U. lactuca.
Biofabricated . Size Range (nm) o
Nanoparticles Shape Size Range (nm) (Predominant) Frequency%
UL/Agy O-NPS Spherical 10-45 15-20 28%
Ul/CuO-NPs Rod 1040 20-25 50%
Ul/Ag/Cu-NCMs Hexagonal 10-35 15-20 39%

The core-shell nanomaterials can be extended to the class of nanomaterials having
distinct boundary materials covering (either fully or partially) the inner component. Core-
shell nanoparticles (core-shell NPs) are structures that frequently combine the characteristics
of the two (or more) materials used, with the shell controlling the surface properties of the
particles while encasing the core entirely [67].

The results indicate that U. lactuca is an excellent reducing and stabilizing agent.
Lopez-Ubaldo et al. [68] reported the size of Ag/Cu-NCMs biosynthesized by Ricinus
communis was in the range of 10-25 nm and spheroid in shape. The size of Ag/Cu-NCMs
green synthesized by Opuntia ficusindica, as indicated by Rocha-Rocha et al. [69], ranged
from 10 nm to 20 nm. Mohamad et al. [70] stated that leaf palm extract efficiently reduced
and stabilized agents for the biosynthesis of Cu/Ag-Nano composites. The supernatant
of Rhodopseudomonas capsulate showed high efficiency when it was used to synthesize
Cu/Ag-NCMs.

2.1.3. Energy Dispersive X-ray (EDX) of UL/Ag, O-NPS, Ul/CuO-NPs, and Ul/Ag/
Cu-NCMs Derived from U. lactuca

Energy dispersive X-ray (EDX) is a vital analytical procedure used to verify the
sample’s elemental composition. Ag and O were found, by weight, in UL/Ag, O-NPS at
54.42 and 47.58%, respectively. The chemical composition of the prepared Ul/CuO-NPs was
identified by EDX analysis, as shown in Figure 3b. The EDX analysis of the Ul/CuO-NPs
revealed that there was 37.94% copper, 45.61% oxygen, and 16.46% carbon. The four peaks
are C, O, Cu, and Ag, with weight percentages of 28.91, 42.66, 27.47 and 0.96, respectively
in Ul/Ag/Cu-NCMs. The extensive presence of Cu over Ag may be related to the methods
of synthesis that use 1:9 Ag:Cu in the synthesis of nanocomposites. The appearance of
different elements, such as oxygen 42.66% and carbon 17.08%, may be due to the organic
compounds found in the alga extract [71].

Elem... Weight% Atomic% Weight% Atomic%

Elem... Weight% Atomic%
CK 1646 2844

0K 4561 5917
CuK 7% 1239

0K 5242 8813
AglL 4758 1187

Totals  100.00 Totals ~ 100.00

o161 6 8 10 2 4 6 1 0 2 4 6 & 0 £ 1 1 18

0 2 4
KV Ry Scale 877 cs Cursor: 0.000 KeV  FullScale 8677 cts Cursor; 0000 KeV
(b) (0)

Figure 3. Energy dispersive X-ray (EDX) of UL/Agp O-NPS (a), Ul/CuO-NPs (b), and Ul/Ag/Cu-
NCMs (c) derived from U. lactuca.
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2.1.4. X-ray Diffraction (XRD) of Ul/Agy O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs
Derived from U. lactuca

X-ray diffraction was used to investigate the size and crystallization of UL/Ag, O-NPS
synthesized by U. lactuca. The results revealed the peak positions with 20 values of 19.843,
29.841, 31.972, and 40.6. The Miller indices (h k 1) for each peak were indexed as 100, 110,
110, and 111, respectively (Figure 4a, and Table 3a). These results confirm the formation of
UL/Ag, O-NPS as nanocrystals, and the crystal size ranged from 12.2 to 36.7. The major
crystalline peak was obtained at 2 theta 29.841 with an intensity of 100% and a size of
12.2 nm. The X-ray diffraction of the Ag-NPs biofabricated by Turbinaria urbinate showed
two intense peaks at 27.94 and 32.27, which correspond to Miller indices of 110 and 111 [72].
Five peaks of X-ray diffraction patterns were obtained with biofabricated Ag-NPs obtained
by marine green alga Ulva fasciata, with 20 values of 27.925, 32.409, 46.333, 57.582, and
76.618 degrees corresponding to 111, 200, 220, 222, and 331, respectively [73]. The X-ray
diffraction peaks of gelatin-capped Ag-NPs biofabricated by Oscillatoria limnetica extract
had 20 values of 14.26, 24.15, 30.08, 32.02, and 42.01°, which correspond with Miller indices
of 100, 100, 110, 110, and 111, respectively [74].

Lin (Counts)

(a)

100)

| |;7 ir‘ || | || 11l N I i fi-xm

a
2-Theta - Scale

40

321)

@1

LIn (uounts)
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“32)
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Figure 4. Cont.
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Figure 4. X-ray diffraction of UL/Ag, O-NPS (a), Ul/CuO-NPs(b), and Ul/Ag/Cu-NCMs (c) derived
from U. lactuca.
Table 3. (a) X-ray diffraction of Ul/Agy O-NPS derived from U. lactuca. (b) X-ray diffraction of Ul/CuO-
NPs derived from U. lactuca. (c). X-ray diffraction of Ul/Ag/Cu-NCMs derived from U. lactuca.
(@

Peak position 20 1000 x sin?Q 1000 x sin’©/36 Reflection Crystal size (nm) Intensity %
19.843 30 1 100 36.7 81.8
29.841 66 2 110 12.2 100
31.972 76 2 110 21.8 83.8

40.6 120 3 111 28.3 74.3

(b)
13.865 15 2 110 24.1 23.7
16.608 22 3 111 209 30.8
22.889 40 6 211 28.4 66
28.035 59 8 220 0.7 36.1
33.673 85 12 222 8.2 421
35.763 95 14 321 21.3 100
46.167 153 22 332 14.7 38
52.718 199 29 432 10.5 327
69.226 327 46 631 33 0.9
()

14.221 15 2 110 20.2 19.6
16.659 21 3 111 20 29.8
23.054 40 6 211 24.1 68.1
28.238 59 10 310 24.2 447
30.981 71 12 222 33.5 33.9
33.571 83 17 321 18.3 51.5
35.914 95 16 400 28.8 100
38.091 106 18 330 117.4 38.6
44.389 143 24 422 16.1 22.7
46.573 156 26 431 38.1 27.4

52.921 198 33 441 0.3 31.2
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The XRD spectra of Ul/CuO-NMPs derived from U. lactuca reveal the crystal lattice
structure of the biosynthesized Ul/CuO-NPs (Figure 4b and Table 3b). The XRD spectrum
analysis for Ul/CuO-NPs shows diffraction peaks at 20 13.865, 16.608, 22.889, 28.035,
33.673, 35.763, 46.167, 52.718, and 69.226; these diffraction peaks were indexed as 110,
111, 211, 220, 222, 321, 332, 432, and 631, respectively. The results demonstrate that the
Ul/CuO-NPs is crystalline, and the crystal size ranged from 8.2 to 33. The major crystalline
peak was obtained at 2 theta 35.763 with an intensity of 100%, and a size of 21.3 nm. The
peak positions of Ul/CuO-NPS synthesized by macro green alga Ulva fasciata were at 20
values of 16.36, 22.62, 27.77, 31.74, 35.43, 41.14, 52.37, 56.07, 60.02, 66.55, and 73.64, which
were indexed as 100, 110, 111, 200, 320, 210, 211, 221, 310, 311, 222, and 320, respectively [57].
The diffraction peaks of Cu-NPs synthesized by red alga Pterocladia capillacea were at 20
10.9,27.1,31.5,45.2,56.3, and 75.1°, and were indexed (h k 1) as 135, 114, 375, 220, and 105,
respectively [75]. The XRD patterns of the Cu-NPs biofabricated by a soluble polysaccharide
extracted from marine alga Sargassum vulgare were at 20 33.8, 39.7, 47.3, 65.7, and 78.8°
indexed with Miller plans as 110,111, 200, 220, and 313, respectively [76]. The results in
Figure 4c and Table 3b show the peak positions of the XRD patterns of Ul/Ag/Cu-NCMs
derived from U. lactuca, with 20 values of 14.22, 16.65, 23.05, 28.23, 30.98, 33.57, 35.91, 38.09,
44.38, 46.57, and 52.92; the Miller indices (h k 1) for each peak were indexed as 110, 111, 211,
310, 222, 321, 400, 330, 422, 431, and 441, respectively. The most intense 100% peak was
obtained at 2 theta 35.914 and size 28.8. The results denote the crystalline UL/Ag, O-NPS,
Ul/CuO-NPs, and Ul/Ag/Cu-NCMs derived from U. lactuca.

2.1.5. Zeta Potential of UL/Agy O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs Derived
from U. lactuca

The zeta potential is an analysis method that measures the number of electric charges
on the nanoparticle’s surface. Figure 5 demonstrates the zeta potential of UL/Ag, O-
NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs derived from U. lactuca. The results show that
the zeta potential value of UL/Ag, O-NPS has a positive charge (+1.14), while the zeta
potential values of Ul/CuO-NPs and Ul/Ag/Cu-NCMs have negative charges (—0.195
and —3.69, respectively). The zeta potential values differ according to the methods used
and plant synthesis. The silver nanoparticles formed by the fungus Trichoderma viride had a
positive charge [77]. The zeta potential values of the Ag-NPs produced by photosynthesis
by Oscillatoria limnetica had a highly positive charge [78].

Results

Mean (mV) Area (%) St Dev (mV)
Zeta Potential (mV): 1.14 Peak 1: 1.14 100.0 4.36
Zeta Deviation (mV): 4.36 Peak 2: 0.00 0.0 0.00
Conductivity (mS/cm): 0.590 Peak 3: 0.00 0.0 0.00

Result quality : See result quality report

Zeta Potential Distribution

700,000
600,000
(a) 500,000
400,000

300,000

Total Counts

200,000

100,000

o
=100 o 100 200

Apparent Zeta Potential (mV)

[———_Record 16:AG 1]

Figure 5. Cont.



Molecules 2023, 28, 6324

10 of 22

Results

Mean (mV) Area (%) St Dev (mV)
Zota Potential (mV): -0.195 Peak 1: -0.195 100.0 562
Zeota Deviation (mV): 5.62 Peak 2: 0.00 0.0 0.00
Conductivity (mS/cm): 0.0162 Peak 3: 0.00 0.0 0.00
Result quality : See result quality report
Zeota Potential Distribution
400,000 T©Fft Tttt e e e
(b) 300,000 F7 7 e s RS
2 S $ : :
E : : : :
8
S 3 . :
S 06)000) T e i i i st S L e R U
=
B T e ] B S TR
o
-100 100 200
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Figure 5. Zeta potential of UL/Agy O-NPS (a), Ul/CuO-NPs (b), and Ul/Ag/Cu-NCMs (c) derived
from U. lactuca.

2.2. Antibacterial Activity of Synthesized UL/Ag, O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs
Derived from U. lactuca

The antibacterial activity of UL/Ag, O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs
derived from U. lactuca in different volumes (10, 30, and 100 uL at the same concentration
of 1 mg/mL) was tested against 11 bacterial strains of Gram-negative and Gram-positive
multidrug-resistant bacteria: Streptococcus mutans ATCC 25175 and Lactobacillus acidophilus
CH-2 [79]. The results indicate that the different volumes and types of nanoparticles had
significant effects on the antibacterial activity. The higher volumes (100 uL/well) possessed
higher antibacterial activities than 30 and 10 uL/well (Figure 6 and Table 4). The maximum
zone of inhibition for the volume (100 puL) of Ul/Ag, O-NPs was recorded against Strepto-
coccus mutans ATCC 25175 (17 mm), followed by Ul/Ag/Cu-NCMs (14 mm). No significant
effect of Ul/CuO-NPs (100 uL) and Ul/Ag-NPs with volume of 10 and 30 pL were noted.
The lowest inhibition zone was recorded with Ul/CuO-NPs (10 and 30 uL). The UL/Ag,
O-NPS showed the highest antibacterial activity (18.3 mm at 100 nuL) against Lactobacillus aci-
dophilus CH-2, followed by Ul/Ag/Cu-NCMs (16 mm at 100 puL). The Ul/CuO-NPs showed
the lowest antibacterial activity against Staphylococcus aureus ATCC6538 and Staphylococcus
aureus in the inhibition zone (7 mm at 10, and 30 puL). The Ul/Ag-NPs and Ul/Cu-NPs
possessed better antibacterial activity against Staphylococcus aureus than the Ul/Ag/Cu-
NCMs with a volume of 100 uL. The Ul/Ag, O-NPs denoted the highest antibacterial
activity against Klebsiella pneumoniae KY856924, Acinetobacter KY856930, E. coli KY856933,
and Enterobacter KY856934 at 100 uL /well, but the results showed that the Ul/CuO-NPs
had the highest antibacterial activity against E. coli KY856932, and Ul/Ag/Cu-NCMs had
higher activity against Enterobacter aerogenes at 100 uL/well. This study demonstrates that
the UL/Ag, O-NPS had more antibacterial activity in most tested bacteria, except E. coli
KY856932 and Enterobacter aerogenes. The higher antibacterial activity of UL/Ag, O-NPS
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over Ul/CuO-NPs and Ul/Ag/Cu-NCMs may be due to Ul/Ag, O-NPs having a positive
charge. The positively charged Ag-NPs displayed the largest inhibitory zones against all
the strains tested and in all the concentrations employed. In any concentration examined,
neutral and negatively charged AgNPs did not exhibit enough antibacterial action against
P. vulgaris [80]. The positively charged BPEI-AgNPs were the most toxic NPs, whereas
the more negatively charged citrate-AgNPs were the least hazardous [81]. Bacteria with a
negative surface charge come into contact with nanoparticles with a positive zeta poten-
tial, and the electrostatic forces that result encourage a stronger attraction and interaction
between the two organisms and may even allow for bacterial membrane penetration [82].
Also possible are the low-release Ul/CuO-NPs and Ul/Ag/Cu-NCMs. The Cu-NPs may
possess antibacterial activity by denaturing the proteins and enzymes of bacteria [83]. An
investigation was conducted by Chandraker et al. [84] and an excellent result was seen with
a 12.43 mm zone of inhibition for the antibacterial activity of green Cu-NPs produced utiliz-
ing an aqueous leaf extract of Ageratum houstonianum against the Gram-negative bacterium
Escherichia coli. A strong antibacterial effect of Cu-NPs on Gram-positive Bacillus subtilis
and Gram-negative Escherichia coli was also mediated by an aqueous extract of Curcuma
longa. When compared to Gram-positive bacteria, the Gram-negative bacteria had a greater
zone of inhibitory growth, which suggests that the Gram-positive bacteria are more sensi-
tive to Cu-NPs [85]. A previous study performed by Jayandran et al. [86] compared the
antibacterial activities of Cu-NPs synthesized using curcumin against two Gram-positive
(Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria to
the antibacterial activity of pure curcumin. Fascinatingly, the zone of inhibition recognized
for Cu-NPs against S. aureus and B. subtilis showed higher antibacterial activity than the
normal drug, chloramphenicol.

Table 4. Effect of different volumes (10, 30, 100 uL) of UL/Ag, O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-
NCMs (conc., 1 mg/mL) derived by U. lactuca in Gram-positive and Gram-negative bacteria, deter-
mined by inhibition zone (mm).

Bacterial Strains Volume UL/Ag, O-NPS Ul/CuO-NPs Ul/Ag/Cu-NCMs Significant
10 112 +0.28 724028 gabe 4 057
Streptococcus mutans ATCC 25175 30 1124+ 1.15 73 +1.15 9.5b¢ 4+ 0.0 0.001
100 17ded 4+ 115 112 4+0.28 14.5 hikk + 115
10 92405 734057 734028
Lactobacillus acidophilus CH-2 30 149> 40,57 72 +0.0 9.5°d 4+ 0.28 0.001
100 18.3 def 4+ 057 11b +0.57 16 % +0.57
10 102 4+ 0.0 72 +0.0 72 +057
Staphylococcus aureus ATCC6538 30 102 £0.28 72£0.0 82 +0.57 0.001
100 17.5d¢f + 115 11b + 057 13.5 8hi 4
10 102 £+ 0.57 72400 9.5b¢ +0.76
Staphylococcus aureus 30 102 £ 0.0 72+0.0 9.5b¢ +1.15 0.001
100 185 + 0.0 174 4+ 057 13f8h +1.15
10 924 0.28 7240.0 9abc 4 00
Staphylococcus epidermidis 30 112 +0.28 82 +0.57 10 bed 4 0.57 0.001
100 19.3f4+ 057 12b 4+ 057 14 hij 4 0.57
10 102 4+ 1.04 7240.0 8ab +0.86
Klebsiella pneumoniae KY856924 30 112 £ 0.57 724+00 9abe 4 0.0 0.001
100 1654 + 0.0 11 +1.15 12 ¢f8 4+ 0.57
10 102 + 0.28 72 +0.0 gab 4 0.57
Acinetobacter KY856930 30 112 £0.0 724057 gabc 4 .28 0.001
100 17de +1.15 100 +1.44 13f8h +1.15
10 10240 72400 8ab 4+ 0.0
E. coli KY856932 30 102 +£1.15 72400 gabc 4115 0.001
100 14b + 057 15 ¢ + 0.750.0 140 + 0
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Bacterial Strains Volume UL/Ag, O-NPS Ul/CuO-NPs Ul/Ag/Cu-NCMs Significant
10 112+0 72+ 1.15 11 ¢de 4 0
E. coli KY856933 30 112 +1.05 174 +1.44 181+ 0.57 0.001
100 21.38 + 0.57 20.5¢ + 0.0 1814 0.0
10 924 0.57 7240.0 9abc 4 0.28
Enterobacter KY856934 30 17.9¢ +0.28 72400 11.59¢f + 0.0 0.001
100 162 + 0.0 15¢4+0.0 15¢+01.15
10 92 +40.28 724057 9 abc 4 28
Enterobacter aerogenes 30 102 £ 0.57 78 +£1.15 gabe 4 0.001
100 153b 4+ (.57 14€4+0.0 15.5b + 0.57
Sig 0.001 0.001 0.001
Different letters in each column are significant value (p < 0.05).
Gram-Positive Gram-Negative
Ag-NPs Cu-NPs Ag/Cu-NCs Ag-NPs Cu-NPs Ag/Cu-NCs

L

Streptococcus mutans ATCC 25175

TR

Staphylococcus aureus

Staphylococcus epidermidis

HR

~

Enterobacter acrogenes
- e

s

Klebsiella pneumoniae KY856924

Acinetobacter KY856930

Figure 6. Antibacterial effects of green synthesized UL/Ag, O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-
NCMs (100 uL/well).
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2.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration
(MBC) Assays

The MIC value can be used to assess the effectiveness of nanomaterials. The MIC
is described as the lowest antimicrobial compound concentration that inhibits a microor-
ganism’s growth [87]. The results in Table 5 demonstrate that, after 24 h of incubation at
37 °C, the MIC value of UL/Agy O-NPS was 0.062 mg/L with Streptococcus mutans ATCC
25175, Lactobacillus acidophilus CH-2, E. coli KY856933, and Enterobacter KY856934. The
MIC value (0.25 mg/mL of UL/Agy O-NPS) was observed with Lactobacillus acidophilus
CH-2, Staphylococcus aureus ATCC 25923, Klebsiella pneumoniae KY856924, Acinetobacter
KY856930, E. coli KY856932, E. coli KY856933, Enterobacter KY856934, and Enterobacter
aerogenes. The MIC values of Ul/Ag/Cu-NCMs were 0.25 mg/mL with Streptococcus mu-
tans ATCC 25175, Lactobacillus acidophilus CH-2, Staphylococcus aureus ATCC6538, Klebsiella
pneumoniae KY856924, Acinetobacter KY856930, E. coli KY856932, Enterobacter KY856934,
and Enterobacter aerogenes. The MBC is the lowest antibacterial agent concentration that
kills most bacterial inoculums [88]. The results in Table 5 demonstrate the MBC of UL/Ag,
O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs. The results show that the MBC of UL/Ag,
O-NPS was 0.125 mg/mL with Streptococcus mutans ATCC 25175, Lactobacillus acidophilus
CH-2, Staphylococcus epidermidis ATCC 12228, E. coli KY856933, and Enterobacter KY856934.
The MBC was 0.5 mg/mL of Ul/CuO-NPs and Ul/Ag/Cu-NCMs with Streptococcus mutans
ATCC 25175, as well as of Ul/Ag/Cu-NCMs with Staphylococcus aureus ATCC 25923 and of
UL/Ag, O-NPS with Klebsiella pneumonia KY856924 and E. coli KY856932. The MBC values
were more than 1 mg/mL of Ul/CuO-NPs with Lactobacillus acidophilus CH-2, Staphylococcus
aureus ATCC 25923, Staphylococcus epidermidis, Klebsiella pneumoniae KY856924, Acinetobacter
KY856930, E. coli KY856932, and Enterobacter KY856934; the MBC values were also more
than 1 mg/mL of Ul/Ag/Cu-NCMs with Staphylococcus aureus ATCC6538, Staphylococcus
epidermidis ATCC 12228, Klebsiella pneumoniae KY856924, Acinetobacter KY856930, E. coli
KY856932, Enterobacter KY856934, and Enterobacter aerogenes. It was revealed that the Ag-
NPs had a more vital antibacterial capacity than the Cu-NPs, suggesting that Ag ions are
more effective antimicrobial agents than Cu ions [89,90]. The Ag-NPs also exhibited greater
antibacterial potency against different strains of E. coli and S. aureus, as well as against
fungi [91], which may be a result of their more potent interaction with the polysaccharides
and proteins found on cell walls [92]. Because Cu-NPs have a lower antibacterial capacity
than Ag-NPs, the possibility of an oxide layer on them has been suggested [93,94].

Table 5. Minimum inhibitory concentration (MIC) assays and minimum bactericidal concentration
(MBC) assays of UL/Ag, O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs derived from U. lactuca.

MIC (Nano mg/mL) MBC (Nano mg/mL)
Bacteria Nano Types
1 0.5 025 0125 0.062 0.03 1 0.5 0.25 0.125 0.062

UL/Ag, O-NPS — — - — — + - - — — +

Streptococcus mutans

1 -NP - — - - _

ATCC 25175 Ul/CuO-NPs * ot * + +
Ul/Ag/Cu-NCMs — - - + + + - — + + +
UL/Ag, O-NPS — — - - — + - - - - +
Lactobaczlgﬁ azcwlophllus Ul/CuO-NPs — _ _ N N N R R N N N
Ul/Ag/Cu-NCMs — - - + + + - — — + +
UL/Ag, O-NPS — — + + + + - — — + +
Staphilggégtésé gureus Ul/CuO-NPs _ _ _ 4 n + + + + + +
Ul/Ag/Cu-NCMs — — — + + + + + + + +
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Table 5. Cont.

MIC (Nano mg/mL) MBC (Nano mg/mL)
Bacteria Nano Types
0.5 025 0125 0.062 0.03 1 0.5 0.25 0.125 0.062
UL/Ag2 O-NPS — — — + + + - — — + +
Ul/Ag/Cu-NCMs — - - — + + - - + + +
UL/Ag, O-NPS — - - — + + - — _ _ +
S taphylz;cgcctti ;Z;iermidis Ul/CuO-NPs — _ _ N N R N N N N N
Ul/Ag/Cu-NCMs - - - - + + + + + + +
UL/Ag, O-NPS - - + + + + — — + + +
Klebsﬁi;zg;;zegbﬂwniae Ul/CuO-NPs _ _ _ ¥ " + + + + + +
Ul/Ag/Cu-NCMs — — — + + + + + + + +
UL/Ag, O-NPS - + + + + + — + + + +
Acinetobacter KY856930 Ul/CuO-NPs - - - + + + + + + + +
Ul/Ag/Cu-NCMs — — — + + + + + + + +
UL/Ag, O-NPS - - + + + + - — + + +
E. coli KY856932 Ul/CuO-NPs — — — + + + + + + + +
Ul/Ag/Cu-NCMs — — — + + + + + + + +
UL/Ag, O-NPS — - - — — + - — — — +
E. coli KY856933 UL/CuO-NPs - - - + + + — - - + +
Ul/Ag/Cu-NCMs — — - — + + - - — + +
UL/Ag, O-NPS — - - — — + - — — — +
Enterobacter KY 856934 Ul/CuO-NPs — — — + + + + + + + +
Ul/Ag/Cu-NCMs — — — + + + + + + + +
UL/Ag, O-NPS — - + + + + - + + + +
Enterobacter aerogenes Ul/CuO-NPs — — - + + + + + + + +
Ul/Ag/Cu-NCMs — — — + + + + + + + +

Positive (+): turbidity, indicating growth; negative (—): no turbidity, indicating absence of growth.

2.4. Biofilm Formation Inhibition Assay

A static biofilm assay was performed to evaluate the effect of the synthesized UL/Ag,
O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs derived from U. lactuca on E. coli KY856933
biofilm formation, and showed positive biofilm formation before treatment with the
nanoparticles. Figure 7 shows the biofilm inhibition percentage at different concentra-
tions of nanoparticles (1, 0.5, 0.25, 0.12, and 0.06 mg/mL). The results obtained in the
microtiter plates show that the highest inhibition percentage was 87.02 with 0.5 mg/mL
UL/Ag, O-NPS, followed by 1.0 mg/mL UL/Ag, O-NPS (86.31%). The same inhibi-
tion percentage was obtained with 0.25 mg/mL UL/Ag, O-NPS, and with 1.0 mg/mL
Ul/Ag/Cu-NCMs, the inhibition was 85.5%. The lowest percentage of biofilm inhibition
was 44.38 with 0.06 mg/mL Ul/CuO-NPs. The order of anti-biofilm strength formed
by Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Staphylococcus
aureus ATCC 43300 with biosynthesis nanocomposite was Ag-TiO, > TiO,—-Ag > Cu-Ag
> Ag—Cu [95]. The bio-Ag-NPs inhibited biofilm formation by both Escherichia coli and
S. aureus at concentrations of 4 ug/mL [96]. The Ag-NPs demonstrated notable anti-biofilm
activity against S. aureus biofilms and powerful bactericidal effects against P. aeruginosa
and S. aureus, respectively [97]. The minimal inhibitory concentration of the produced Ag-
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NPs against biofilm-forming Staphylococcus aureus verified their concentration-dependent
inhibition (MIC) [98].

100 HAGNPs BCuNPs B AGCUNCs

Biofilm inhibition (%)

0.06 0.12 0.25 05 1
Concentrations of nanoparticles (mg/mL)

Figure 7. Anti-biofilm studies of green synthesized Ul/Ag, ONPS, Ul/CuO-NPs, and Ul/Ag/Cu-
NCMs in the presence of biofilm-forming of E. coli KY856933. Different letters denote the significant
values of mean; bars are St-error.

3. Material and Methods
3.1. Extraction of Algae

At the end of January, in the winter, Ulva lactuca (Figure 8) was gathered from the
seashore (21°.637086 N and 39°.101631 E) in Jeddah, Saudi Arabia (2020). One gram of
air-dried U. lactuca was mixed with 100 mL of deionized (D.D.) water to create the Ag-
NPS and Ag-Cu NCMS. This mixture was then boiled for an hour and filtered, and the
remaining 100 mL of D.D. water was added. For the CuO-NPs, 100 mL of D.D. water was
combined with six grams of air-dried U. lactuca alga, boiled for one hour, filtered, and then
the remaining 100 mL of D.D. water was added.

Figure 8. Morphological shape of Ulva lactuca (collected from seashore or Red Sea, Jeddah,
Saudi Arabia).

3.2. Synthesis of Silver/Copper Nanocomposites (Ul/Ag/Cu-NCMs) by U. lactuca Extract

Briefly, 60 mL of distilled and deionized water were combined with 9 mM of copper II
sulfate and 1 mM of silver nitrate (D.D. water). Drop by drop, 40 mL of aqueous algal extract
was added to the Ag/Cu solution, followed by 0.2 M NaOH, which produced a grayish
precipitate that was left in a magnetic stirrer for 2 h [70]. To remove the contaminants,
the mixture was centrifuged, the supernatant was eliminated, and the grayish precipitate
was washed twice with 50 mL of D.D. water and once more with 50 mL of ethanol by
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repeated centrifugation. After one day of air drying, silver/copper nanoparticle powder
was produced.

3.3. Biosynthesis of Silver Nanoparticles Using Alga Aqueous Extract

Alga extract (30 mL) was injected drop by drop with a syringe on 70 mL of 1 mM
AgNOj3 on a magnetic stirrer until the color changed from clear to brown to darker brown,
after ten minutes.

3.4. Biosynthesis Copper Oxide Nanoparticles (Ul/CuO-NPs) by U. lactuca Extract

A faint blue powder of copper nanoparticles was obtained after air drying for one day.
Copper Il sulfate, CuSO4 (9 mM), was added to 70 mL distal and deionized water (D.D.
water) under constant stirring. Thirty ml of aqueous algal extract was added drop by drop
to the copper solution. After 10 min of stirring, 0.2 M NaOH was added, changing the color
from blue to greenish; this was then placed in a magnetic stirrer for 2 h [99]. The greenish
precipitate was filtered and washed twice with 50 mL of D.D. water and then with 50 mL
of ethanol to eliminate the impurities.

3.5. Structural and Morphological Characterization

The synthesized UL/Agy O-NPS, Ul/Ag/Cu-NCMs, and Ul/CuO-NPs were dried at
60 °C, and characterized by the following devices: scanning electron microscopy (SEM)
(30 kV (SEM, JEOL JSM-6510/v, Tokyo, Japan); transmission electron microscopy (TEM)
(JEOL JSM-6510/v, Tokyo, Japan); and X-ray diffraction (XRD) (PAN Analytical X-Pert
PRO, spectris plc, Almelo, The Netherlands). According to the Scherrer equation, the mean
particle diameters of the nanoparticles were calculated from the XRD pattern:

D =KA/BCOSO

K is constant; A is the wavelength of the X-ray (1.54060 A); and B is the full width at
half-maximum (FWHM).

Fourier transform infrared (FTIR) spectroscopy (Thermo Fisher Nicolet IS10, (Waltham,
MA, USA)), zeta potential and energy dispersion (Malvern Zeta size Nano-Zs90, Malvern,
PA, USA), and X-ray spectroscopy (EDX) (JEOL JSM-6510/v, Tokyo, Japan) were
also performed.

3.6. Antibacterial Assay

The antibacterial activity of UL/Ag, O-NPS, Ul/Ag/Cu-NCMs, and Ul/CuO-NPs
was investigated against eleven pathogenic bacterial strains. Six Gram-negative bacteria
(Klebsiella pneumoniae KY856924, Acinetobacter KY856930, E. coli KY856932, E. coli KY856933,
Enterobacter KY856934, and Enterobacter aerogenes), which were isolated from different medi-
cal samples and identified as multidrug-resistant in a previous study [78,100], in addition
to five pathogenic Gram-positive control strains (Klebsiella pneumoniae KY856924, Staphy-
lococcus aureus ATCC 6538, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis
ATCC 12228, and Streptococcus mutans ATCC 25175) were utilized. All the bacterial strains
were cultured in nutrient broth at 37 °C for 24 h. The bacterial strains were spread on
Mueller-Hinton agar (MHA) using a sterile cotton swab. Wells were made in the agar
plates and filled with 10, 30, and 100 pL of 20 mg/mL UL/Ag, O-NPS, Ul/Ag/Cu-NCMs,
and Ul/CuO-NPs, respectively. The plates were incubated at 37 °C for 24 h, and the zone
of inhibition was observed after 24 h of incubation.

3.7. Minimum Inhibitory Concentration (MIC) Assays

The minimum inhibitory concentrations (MIC) of green synthesized nanoparticles
were determined in a 24-well culture plate using standard broth micro-dilution methods to
verify the antibacterial activity. Two-fold dilutions of UL/Ag, O-NPS, Ul/Ag/Cu-NCMs,
and Ul/CuO-NPs in concentrations ranging from 1 mg/mL to 0.062 mg/mL were prepared
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to determine the MIC in the nutrient broth media. The results were observed and compared
to the negative control after 24 h at 37 °C of incubation.

3.8. Minimum Bactericidal Concentration (MBC) Assays

After the MIC determination of the nanoparticles, the MBC was conducted by trans-
ferring 10 pL from each overnight MIC culture plate well to sterile Mueller-Hinton agar
(MHA) fresh plates. Viable growth was determined after 24 h at 37 °C. The lowest concen-
tration with no visible growth on the MHA plate was recorded as the MBC value.

3.9. Biofilm Formation Inhibition Assay

The biofilm inhibition assay was performed as described previously by Heikens
etal. [101] and Hamed et al. [102] with the following modifications: one colony of overnight
plate-grown E. coli KY856933 bacterial culture (which showed positive biofilm formation
on Congo red agar) was resuspended in 5 mL tryptic soy broth (TSB) supplemented with
0.25% glucose on a shaking incubator at 37 °C to an OD of 660.

The bacterial cultures were diluted with fresh media (1:20) and supplemented with
different concentrations (1, 0.5, 0.25, 0.12, and 0.06 mg/mL) of UL/Ag, O-NPS, Ul/CuO-
NPs, and UL/Ag/Cu-NMCs separately, in addition to a culture without nanoparticles as
a positive control. Then, 200 pL of each concentration was aliquoted into the wells of a
24-well flat-bottom polystyrene microtiter plate and incubated for 24 h at 37 °C without
agitation. After incubation, the bacteria were removed, the wells were washed with 200 pL
phosphate buffer saline (PBS), and the plates were dried for 1 h at room temperature.

A total of 100 mL of 0.2% Gram’s crystal violet was added to each well for 15 min after
the first hour. After the stain was eliminated, 200 pL of PBS were used to wash the plates
three times. At room temperature, the plates were dried for 15 min. Each well received
one milliliter of ethanol (95%) before being incubated for 15 min. At 570 nm, the reaction
mixture was spectrophotometrically measured.

% of inhibition — (OD in contg;l) 1; COO]I?;Eltreatment ) <100

3.10. Statistical Analysis

The experiments were performed in triplicate and the results were considered as the
means =+ standard error of the mean. An analysis of variance (ANOVA) was performed on
all of the data. Duncan’s multiple range tests were used to determine the significance of
the variable mean differences (p < 0.05), SPSS version 16.

4. Conclusions

In this experimental study, Ulva lactuca aqueous extract was successfully used to
synthesize silver and copper nanoparticles and their composites. Their characterization
was achieved using FTIR, SEM, TEM, EDX, XRD, and the zeta potential. The FTIR analysis
reveals that the functional groups of nanoparticles and their composites differ. The TEM
image demonstrates changes in the shape and size of the silver and copper nanoparticles
and their composites, which were biofabricated by green alga U. lactuca. The zeta potential
denotes that the UL/Ag, O-NPS have a positive charge, while the Ul/CuO-NPs and
Ul/Ag/Cu-NPs have a negative charge. The fact that the UL/Agy, O-NPS were more
effective against the tested pathogenic bacteria than both the Ul/CuO-NPs and Ul/Ag/Cu-
NPs may be due to the positive charge of UL/Ag, O-NPS, as well as the small size of the
nanoparticles. The inhibition of biofilm formation by E. coli KY856933 was the highest with
the applied UL/Ag, O-NPS, followed by the Ul/CuO-NPs and Ul/Ag/Cu-NMPs.
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