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1 Department of Chemistry, Faculty of Life Sciences and Biotechnology, University of Life Sciences in Lublin,
Akademicka 15, 20-950 Lublin, Poland

2 Department of Horticultural Machinery, Mendel University in Brno, Valtická 337,
691 44 Lednice, Czech Republic; vladimir.masan@mendelu.cz (V.M.); patrik.burg@mendelu.cz (P.B.);
alice.cizkova@mendelu.cz (A.Č.)
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Abstract: The FTIR-ATR method coupled with the multivariate analysis of specific spectral areas of
samples was developed to characterize two white grape varieties (Sauvignon Blanc and Hibernal)
and two blue grape varieties (André and Cabernet Moravia) of wine planted and harvested in the
Moravia region, Czech Republic. Principal component analysis and hierarchical cluster analysis
were performed using fingerprint regions of FTIR spectra for all wines. The results obtained by
principal component analysis in combination with linear discriminant analysis (PCA-LDA) scores
yielded clear separation between the four classes of samples and showed very good discrimination
between the wine samples, with a 91.7% overall classification rate for the samples. The conducted
FTIR spectroscopy studies coupled with chemometrics allowed for the swift analysis of multiple wine
components with minimal sample preparation. These methods can be used in research to improve
specific properties of these wines, which will undoubtedly enhance the quality of the final wine
samples obtained.

Keywords: FTIR spectroscopy; chemometric analysis; principal component analysis; grape varieties;
wine samples

1. Introduction

The evaluation of food products’ quality often requires both the determination of the
chemical composition and the characterization of physical parameters such as mechanical,
rheological and thermophysical properties [1,2]. According to Johnson [3], wine is an
alcoholic beverage for the production of which grapes are used. Their chemical composition
ensures the course of the fermentation process, in which yeast participates. Yeast is involved
in the consumption of carbohydrates in the grapes, which they convert into alcohol and
carbon dioxide. Boulet et al. [4] state that wine is a complex product with valuable biological
and organoleptic properties.
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Jones-Moore et al. [5] state that the properties and quality of wine are the result of
synergistic interactions among factors such as the variety, the quality parameters of the
harvested grapes and the processing technology, yeast strains, bacteria, etc. The mentioned
factors also impact the composition of wine, which consists of water (70–90%), alcohol
(8–20%), acids (0.3–1%), carbohydrates (0.1–20%), pigments, phenols, minerals, vitamins,
etc. [6]. Established methods for the determination of these compounds are generally based
on either colorimetric or chromatographic techniques, such as gas chromatography or
high-performance liquid chromatography (HPLC).

These techniques can be relatively complex, requiring sample preparation and even
chemical manipulations, which makes them time-consuming, laborious and expensive.
In addition, they often allow the detection of only one group of compounds. Infrared
spectroscopy therefore offers a suitable alternative to conventional chemical analyses. FTIR
is a non-destructive technique that provides information on the structural properties of
a wide range of compounds. Among its main advantages are the response speed, a high
level of automation, good resolution, environmental friendliness and overall economy of
determination [7,8]. These characteristics, together with the improvements achieved by
chemometrics, provide an interesting analytical tool for routine qualitative and quantitative
analysis, widely used in many industries during control processes [9]. In fact, FTIR has
proven to be a useful and reliable technique in the analysis of a large variety of samples in
various industries, including the agri-food sector [10,11].

In oenology, FTIR analysis has been described as a routine procedure enabling the
determination of classical oenological parameters [12], organic acids [13], aroma
precursors [14] and phenolic compounds [15] in grapes and wines. The use of the at-
tenuated total reflectance (ATR) accessory in FTIR studies enables the direct analysis of
liquids in a simple and non-destructive manner with sufficient sensitivity [16]. Thus, ATR-
FTIR has proven to be a suitable method for the analysis of liquid foods such as vinegar [17],
olive oil, wine, milk or honey [9,18–20].

The aim of this study was to evaluate the use of FTIR as an analytical technique
combined with multivariate data analysis techniques for the comparison and classification
of four wine samples produced in the Moravia region in the Czech Republic. Based on the
differences between the FTIR spectra, by multivariate data analysis (principal component
analysis, hierarchical clustering analysis and linear discriminant analysis), we identified the
specific discrimination factors useful to identify the main sources of variation between the
grape varieties, as well their sweetness, in a rapid and non-destructive manner. Moreover,
FTIR spectroscopic measurements were taken at three different time intervals to monitor
the aging of the samples during storage.

Legend:
Andre wine (AW)—red grape variety
Cabernet Moravia wine (CMW)—red grape variety
Hibernal wine (HW)—white grape variety
Sauvignon blanc wine (SW)—white grape variety
FTIR spectroscopic measurement dates:
I—22.08.22
II—21.10.22
III—25.11.22

2. Results and Discussion
2.1. The Determination of Basic Analytical Values in Wine

The quality of varietal wines is defined mainly by their sensory attributes. These
attributes are determined by physical and chemical properties. In addition to the variety
itself, the quality of the processed grapes is an important factor, which is influenced by the
geographical origin, ripening stage, harvest date and oenological procedures, as well as the
chemical and textural parameters and the technological procedures of wine production and
storage. In terms of the basic analytical parameters, overall differences can be seen between



Molecules 2023, 28, 6326 3 of 15

samples of white and red wines. In the case of red wines, these relate to the higher alcohol
content and lower content of titratable acids (reduction linked to malolactic fermentation;
at the same time, higher lactic acid content is evident), as well as a higher pH value and
glycerol content.

The overview of values in Table 1 shows that the content of alcohol and glycerol
corresponds to the sugar content of the must after pressing. This was in the range of
20.8–21.1 for white varieties and in the range of 21.3–22.2◦ NM for blue varieties. The
alcohol content of the evaluated wine samples ranged between 12.19 and 13.58% and the
glycerol content from 7.66 to 9.81 g·L−1. Michlovský [2] states that the total content of
alcohol and glycerol is related to the total initial sugar content of the must, the presence of
yeast during fermentation and its temperature course. From the values that he provides,
it is clear that the alcohol content in white wines is in the range of 11–13% and that in
red wines is 12.0–14.5%. The glycerol content in white wines is normally around 6 g·L−1

and in red wines usually above 10 g·L−1. Jones et al. [21] state that, in recent years, the
content of both alcohol and glycerol in wines has shown an increasing trend, the cause
of which is a number of factors, related, in particular, to climate change. The pH value is
also an important indicator of wine quality. It varied between 3.13 and 3.48 for individual
wine samples in this study. Michlovský [2] states that in Central European conditions,
3.10–3.30 for white wines and 3.20–3.40 for red wines can be considered a normal pH value.
The content of titratable acids in the evaluated samples ranged from 4.74 to 6.58 g·L−1. The
acid content has a complex effect on a number of wine parameters. The greatest importance
in this direction is to ensure the sufficient microbiological and chemical stability of wine
with an overlap in its resulting organoleptic properties [22]. Carrau et al. [23] state that the
optimal content of titratable acids in white wines ranges from 5 to 7 g·L−1. Jackson [22]
reports that the optimal concentration of total titratable acids for white wines ranges from
5.5 to 8.5 g·L−1 and for red wines from 4.7 to 5.1 g·L−1.

Table 1. The overview of basic analytical values for evaluated wine samples.

Wine by Variety
Unit Sauvignon Blanc Hibernal Cabernet Moravia André

Alcohol % 12.19 ± 0.04 a 12.58 ± 0.06 b 12.83 ± 0.07 c 13.58 ± 0.05 d

Titratable acid g·L−1 6.00 ± 0.02 a 6.57 ± 0.29 b 4.74 ± 0.22 c 5.58 ± 0.41 d

Residual sugar g·L−1 1.24 ± 1.12 a 0.00 ± 0.00 b 0.64 ± 0.99 c 0.50 ± 0.44 d

pH - 3.13 ± 0.04 a 3.15 ± 0.04 a 3.48 ± 0.04 c 3.33 ± 0.06 b

Malic acid g·L−1 3.65 ± 0.17 a 4.01 ± 0.77 a 0.35 ± 0.28 b 1.76 ± 0.41 c

Lactic acid g·L−1 0.56 ± 0.04 a 1.02 ± 0.35 ab 2.04 ± 0.28 c 1.32 ± 0.36b c

Acetic acid g·L−1 0.04 ± 0.09 a 0.17 ± 0.04 a 0.49 ± 0.05 b 0.40 ± 0.07 c

Tartaric acid g·L−1 2.31 ± 0.14 a 2.15 ± 0.12 a 1.83 ± 0.26 a 2.06 ± 0.28 a

Glycerol g·L−1 7.66 ± 0.17 b 8.73 ± 0.73 ab 9.62 ± 0.41 a 9.81 ± 0.31 a

Density Kg·m−3 0.99 ± 0.00 a 0.99 ± 0.00 ab 0.99 ± 0.00 b 0.99 ± 0.00 ab

Sugar-free
extract g·L−1 18.77 ± 0.88 a 22.19 ± 0.25 ab 24.59 ± 0.86 b 25.29 ± 2.08 ab

The results are mean values ± SD; analysis of variance (ANOVA) and Tukey’s honestly significant difference
(HSD) tests were conducted to determine the differences among averages; values in same column designated
with different letters indicate significant differences (p ≤ 0.05).

Acetic acid content was measured within the range of 0.04–0.40 g·L−1. Thus, none of
the evaluated wine samples exceeded the limit value of 0.50 g·L−1, which is considered
as the threshold at which wines can start to show negative notes—for example, the taste
of sauerkraut [24]. The maximum limit for acetic acid defined by the reference method of
Commission Regulation EEC 2676/90 is 1 g of acetic acid per liter of wine, which is also
the sensory detection threshold [25].

The tartaric acid content of wine samples ranged from 1.83 to 2.31 g·L−1. The Orga-
nization Internationale de la Vigne et du Vin (OIV) states the minimum content limit of
tartaric acid at the level of 0.3 g·L−1 for white and rosé wines and 0.4 g·L−1 for red wines.
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The content of malic acid in the monitored wine samples ranged from 0.35 to
4.01 g·L−1. The malic acid content is variable, depending on the biochemical processes
during fermentation and wine aging [26].

Lactic acid is mainly produced by a process called malolactic fermentation from
malic acid by the action of lactic bacteria. However, lactic acid can also be produced in
smaller quantities by the action of yeast already during fermentation [27]. The lactic acid
content of the samples varied between 0.56 and 2.04 g·L−1. The concentration of lactic acid
produced by yeast is in the range of 0.2–0.4 g·L−1. More of this acid is produced by the
breakdown of malic acid during malolactic fermentation, when its content in wines ranges
from 0 to 3 g·L−1 [28]. Along with the decrease in lactic acid content, the overall aromatic
characteristics of the wine change, which can affect the resulting overall quality of the wine
depending on its style [29]. Higher content of lactic acid and lower content of malic acid in
red wine samples indicate the course of malolactic fermentation [30].

The density of the wine is an important parameter that is necessary to determine
the extract. Wine is a mixture containing mainly dissolved solids (sugars, acids, phenols
and mineral salts), which increase its density above the value of the density of pure water.
However, it also contains alcohol, whose density is lower than that of water. This means
that the density of dry wines is around 0.9 g/cm3 and the density of sweet wines with low
alcohol content can be around 1.03 g/cm3 [31]. According to Michlovský [2], the density of
white and red wines is comparable and normally ranges from 0.9912 to 1.0138 g/cm3.

A sugar-free extract can be used to characterize the strength of the wine, i.e., the
amount of extractive substances. The higher the determined value of the sugar-free extract
is, the fuller and stronger the wine is. The values of the sugar-free extract were in the range
of 18.77–25.29 g·L−1 for the wine samples studied. The minimum amount of sugar-free
extract is 16 g·L−1 for white wines and 18 g·L−1 for red wines (Viticulture and Viticulture
Act). All the mentioned analytical values serve to easily and quickly categorize the rated
wines according to quality parameters.

2.2. FTIR Spectroscopy

Figures 1 and 2 show the FTIR spectra of two red wine samples (Andre and Cabernet
Moravia wine) and two white wine samples (Hibernal and Sauvignon wine), respectively.
The spectra in Figure 1 were normalized to a band present at 3303 cm−1. Table 2 presents all
the characteristic maxima and assigns the vibrations of the corresponding functional groups.
In addition, the selected wine samples were measured at three different time intervals to
observe the so-called aging effect (22 August 22, 21 October 22 and 25 November 22), which
has a significant impact on wine storage and quality. The results are presented in Figure 2.
In the case of all the samples, similar spectral properties were observed. However, when
comparing the intensities of some peaks, clear differences between white and red wines
were visible.

Molecules 2023, 28, 6326 5 of 16 
 

 

and deformation related to the third overtone of these bands) and characteristic defor-
mation bands with maxima at approximately 1600 cm−1 [33]. 

Absorption bands related to the presence of monohydroxy and polyhydroxy alcohols 
were observed at 2932 and 2880 cm−1 (Figure 1, Table 1). These bands correspond to the 
symmetric and asymmetric stretching vibrations of CH2 and CH3 groups. The accumula-
tion of these bands, with a wide and noticeably flaĴened maximum in the range of 2400–
2700 cm−1, may correspond to a combination of stretching vibrations of C-H and overtones 
of these vibrations from ethanol molecules and partially from sugar. Additionally, bands 
in the range of 3000–2800 cm−1 are most likely due to the stretching vibrations of C-H 
bonds present in hydrocarbons and O-H bonds of carboxylic acids, and asymmetric 
stretching vibrations of C-H bonds of methyl (-CH3) groups: polyols (glycerol), free phe-
nolic acids and catechins. In addition, vibrations originating from primary alcohols and 
glycerol with maxima in the range of 1087 and 1050 cm−1, respectively, are related to strong 
stretching vibrations of C-O [34]. 

The wavenumbers between 1800 and 1000 cm−1 are characteristic of stretching vibra-
tions of C-OH, CH3 and CH2 deformations and stretching vibrations of C=C and C≡N (Ta-
ble 1). This region originates from compounds such as phenols, alcohols, aldehydes, 
higher alcohols, polyols, acids, sugars, volatile acids and amino acids. The range of 1850–
1590 cm−1 is associated with a combination of stretching vibrations of -OH, -CH3 (first har-
monics) and -CH2, -CH (first harmonics) from ethyl alcohol. Differences in intensity in this 
region are observed in the range of 1540–1780 cm−1, which is related to the presence of 
amino acids, organic acids and peptides [8]. 

Bands with maxima at around 1600 and 1700 cm−1 (amide I and amide II regions) can 
be used as a qualitative indicator among various types of wine and their sweetness (sweet, 
semi-sweet, dry, semi-dry). The intensity ratio of the 1600/1700 cm−1 band is different in 
red and white wines. For André and Cabernet Moravia (red wines), it is 1.01 and 1.21, and 
for Hibernal and Sauvignon (white wines), it is 0.66 and 0.72, respectively [9]. 

The region of 1580–950 cm−1 (Figure 1) is particularly interesting, as it is characteristic 
of many compounds present in wines. Therefore, the significant differences observed be-
tween the FTIR spectra in this region might be of particular interest in terms of the quality 
of the wines tested. The region between 1460 and 1280 cm−1 is highly complex and pro-
vides information on the stretching vibrations of the carbonyl group C=O and the stretch-
ing vibrations of C=C, CH2 and C-H from molecules of aldehydes, carboxylic acids, pro-
teins and esters. It is also worth emphasizing the bands with maxima around 1220, 1110–
1100 and 1070–990 cm−1, which correspond to stretching vibrations of C-O and O-H (sec-
ond harmonics) from sugars and organic acids [8,9]. 

3500 3000 2500 1500 1000 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

98
6

14
48

28
81

66
8

84
291

7

10
31

10
93

12
19

13
98

15
99

17
10

29
33

A
bs

or
ba

nc
e 

[a
.u

.]

Wavenumber [cm-1]

 Sauvignon
 Hibernal
 Cabernet moravia
 Andre

Wine samples
1st measurment33

06

(a)

 
Figure 1. Cont.



Molecules 2023, 28, 6326 5 of 15

Molecules 2023, 28, 6326 6 of 16 
 

 

3500 3000 2500 1500 1000 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

29
32

33
05

98
6

14
48

28
81

66
8

84
2

91
7

10
31

10
93

12
19

13
98

A
bs

or
b

an
ce

 [
a.

u
.]

Wavenumber [cm-1]

16
00

17
10

Wine samples
2nd measurment

(b)

 

3500 3000 2500 1500 1000 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2
17

14

29
32

33
05

98
6

14
48

28
81

66
8

84
291

7

10
31

10
93

12
19

A
bs

or
ba

nc
e 

[a
.u

.]

Wavenumber [cm-1]

13
98

16
00

Wine samples
3rd measumrent

(c)

 
Figure 1. Normalized Fourier transform infrared (FTIR) spectra of wines measured on three differ-
ent dates. Term I—22.08.22 (a), term II—21.10.22 (b) and term III—25.11.22 (c). 
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Figure 1. Normalized Fourier transform infrared (FTIR) spectra of wines measured on three different
dates. Term I—22.08.22 (a), term II—21.10.22 (b) and term III—25.11.22 (c).
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Figure 2. Fourier transform infrared (FTIR) spectra of four types of wines measured on three differ-
ent dates. André wine (a), Cabernet Moravia wine (b), Hibernal wine (c), Sauvignon wine (d). 

Figure 2. Fourier transform infrared (FTIR) spectra of four types of wines measured on three different
dates. André wine (a), Cabernet Moravia wine (b), Hibernal wine (c), Sauvignon wine (d).
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Table 2. The positioning of FTIR absorption maxima of the wine samples together with assignment
of their corresponding functional groups.

Type and Origin of Vibrations André Wine Cabernet Moravia Wine Hibernal Wine Sauvignon Wine

ν(O-H) in water and
hydroxylated molecules (alcohols
and phenols)

3304 3302 3303 3303

νw(-CH) of hydrocarbons 2932 2934 2933 2934
νm(-CH3) of hydrocarbons 2879 2879 2882 2882
νm(-C=O) 1715 1715 1714 1714
δ(-OH) and ν(C=C) 1602 1600 1603 1605
ν(C=C) and ν(C-N) 1516 1516 1514 1514
ν(C=C) δ(-CH3) 1448 1449 1451 1451
δm(-CH2) and δ (-CH) 1404 1405 1397 1399
ν(C=C), δ (-CH2) 1335 1330 1332 1332
δ (-CH2) 1265 1265 1270 1267
νm(-C-O) and δm(-CH2) 1220 1224 1217 1215
νst(-C-O) and νw (-OH)
second overtones 1101 1102 1097 1100

νm(-C-O) 1033
989

1034
992

1033
989

1033
991

δw(-HC=CH-, trans-) out-of-plane) 923 917 917 921
δ(-CH2-) and -HC=CH-(cis-) scissor 851 849 847 852

The FTIR spectra of the wines examined showed absorption bands at various fre-
quencies that were related to the presence of various functional groups that constitute the
chemical compounds present in food samples, such as alcohols, phenols, aldehydes, higher
alcohols, polyols, sugars and amino acids [32]. All the selected samples had a very broad
band in the range of 3800–3000 cm−1, resulting mainly from the stretching vibrations of
hydroxyl groups, ν(-OH), present in water, alcohol or phenol molecules. The characteristic
water absorption bands were present at approximately 990 and 1460 cm−1 (stretching and
deformation related to the third overtone of these bands) and characteristic deformation
bands with maxima at approximately 1600 cm−1 [33].

Absorption bands related to the presence of monohydroxy and polyhydroxy alcohols
were observed at 2932 and 2880 cm−1 (Figure 1, Table 1). These bands correspond to
the symmetric and asymmetric stretching vibrations of CH2 and CH3 groups. The accu-
mulation of these bands, with a wide and noticeably flattened maximum in the range of
2400–2700 cm−1, may correspond to a combination of stretching vibrations of C-H and
overtones of these vibrations from ethanol molecules and partially from sugar. Additionally,
bands in the range of 3000–2800 cm−1 are most likely due to the stretching vibrations of
C-H bonds present in hydrocarbons and O-H bonds of carboxylic acids, and asymmetric
stretching vibrations of C-H bonds of methyl (-CH3) groups: polyols (glycerol), free phe-
nolic acids and catechins. In addition, vibrations originating from primary alcohols and
glycerol with maxima in the range of 1087 and 1050 cm−1, respectively, are related to strong
stretching vibrations of C-O [34].

The wavenumbers between 1800 and 1000 cm−1 are characteristic of stretching vi-
brations of C-OH, CH3 and CH2 deformations and stretching vibrations of C=C and
C≡N (Table 1). This region originates from compounds such as phenols, alcohols, aldehy-
des, higher alcohols, polyols, acids, sugars, volatile acids and amino acids. The range of
1850–1590 cm−1 is associated with a combination of stretching vibrations of -OH, -CH3 (first
harmonics) and -CH2, -CH (first harmonics) from ethyl alcohol. Differences in intensity in
this region are observed in the range of 1540–1780 cm−1, which is related to the presence of
amino acids, organic acids and peptides [8].

Bands with maxima at around 1600 and 1700 cm−1 (amide I and amide II regions) can
be used as a qualitative indicator among various types of wine and their sweetness (sweet,
semi-sweet, dry, semi-dry). The intensity ratio of the 1600/1700 cm−1 band is different in
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red and white wines. For André and Cabernet Moravia (red wines), it is 1.01 and 1.21, and
for Hibernal and Sauvignon (white wines), it is 0.66 and 0.72, respectively [9].

The region of 1580–950 cm−1 (Figure 1) is particularly interesting, as it is characteristic
of many compounds present in wines. Therefore, the significant differences observed
between the FTIR spectra in this region might be of particular interest in terms of the
quality of the wines tested. The region between 1460 and 1280 cm−1 is highly complex
and provides information on the stretching vibrations of the carbonyl group C=O and the
stretching vibrations of C=C, CH2 and C-H from molecules of aldehydes, carboxylic acids,
proteins and esters. It is also worth emphasizing the bands with maxima around 1220,
1110–1100 and 1070–990 cm−1, which correspond to stretching vibrations of C-O and O-H
(second harmonics) from sugars and organic acids [8,9].

FTIR spectroscopic analysis showed differences in the regions characteristic of groups
related to the presence of alcohols, esters and acids. These differences were most likely
related to the grape varieties used. To confirm the origins of the differences between
samples and also the aging effects, multivariate analysis techniques such as PCA, HCA
and PCA-LDA were performed. Nevertheless, it should be noted that the results obtained
clearly indicated the high quality of the selected wine samples for analysis.

2.2.1. Hierarchical Clustering Analysis for FTIR Spectra

HCA was performed on the FTIR spectra to identify similarities or dissimilarities
between the considered wine samples. Figure 3 shows the dendrogram obtained from
the four wine samples measured at three different times (1—August, 2—October and
3—November). Considering the cut-off of 3.0 dissimilarity units, four clusters were distin-
guished. The first cluster (Group I) was formed by two types of wine samples (André and
Cabernet Moravia measured during 1 and 2 dates), while the second cluster also contained
two types of wine samples (Hibernal and Sauvignon measured during 1 and 2 dates). The
third and fourth clusters were similar to the first and second clusters but contained samples
measured in November. This result suggests that Andre and Cabernet wines as well as
Hibernal and Sauvignon wines have physicochemical properties more similar to each other.
The hierarchical cluster analysis showed that the placement of the wine samples on the
dendrogram depended on the grape variety and sample measurement date during storage.
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2.2.2. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for
FTIR Spectra

In order to evaluate the main differences in the FTIR spectra of the different wines,
Andre wine (AW), Cabernet Moravia wine (CMW), Hibernal wine (HW) and Sauvignon
wine (SW), PCA was applied to region 1800–500 cm−1. Then, LDA analysis based on PCA
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analysis was performed. The contribution of the total variance and the eigenvalues for the
selected regions are presented in Table 3. The first three principal components explained
almost 94%.

Table 3. Results obtained from principal component analysis: eigenvalues, percentage of variance
and cumulative percentage in the data obtained for the wine samples.

Principal Component
Number Eigenvalue Percentage of Variance (%) Cumulative (%)

1 11.67722 66.89095 66.8910

2 3.77114 21.60233 88.4933

3 1.07020 6.13044 94.6237

4 0.52446 3.00428 97.6280

5 0.24714 1.41569 99.0437

As seen in the score plot (Figure 4a), four clusters can be distinguished. The first two
consist of samples measured in August and October, while the remaining two are related
to samples from November.
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The PCA clearly indicates similarities between the Andre, Cabernet Moravia and
Hibernal and Sauvignon wines. Secondly, clear differences are present in the spectra of
wines recorded at different time intervals. The variables with the greatest influence on the
scores were determined based on the loading plot. Moreover, the ordering of variables
according to their contributions to the formation of principal components was feasible.

In the PCA loading plot depicted in Figure 4b, PC1 gives evidence for a positive
correlation between the stretching vibrations of C-O and O-H groups present in both sugars
and organic acids observed at 1105 and 1034 cm−1, respectively. These unique features,
characteristic of phenols, alcohols, sugars and acids, offer the possibility of the use of the
fingerprint regions of the spectra for the classification of various wine samples.

In the next step, the first three principal components were applied as variables in the
LDA. The relevant LDA score plot given in Figure 4c represents the first two discriminant
functions. It also evidences the achievement of a high degree of discrimination among wine
samples, leading to the clear categorization of the wine samples into three groups (I–III).
The discriminant model applied for all four samples allowed the correct classification of all
samples into their respective groups (I–III), with a success rate of 91.7% (Table 4).

Table 4. LDA prediction matrix.

True Class Assigned to Class % Correct Classification
I II III

I 3 1 0 75%
II 0 4 0 100%
III 0 0 4 100%

Total 3 5 4 91.7%

2.2.3. Principal Component Analysis (PCA) for Basic Analytical Values of Evaluated
Wine Samples

PCA was performed on the basic physicochemical parameters, corresponding to
Table 1, in order to gain insights into the relationship between the analytical data and
wine quality. Figure 5 shows a biplot that can be used for the visualization of the results
from PCA, as it combines both the principal component scores of the observations on the
principal components and the loading vectors to represent the coefficients of the variables
in a single 2D plot. The first two principal components explained 93.67% of the variance.
Therefore, only the first two components (PC1 and PC2) were used in the further part of
the analysis. André and Cabernet Moravia (two blue grape varieties) were separated on
the right side of PC1, while Sauvignon Blanc and Hibernal (two white grape varieties) were
separated on the left side of PC1. The tested wines showed significant differences in their
basic physicochemical compositions (did not form clusters), which was represented by the
second principal component, PC2. André wine was characterized by the highest level of
alcohol, glycerol content and sugar-free extracts. Moreover, red wines displayed higher
lactic and acetic acid content as well as pH compared to white wines. In the case of white
wines, they were characterized by higher content of malic, tartaric and titratable acids in
relation to red wines. However, there were visible differences in the content of these acids
between the two white grape varieties (Sauvignon Blanc and Hibernal). The presented
PCA analysis shows that the type of wine (grape variety) and the botanical origin are two
factors affecting the quality of wines. Nevertheless, the presented data focus only on the
basic physicochemical parameters of the investigated wines. Therefore, in the future, the
use of complementary analytical methods should be considered in order to obtain more
knowledge of the wines’ quality.
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3. Materials and Methods
3.1. Grape Varieties and Their Origins

For the experimental measurements, a total of four wine samples derived from two
white grape varieties (Sauvignon Blanc and Hibernal) and two blue grape varieties (André
and Cabernet Moravia) were used. The grapes of the listed varieties were planted and
subsequently harvested by hand in a vineyard in the village of Rakvice (48◦85′30′′ N
16◦78′54′′ E), Moravia region, Czech Republic. In terms of localization, the region of
Moravia (Velké Pavlovice sub-region) within Central Europe is located at the northern
edge of the grape-growing area. The average annual temperature is 10 ◦C, and the long-
term average sum of precipitation is 500 mm per year. The average relative humidity is
around 80%. The predominant types of soil are chernozem and pelic chernozem; the parent
substrate is loess. The soil is silty. They are predominantly represented by moderately
heavy, skeletonless soil and very deep soil with a mainly favorable water regime. The depth
of the topsoil does not exceed 0.7 m. Soils are located in a very permeable subsoil, mainly
skeletonless, medium-dry and dependent on precipitation during the growing season.
The mentioned factors create optimal conditions for the growth of mainly aromatic white
grape varieties as well as blue Cabernet-type varieties. In addition to soil conditions, the
resulting quality of the wines produced is also influenced by the climatic conditions of the
given year.

The white varieties were harvested on 30 September 2021, while the blue varieties
were harvested on 14 October 2021. The sugar concentration of the harvested grape juice
was determined using a normalized saccharimeter and expressed as ◦NM (kg of total sugar
in 100 L of juice). The must sugar content of Sauvignon Blanc grapes was determined at
21.1◦NM, that of Hibernal at 20.8◦NM, that of André at 22.2◦NM and that of Cabernet
Moravia at 21.3◦NM.

3.2. Wine Processing

The white wine production technology included the following steps. Firstly, destem-
ming of the grapes was performed, followed by the maceration of the mash at a temperature
of 10 ◦C for 6 h and pressing with a pneumatic press (at the pressure of 2.2 atm). The
pressed must was de-slurried using a vacuum rotary filter. Must fermentation took place
in stainless steel tanks with a volume of 600 L, with temperature control at 17 ◦C for
11 days. At the end of fermentation, the wines were racked, treated with the addition of
sulfur dioxide (50 mg/L) and left on fine yeast lees for 2 months. After the second racking,
bentonite and free sulfur were added to the level of 40 mg/L. The wines were aged in
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wooden barrels for 5 months. This was followed by sterile filtration, the addition of free
sulfur to the level of 60 mg/L and the filling of wine samples into glass bottles (Bordeaux
type) closed with cork caps.

The production technology of red wines included the destemming of grapes and
fermentation associated with the maceration of dyes in a vinifier for a total duration of
8 days at a temperature of 22 ◦C. This was followed by pressing the mash using a pneumatic
press (at the pressure of 2.8 atm). The young wines were stored in stainless steel tanks with
a volume of 600 L, where malolactic fermentation took place at a temperature of 18 ◦C.
After the wines were racked from the lees and treated with the addition of sulfur dioxide
(50 mg/L), they were aged in wooden barrels for 8 months. The production process was
completed by adding free sulfur to the level of 60 mg/L, sterile filtration and filling the
samples into glass bottles (burgundy type) closed with cork caps.

3.3. Determination of Basic Analytical Values in Wine

Total acidity, volatile acidity and pH were determined in the evaluated wine samples
according to the standardized methodological procedure of the OIV [35]. A TITROLINE
EASY instrument (SI Analytics GmbH, Mainz, Germany) was used to measure these basic
analytical values. Residual sugar, acetic acid and sugar free extract concentrations were
estimated using a Fourier transform infrared (FTIR) spectrometer (ALPHA) with attenuated
total reflection (Bruker Optik GmbH, Ettlingen, Germany). Depending on the calibration
used, the measured values were evaluated automatically using the Opus Wine Wizard
software. For the determination of glycerol, the colorimetric method of Rebelein was
used [36].

3.4. ATR-FTIR Measurement

The infrared spectra were recorded on four different wine samples at three differ-
ent times, namely on 22 August 22, 21 October 22 and 25 November 2022. All spectra
were recorded at room temperature (T = 23 ◦C) using a Shimadzu IRSpirit spectrome-
ter (SHIMADZU, Kyoto, Japan), with a resolution of 4 cm−1 and within the range of
4000–300 cm−1. The background correction (40 scans per sample) using a dedicated spec-
trometer extension—the QATR-S Single Reflection ATR Diamond Prism Adapter—was
carried out prior to each measurement. All solvents were purchased from Sigma-Aldrich.

3.5. Chemometrics Analysis

Multivariate analyses, including hierarchical cluster analysis (HCA), principal component
analysis (PCA) and linear discriminant analysis (LDA), were performed for the pre-processed
FTIR spectra of wines. Moreover, PCA was carried out also for the physicochemical com-
position. The Grams/AI 8.0 software (Thermo Scientific, Waltham, MA, USA) was applied
for multi-point baseline correction, Savitzky–Golay smoothing, as well as Y offset correla-
tion, and points were set to zero prior to the analysis. Data pre-processing such as mean
centering was performed using OriginPro (OriginLab Corporation, Northampton, MA, USA).
Chemometrics analysis was conducted in the broad range of spectra 1800–500 cm−1. The
Statistica 13 software (TIBCO Software Inc., Palo Alto, CA, USA) and OriginPro (OriginLab
Corporation, Northampton, MA, USA) were applied for chemometrics analysis.

3.5.1. Hierarchical Clustering Analysis (HCA)

Hierarchical clustering analysis (HCA) is one of the classificatory techniques used for
the identification of groups in a dataset [37]. HCA is one of the exploratory methods and
consists of dividing the data set into groups in such a way that elements in the same group
are similar to each other and, at the same time, as different as possible from elements in
other groups. The result is a tree graph called a dendrogram [38]. In HCA, the Euclidean
distance between the pairs of samples was used as a distance measurement, and the average
linkage criteria were used as an agglomeration method.
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3.5.2. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a widely used statistical unsupervised tech-
nique to reduce the dimensionality of high-dimensional datasets such as FTIR spectra,
while preserving the most important information. It consists of determining a new set
of uncorrelated variables, called principal components (PC) [39]. A thorough analysis of
the principal components makes it possible to identify those initial variables that have a
large impact on the appearance of individual principal components, i.e., those that form a
homogeneous group. The principal component (in which the variance is maximized) is then
representative of this group. Further components are mutually uncorrelated and are defined
so as to maximize the variability that is not explained by the previous component [40].

3.5.3. Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) is a commonly used supervised technique for data
classification, dimensionality reduction and data visualization. LDA is used to identify
the directions that capture the most separation between the classes by determining a
discriminant function [41,42]. Moreover, the LDA method cannot be conducted when
the number of spectral variables is larger than the number of samples, so that it can be
applied to the extracted PCs from principal component analysis. In this research, LDA was
conducted in the 1800–500 cm−1 spectral region based on the three first PCs from PCA.

3.6. Methods of Statistical Analysis

Results were reported as averages and standard deviations. Analysis of variance
(ANOVA) and Tukey’s honestly significant difference (HSD) tests were conducted to
determine the differences among averages using the software package Statistica 12.0
(StatSoft Inc., Tulsa, OK, USA). ANOVA was conducted, and the results were compared
using Tukey’s multiple range assay at a significance level of α = 0.05.

4. Conclusions

In this study, we attempted to establish a classification model of four different wines
originating from two white grape varieties (Sauvignon Blanc and Hibernal) and two blue
grape varieties (André and Cabernet Moravia) based on their unique fingerprint regions in
spectroscopy (FTIR) associated with multivariate analysis (PCA, HCA, PCA-LDA). FTIR
analysis showed significant differences between the types of wine examined, particularly
within the range of 1540–1780 cm−1. Analysis of the PCA loading plots confirmed that the
greatest influence on the classification of different samples of wine was attributed to the
1730 cm−1, 1105 cm−1, 1034 cm−1 and 992 cm−1 bands, specific to stretching vibrations of
C-O, C=O and O-H groups in the sugars and organic acids.

In the context of viticulture, FTIR spectroscopy can be considered a suitable non-
destructive technique that provides structural information on the molecular properties of a
large range of compounds contained therein. The main advantages of FTIR spectroscopy
are its speed, the high degree of automation and economy, which together make it a good
prerequisite for routine qualitative analyses and process control in winemaking. The
production of wine requires constant monitoring of the product and requires control of
the process from the beginning of the ripening of the grapes to the bottling of the finished
product. Direct spectroscopic measurement is very suitable in this context, as it allows the
rapid and simultaneous analysis of several compounds with minimal sample preparation
and reagent consumption. The main prerequisite for the wider application of this method in
winemaking practice will be the expansion of commercially available FTIR instrumentation
with versatile and innovative software, designed specifically for the analysis of grapes
and wine.

Moreover, FTIR spectroscopy can be used as a tool to study the aging processes during
food storage, such as those occurring in the wine samples tested. It is extremely important
to further understand changes in the physicochemical profiles of foods and to identify a
panel of aging biomarkers. Nevertheless, FTIR spectroscopy showed no significant changes



Molecules 2023, 28, 6326 14 of 15

in the spectra measured at three different time intervals, which confirmed that the wine
products presented fairly high stability.
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