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Abstract: Thymopentin (TP5) has exhibited strong antitumor and immunomodulatory effects in vivo.
However, the polypeptide is rapidly degraded by protease and aminopeptidase within a minute at
the N-terminal of TP5, resulting in severe limitations for further practical applications. In this study,
the protective effects of water-soluble alginic acid (WSAA) on the N-terminal of TP5 were investigated
by establishing an H22 tumor-bearing mice model and determining thymus, spleen, and liver indices,
immune cells activities, TNF-α, IFN-γ, IL-2, and IL-4 levels, and cell cycle distributions. The results
demonstrated that WSAA+TP5 groups exhibited the obvious advantages of the individual treatments
and showed superior antitumor effects on H22 tumor-bearing mice by effectively protecting the
immune organs, activating CD4+ T cells and CD19+ B cells, and promoting immune-related cytokines
secretions, finally resulting in the high apoptotic rates of H22 cells through arresting them in S phase.
These data suggest that WSAA could effectively protect the N-terminal of TP5, thereby improving
its antitumor and immunoregulatory activities, which indicates that WSAA has the potential to be
applied in patients bearing cancer or immune deficiency diseases as a novel immunologic adjuvant.

Keywords: water-soluble alginic acid; thymopentin; immune potentiation

1. Introduction

Alginic acid (AA) is a natural polysaccharide aldehyde acid which is composed of
β-D-mannuronic acid (M) and α-L-guronuronic acid (G) formed by 1, 4-linkage with no
regular repeating units and is commonly found in the cell walls of brown algae [1,2]. AA
is known as one of the most famous polysaccharides due to its characteristics, including
being biocompatible, biodegradable, non-toxic, and low-cost [3,4]. Recent research has
proved that AA could exhibit immunomodulatory, antioxidant, and anti-inflammatory
effects [5–7]. However, the naturally extracted AA has always presented larger molecular
weights and lower water solubility, which has severely limited its practical application [8].
Furthermore, sodium alginate has mainly existed in the form of seaweeds, which lost the
characteristics of acidic polysaccharides [9]. Therefore, in this paper, a water-soluble alginic
acid (WSAA) presenting superior water solubility was prepared which had the potential to
exhibit better biological activities.

The bioactive pentapeptide thymopentin (TP5), with the chemical formula Arg-Lys-
Asp-Val-Tyr and a molecular weight of 679.77, exhibits excellent water solubility and
possesses notable biological properties, including its ability to facilitate CD4+ and CD8+

subsets differentiation and maturation [10–12], which have been used for treating immun-
odeficiency diseases including cancer, etc. [13,14]. Furthermore, TP5 has demonstrated
robust immunomodulatory activity by stimulating other immune cells [15]. Nevertheless,
the half-life of TP5 in vivo after intramuscular or percutaneous injection is ≤30 s, which
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has limited its application severely [16,17]. Thus, the development of novel adjuvants is
imperative in order to improve the efficacy of TP5.

Hepatocellular carcinoma, which is primarily induced through chronic viral infec-
tions [18], is the leading cause of death in mainly Asian/African countries and its morbidity
ranks fifth in the world [19,20]. Chemotherapy has been the commonly employed therapeu-
tic strategy for various cancer treatments, while the development of tumor cell resistance
to chemotherapeutics can significantly decrease the efficacy of treatment [21,22]. As re-
ported, cancer immunotherapy could effectively eliminate cancer cells with non-toxic side
effects [23,24]. Therefore, the development of antitumor immunomodulators and the en-
hancement of immune activity have attracted the attention of a lot of scholars aiming to
inhibit tumor growth and relieve the suffering of patients [25].

The current study aimed to investigate the protective effects of WSAA on the N-
terminal of TP5 by preparing a complex of WSAA and TP5, evaluating its antitumor effects
through the construction of a solid tumor mice model. Our findings hold promise for
developing an exceptional immunopotentiator for clinical therapeutics targeting TP5 in
cancer patients. In recent years, there has been a growing interest for exploring novel thera-
peutic approaches for cancer treatments. This study aimed to develop the potential benefits
offered by WSAA when combined with TP5, specifically focusing on its protective effects
on the N-terminal region. By creating a complex between WSAA and TP5, researchers were
able to evaluate their collective impact on inhibiting tumor growth.

To assess the effectiveness of this combination therapy (WSAA–TP5 complex), an H22
solid tumor mice model was constructed. The results provide valuable insights into how
this immunopotentiator can be utilized as a potential therapeutic option for cancer patients,
and the findings have significant implications for future clinical applications targeting
TP5 in cancer patients. Further research is warranted to fully understand the mechanisms
underlying these protective effects and optimize dosage regimens.

2. Results
2.1. Preliminary Structural Analysis of WSAA

The UV/HPGPC methods were utilized to conduct a preliminary structural analysis
of WSAA, and the results are presented in Figure 1B,C. The absence of absorption peaks at
260 nm or 280 nm in the UV spectrum of WSAA shown in Figure 1B indicates that there
was little nucleic acid or protein present in the prepared WSAA, suggesting that the WSAA
presented high purity, which was essential for the further investigations.
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Furthermore, Figure 1C demonstrated that the average molecular weight of WSAA
was 6.48 × 103 Da. This information provides insight into the physical properties of
WSAA and can be used to optimize its performance for various applications. Overall,
these findings are crucial steps towards understanding the structure and characteristics
of WSAA.

2.2. Schematic Diagrams of WSAA–TP5 Complex

The half-life of TP5 in vivo after intramuscular or percutaneous injection is generally
≤30 s. This short half-life can be attributed to the rapid degradation of TP5 by protease and
aminopeptidase enzymes from the N-terminal region. Such enzymatic degradation severely
limits the practical application of TP5 [26]. To address this limitation, Figure 2A presents a
diagram illustrating the degradation process. However, an alternative approach has been
explored to enhance the stability and bioactivity of TP5. As depicted in Figure 2B, it could be
observed that when WSAA (water-soluble alginic acid) was combined with the N-terminal
of TP5 through electrovalent bonds, they could provide protection against enzymatic
degradation. This interaction between WSAA and TP5 not only prevents degradation but
also contributes to stronger bioactivities exhibited by TP5. By shielding the vulnerable
N-terminal region from proteases and aminopeptidases, WSAA effectively preserves the
structural integrity and functional properties of TP5. These findings suggest that modifying
or incorporating WSAA into peptide-based drugs like TP5 could potentially overcome the
limitations related to rapid enzymatic degradation.
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2.3. Organs Indices and Tumors Inhibitory Rates

Figure 3A shows the H22 tumors’ weights and inhibitory rates in mice. The mice in
the model group only received saline solution (during 1~28 d) and H22 cells (on 14 d).
As presented, the average tumor’s weight in mice in the model group increased to 2.18 g
rapidly, while TP5 presented strong inhibitory effects on solid tumor growth (inhibitory
rates of 46.18%) by enhancing antitumor immunity, and individual WSAA treatment
showed little antitumor effect in vivo. The WSAAL/WSAAH groups received hypodermic
injections of WSAA at dosages of 5 mg/kg and 10 mg/kg, respectively. When combined
with TP5 treatment, WSAAL and WSAAH showed lower solid tumor weights and higher
inhibitory rates in mice than individual TP5 injection, and the WSAAH+TP5 group exhibited
an inhibitory rate of 64.72%.

As shown in Figure 3B, the H22 tumor cells’ proliferation in the model group induced
the atrophy of thymuses and the tumefactions of spleens/livers, resulting in the dysfunction
of these organs compared to those of the blank group. After TP5 treatment, compared to
the model group, the thymus indices were significantly increased while the spleens/livers
indices were remarkably decreased, suggesting that TP5 could effectively protect body
organs in H22 tumor-bearing mice. Additionally, in combination with different concentra-
tions of WSAA, the organ conditions of mice were further improved than the individual
TP5 group’s, indicating remarkable immune potentiation by the WSAA–TP5 complex.
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2.4. Routine Analysis of Blood

The results of blood routine examinations for H22 tumor-bearing mice in these groups
following various drug treatments are presented in Table 1.

Table 1. The blood routine examination results of H22 tumor-bearing mice in each group.

Items Units Blank Group Model Group TP5 Group WSAAH
Group

WSAAL+TP5
Group

WSAAH+TP5
Group

Leukocyte 109/L 5.63 ± 1.01 8.97 ± 1.52 α 7.60 ± 1.36 β 9.15 ± 1.46 6.53 ± 1.25 β 6.30 ± 1.41 β

Lymphocyte
proportion % 72.29 ± 4.62 53.73 ± 5.26 α 64.74 ± 5.15 β 52.79 ± 4.63 69.22 ± 4.85 β 74.44 ± 6.10 β

Intermediate
cell proportion % 2.49 ± 0.12 1.90 ± 0.13 α 1.84 ± 0.16 1.64 ± 0.18 1.84 ± 0.13 2.54 ± 0.19 β

Granulocyte
proportion % 25.22 ± 1.83 44.37 ± 3.69 α 33.42 ± 3.10 β 45.57 ± 2.96 28.94 ± 2.12 β 23.02 ± 2.05 β

Erythrocyte 1012/L 9.56 ± 0.62 7.18 ± 0.46 α 8.24 ± 0.49 8.59 ± 0.45 9.19 ± 0.68 β 9.28 ± 0.67 β

Hemoglobin g/L 181.63 ± 9.68 158.70 ± 8.79 α 165.79 ± 8.07 β 159.49 ± 8.01 170.41 ± 10.67 β 174.55 ± 10.09 β

Mean
corpuscular
hemoglobin

concentration

g/L 374.78 ± 20.95 351.40 ± 26.63 α 365.80 ± 16.09 β 354.52 ± 19.37 370.11 ± 20.78 β 375.23 ± 23.65 β

Platelet 109/L 353.23 ± 16.98 421.67 ± 21.84 α 388.94 ± 20.59 β 419.53 ± 29.38 376.23 ± 26.49 β 368.97 ± 20.91 β

Note: α, p < 0.05 compared with blank group; β, p < 0.05 compared with model group.

The study found that the H22 tumor-bearing mice in the model group had increased
levels of granulocytes and platelets, while the lymphocytes and hemoglobin levels were
reduced, suggesting that cancer cells could inhibit lymphocyte activity and lead to ane-
mia and inflammation. However, treatment with TP5 showed effective enhancements in
lymphocytic immunity and relieved adverse effects. Interestingly, when combined with
WSAA, the complex-stimulated H22 tumor-bearing mice showed remarkably enhanced
antitumor immunity in a dose-dependent manner. These findings suggest that combination
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therapy may be more effective than individual treatments for enhancing immune function
in cancer patients.

2.5. Lymphocyte Subsets Detection

The lymphocyte subset distributions and proportions in the bloods of each group
were determined and the results are shown in Figure 4. As presented, the percentages of
CD19+ B cells, CD3+ T cells, and CD3+CD4+ T cells in the model group were obviously
decreased compared with that in the blank group, while CD3+CD8+ T cell proportions
showed inconspicuous differences, which indicates that the CD19+ B cells’ and CD3+CD4+

T cells’ activities were suppressed by the H22 solid tumors. After individual TP5 treatment,
the proportions of CD3+ T cells and CD3+CD4+ T cells were obviously increased compared
with that of the model group. Additionally, the combination of TP5 and WSAA displayed
stronger immunoregulatory activity compared with individual TP5 treatment, and CD19+

B cells’, CD3+ T cells’, and CD4+ T cells’ proportions were all remarkably improved,
indicating the enhanced antitumor immune responses of CD19+ B cells and CD4+ T cells
in vivo.
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2.6. Lymphocytes Proliferation Activities and Antibodies Levels

As depicted in Figure 5A, the uncontrolled proliferation of H22 tumors in the model
group resulted in suppressed splenic T/B lymphocyte proliferation compared to that of
the blank group stimulated by Con A/LPS. However, after treatment with TP5, there were
significant improvements in lymphocyte proliferation activities compared to that of the
model group. After being treated with TP5 and WSAA, the stimulation indices of splenic
lymphocytes were all remarkably increased compared with the separate treatment group,
indicating their significant synergism in H22 tumor-bearing mice. As depicted in Figure 5B,
the levels of IgG/IgM in the sera of model groups were significantly decreased/increased
compared to those of the blank group, indicating their distinct indicative functions (IgG
reflecting anti-tumor ability and IgM reflecting H22 tumor cell amounts). However, after
treatment with TP5 combined with WSAA, the levels of IgG/IgM in the sera of the model
groups were significantly increased/decreased compared to those of the model group,
suggesting that WSAA–TP5 treatments could effectively enhance antitumor capacities in
H22 tumor-bearing mice while suppressing cancer cell quantities.
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2.7. Macrophages and NK Cells Activities

The activities of mice macrophages and NK cells were assessed in this study to evaluate
the effects of TP5 and WSAA on immune responses [27]. The results, as depicted in Figure 6,
showed similar trends in these groups. It was observed that the model group exhibited a
significant decrease in macrophage phagocytosis and NK cell killing activities compared
to the blank group; the decline could be attributed to the uncontrolled multiplication
of H22 solid tumor cells. However, when treated with TP5 alone, there was a notable
improvement in the immunological functions of both macrophages and NK cells. The
phagocytic ability of macrophages increased significantly, while the cytotoxicity of the NK
cells also improved compared to the model group, indicating that TP5 treatment enhanced
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immune responses by boosting these two types of immune cells. Interestingly, when
comparing the TP5 group with the combination therapy using both TP5 and WSAA, it
was found that their immunoregulatory activities in H22 tumor-bearing mice were even
stronger, suggesting that WSAA had additional positive impacts on enhancing immune
responses when combined with TP5 stimulation for mice bearing tumors. These results
demonstrate that both TP5 and WSAA have significant immunological enhancement effects
on mice with H22 solid tumors.
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2.8. Cytokines Levels in Sera

As shown in Figure 7A,B, the results indicate that four types of cytokines exhibited
similar relationships with the eliminative capacities of solid tumor cells in vivo. The
expression levels of IL-2, IL-4, TNF-α, and IFN-γ in the sera of the model group were
significantly decreased compared to the blank group. This decrease in cytokine levels
could potentially promote H22 cells proliferation. However, TP5 treatment was found
to effectively increase these immune-related cytokine levels in mice, thereby inhibiting
the growth of H22 tumors. Furthermore, when combined with WSAA, it was observed
that the levels of these cytokines were further improved compared to those seen with
individual treatments. These findings highlight the potential therapeutic benefits of TP5
and its combination with WSAA for cancer treatment. By increasing immune-related
cytokine levels, this approach might help suppress tumor growth and enhance overall
antitumor responses. Nonetheless, these results could provide valuable insights into
potential strategies for improving cancer therapy through the modulation of immune
responses [28].

2.9. Cell Cycle Determination

The cell cycle of mice H22 solid tumor cells was determined, and the proportions
of cells in Sub-G1, G0/G1, S, and G2/M phases are displayed in Figure 8. As presented,
the apoptotic rate of solid tumor cells in the model group was 5.4%, which might result
from the grinding process of solid tumors for single-cell suspension preparation, and the
percentages of G0/G1, S, and G2/M phases were 54.5%, 25.5%, and 10.2%, respectively.
After individual TP5 treatment, the apoptotic rates of H22 solid tumor cells increased
to 17.2%, indicating their immunomodulatory effects. Furthermore, the proportions of
H22 cells in S phase obviously increased to 35.6%, which suggests that the apoptosis was
induced by S phase retardation. Compared with the TP5 group, the combination of WSAA
with low and high dosages could further improve the apoptotic rates of tumor cells to
28.3% and 32.3%, which were also induced by arresting them at the S phase.
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3. Discussion

AA is composed of D-mannuronic and L-guluronic acid with β-1→4-linkage, and
the chain length would be different depending on extraction conditions, which could also
significantly affect its physicochemical properties and biological functions [29]. TP5 is
an immunocompetent polypeptide with no side effects and has been widely applied to
improve immunological indices in hosts bearing immune deficiency diseases [30]. The
C-terminus and N-terminus of TP5 are characterized by carboxyl groups and amino groups,
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respectively, while the degradation of TP5 primarily occurs at the N-terminus through
protease and aminopeptidase activities. Interestingly, the use of cationic compounds to
protect the C-terminus does not impede the degradation rate of thymopentin, as supported
by our previous findings that low-molecular-weight chitosan actually accelerates its in vivo
degradation, consequently diminishing its immune-regulatory bioactivity [31]. In this
paper, WSAA was prepared using H2O2 degradation, and the model of mice suffering H22
solid tumors was constructed, and the protective effects of WSAA on the N-terminal of TP5
were evaluated through immunological indicator determination.

The thymus and spleen, being vital immune organs in the body, play a crucial
role in safeguarding against infections and cancers by activating diverse populations
of immune cells [32]. The liver is an organ that primarily functions in metabolism and
hematopoiesis [33]. As reported, anemia, infection, and suppressed immune cells ac-
tivities are common complications in cancer-bearing patients [34,35]. In this study, the
individual TP5 treatment exhibited strong antitumor activity and significantly reduced the
solid-tumors-induced side effects as expected [36]. Additionally, the combination groups
displayed higher inhibitory effects in mice bearing H22 solid tumors, indicating that the
WSAA presented strong immune potentiation in TP5-stimulated mice.

Macrophages are mainly composed of pro-inflammatory (M1) and anti-inflammatory
(M2) cells, which can treat various microenvironment signals [37]. NK cells demonstrate
important antitumor responses through their direct killing ability and releasing inhibitory
cytokines [38]. As reported, CD4+ T cells are the primary subsets of T cells and can exert in-
direct inhibitory effects on tumor cells, while the CD8+ T cells are the main effector cells [39].
Moreover, B cells mediate humoral immunity by secreting a variety of antibodies including
IgG and IgM, which play important roles in the antitumor effects of the body [40]. In this
study, TP5 effectively inhibited the growth of solid tumors in mice and presented strong
immunological enhancements on macrophages, NK cells, and CD4+ T cells. Furthermore,
WSAA combined groups also showed higher B cells proportions and proliferation abilities,
as well as IgG antibodies levels, and finally resulted in higher inhibitory effects on tumor
cells. Based on the evaluation of tumor development in different groups of mice, it can
be inferred that IgM antibodies did not exhibit any distinct inhibitory effects on tumor
cells, while IgG antibodies played a more significant role in effectively eliminating tumor
cells [41,42].

Cytokines are acknowledged as signaling molecules that play vital roles in intercellular
communication within the immune system and various other biological processes. They
can be proteins or peptides secreted by different cell types, including immune cells, in
response to diverse stimuli such as infections, injuries, or immune responses. Examples
of cytokines encompass interleukins (IL-2, IL-6, IL-8, IL-12), TNF-α, and IFNs [43–45].
TNF-α participates in the destruction of tumor cell structure and the induction of cell
apoptosis and may serve as a co-stimulatory factor for mitogen-activated normal B cells [46].
IFN-γ is mainly produced by T cells and NK cells and plays a crucial role in antitumor
immunity by activating lymphocytes, macrophages, and NK cells [47,48]. IL-2 could
promote the tumor-specific NK cells and T cells activities, and IL-4 could regulate immune
responses [49,50]. In the present study, TP5 significantly improved the sera cytokine levels
of mice bearing H22 solid tumors as expected, thereby inhibiting solid tumor growth by
arresting the S phase. Furthermore, the combined treatments of TP5 and WSAA showed
stronger immunopotentiation in the cytokine expressions, suggesting that the complex
could effectively enhance antitumor immune responses even compared with the individual
TP5 treatment group. However, the apoptosis mechanisms of tumor cells under immune
system attack in vivo still need to be further researched.

4. Materials and Methods
4.1. Materials and Reagents

The TP5 was chemically synthesized by Beijing Protein Innovation Co., Ltd. (Beijing,
China), and the purity surpassed 98%. Anti-mouse monoclonal antibodies of CD3-FITC,
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CD19-PE, CD8-FITC, and CD4-PE were provided by the BioLegend company (San Diego,
CA, USA); the alginic acid (AA), Mouse Spleen NK Cells Isolation Kit, and MTT Cell
Proliferation and Cytotoxicity Assay Kit were purchased from Beijing Solarbio Science &
Technology Co., Ltd. (Beijing, China); the Immunoglobulin G Assay Kit, Immunoglobulin
M Assay Kit, Tumor Necrosis Factor-α (TNF-α) Assay Kit, Interferon-γ (IFN-γ) Assay Kit,
Interleukin-2 (IL-2) Assay Kit, and Interleukin-4 (IL-4) Assay Kit were provided by the
Nanjing Jiancheng Bioengineering Institute (Nanjing, Jiangsu province, China). However,
the other reagents used in the present paper were of analytical grade.

4.2. Preparation of WSAA

The WSAA was prepared by following the procedure shown in Figure 1A. In brief, the
alginic acid powder was immersed in a 30% H2O2 solution in an 80 ◦C water bath for 10 h;
then the supernatant was gathered using the centrifugation method and precipitated by
adding ethanol 4 times its volume. Subsequently, the sediment was redissolved in distilled
water and isolated with the Sephadex G-25 column to acquire WSAA. Finally, the purity
of the WSAA was initially determined with the ultraviolet spectrum of the UV-2500PC
UV-Vis spectrophotometer scanning from 200 nm to 800 nm (Shimadzu, Kyoto, Japan).

4.3. Molecular Weight Determination of WSAA

The molecular weight of the prepared WSAA was determined through the employ-
ment of high-performance gel permeation chromatography (HPGPC, Agilent-1200 series,
Santa Clara, CA, USA) with a TSK-gel G4000PW×L column (7.8 mm × 300 mm) [51]. The
operation parameters were set as follows: sample loading volume of 20 µL, eluent flow rate
of 0.8 mL/min, column temperature of 30 ◦C, and Differential Refractive Index Detector
(RID) temperature of 35 ◦C. Additionally, T-series dextrans including T110 (110 kDa), T70
(70 kDa), T40 (40 kDa), T10 (10 kDa), and T3 (3 kDa) were used as standards.

4.4. Design of Animal Experiment Program

Sixty female BALB/c mice (18–22 g) were provided by SPF (Beijing) Biotechnology
Co., Ltd. (Beijing, China), and raised under a relative humidity of 45–55% and controllable
temperatures of 20–25 ◦C with a 12 h light/12 h dark cycle. The mice were bred in an
environment with controlled temperature (20–25 ◦C), relative humidity (45–55%), and a
12-h light/dark cycle. They were randomly divided into six groups, each consisting of ten
mice: Blank group, Model group, TP5 group, WSAAH group, WSAAL+TP5 group, and
WSAAH+TP5 group. The blank and model groups received a saline solution, while the
TP5-related groups were given subcutaneous injections of TP5 at a dosage of 1 mg/kg
once daily. The WSAAL/WSAAH groups received hypodermic injections of WSAA at
dosages of 5 mg/kg and 10 mg/kg, respectively. After 14 days of treatment, H22 cells with
a concentration of 2 × 106 cells/mouse were injected into the right axilla of all mice except
for the blank group followed by another fourteen days’ treatment period.

4.5. Analysis of Physiological Indices

Upon the trial’s conclusion, measurements were taken of the mice’s body weight,
thymus weight, spleen weight, liver weight, and tumor weight. The following formula was
employed to determine the inhibitory rates: Inhibitory rates (%) = (M1 – M2)/M1 × 100,
where M1 and M2 represent the mean tumor weights of the model group and treatment
groups. These measurements were subsequently utilized to calculate organ indices based
on their respective body weights.

4.6. Blood Routine Examination

Blood routine examination is a widely utilized method for assessing the quantity and
quality of white blood cells, their subsets, red blood cells, and platelets. Following the
immediate addition of EDTA-K2 to obtain fresh mouse blood samples and prevent coagula-
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tion, an automated blood cell analyzer was employed to examine them in accordance with
mice patterns.

4.7. Lymphocytes Subsets Determination

The PE-CD19, FITC-CD3, PE-CD4, and FITC-CD8 antibodies were applied to stain
white blood cells after the removal of red blood cells; fluorescence-labeled subsets were
gathered and determined [52] and then analyzed using the FlowJo software (10.8.1).

4.8. Immune Cells Activities and IgG/IgM Expressions

The splenic lymphocyte proliferation capacities, peritoneal macrophage phagocytic
capacities, and NK cells’ killing activities were determined according to previously reported
methods [31,53].

Additionally, the expression levels of IgG and IgM antibodies in sera of mice were
determined using the corresponding ELISA kits following the instructions, and then the
results were further calculated and analyzed.

4.9. Cytokines Levels Evaluation and Cell Cycle Detection

The IL-2, IL-4, TNF-α, and IFN-γ levels were determined and calculated according
to the kits’ instructions. Additionally, the solid tumor cells of mice were prepared by
grinding and filtering through a 300-mesh cell strainer, and the cell cycle distributions were
evaluated using the DNA Content Quantitation Kit (Solarbio Life Science, Beijing, China).

4.10. Statistical Analysis

All experimental data were presented as the mean ± standard deviation (S.D.), and
statistical analysis was performed using the SPSS 20.0; ANOVA and Duncan’s multiple
range test (p < 0.05) were used for other analyses of significant differences.

5. Conclusions

In conclusion, the water-soluble alginic acid (WSAA) with low molecular weight
(6.48 × 103 Da) was isolated and purified via H2O2 degradation; the WSAA–TP5 complex
showed superior antitumor effects on H22 tumor-bearing mice by effectively protecting
immune organs, activating immune cells, and promoting immune-related cytokines ex-
pressions compared with the individual TP5 treatment group, finally resulting in the
apoptosis of H22 cells by arresting them in S phase, indicating that WSAA could obviously
protect the N-terminal of TP5 and thereby improve its antitumor and immunoregulatory
activities. Therefore, WSAA could be used in cancer-bearing patients or other related
immunocompromised diseases as a novel immunologic adjuvant.
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