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Abstract: Amyloid diseases have become a global concern due to their increasing prevalence. Tran-
sition metals, including copper, can affect the aggregation of the pathological proteins involved in
these diseases. Copper ions play vital roles in organisms, but the disruption of their homeostasis can
negatively impact neuronal function and contribute to amyloid diseases with toxic protein aggre-
gates, oxidative stress, mitochondrial dysfunction, impaired cellular signaling, inflammation, and
cell death. Gaining insight into the imbalance of copper ions and its impact on protein folding and
aggregation is crucial for developing focused therapies. This review examines the influence of copper
ions on significant amyloid proteins/peptides, offering a comprehensive overview of the current
understanding in this field.
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1. Introduction

In recent times, the increasing prevalence of various amyloid diseases has emerged
as a global cause for concern [1,2]. Amyloidosis can develop either from a normal native
protein that assumes an altered arrangement, known as sporadic amyloidosis, or from a
protein with mutations, which is referred to as familial or hereditary amyloidosis [2].

Misfolding processes in the human body can lead to the formation of stable protein ag-
gregates called amyloid fibrils, which are associated with several disorders (there are more
than 30 known amyloid-related diseases) including Alzheimer’s disease (AD), Parkinson’s
disease (PD), Type II diabetes mellitus (T2DM), Huntington’s disease (HD), prion disease,
etc. [2]. Each of these disorders is linked to a particular peptide or protein. However,
the amyloid fibrils exhibit common structural characteristics (high β-sheet content) across
different pathologies. The current understanding suggests that the misfolding of polypep-
tide chains is a shared characteristic in these diseases, competing with the normal folding
pathway. Recent studies on amyloidogenic proteins indicate that the most harmful species
for living systems are prefibrillar aggregates that possess some levels of order, rather than
fully formed and structured amyloid fibrils. These findings emphasize the significance
of investigating the early stages of protein aggregation to comprehend the mechanisms
underlying amyloid diseases.

A growing body of evidence suggests that transition metals, specifically in their diva-
lent and trivalent ionic forms, can expedite the aggregation process of different pathological
proteins [3,4]. This aspect is of particular relevance considering the evident alterations of
metal ion concentrations in these pathologies. Metal ions, including copper, play prominent
roles in various physiological processes within the brain and in other tissues, such as
neurotransmission, enzyme activity, and antioxidant defense [5]. However, when their
homeostasis is disrupted, it can lead to detrimental effects on cellular function and con-
tribute to the progression of amyloidosis [6].

Imbalances in metal ion homeostasis can result in the formation of toxic protein
aggregates, mitochondrial dysfunction, oxidative stress, impaired cellular signaling, and
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inflammation. These processes can ultimately lead to cell death and the characteristic
symptoms of amyloid diseases. Moreover, emerging evidence suggests that restoring metal
ion homeostasis through metal-binding therapy or the modulation of metal-related proteins
could be a potential therapeutic approach for amyloidosis [7]. However, further research
is needed to fully elucidate the complex interactions between metal ions and amyloidosis
and to develop effective interventions.

Understanding the mechanisms underlying the dyshomeostasis of copper ions in
amyloid diseases and its effects on protein folding/misfolding and aggregation is essential
for developing targeted therapeutic strategies.

In this review, the effects of copper ions on the major amyloid proteins will be analyzed
to provide an overview to the reader of the current knowledge on this topic.

2. Factors Influencing Protein Aggregation

Protein aggregation more often results from incorrect interactions with metal ions, local
alterations in environmental conditions (such as pH, ionic strength and temperature, etc.), or
chemical modifications (such as oxidative or proteolytic processes). Several environmental
factors can affect the aggregation process. Experimental studies have demonstrated that
even slight variations in these environmental factors can have a significant impact on the
outcomes. The pH of the environment plays a crucial role in determining the type and
density of the surface charge on proteins as well as the extent of structural disruption.
Additionally, pH has an impact on the intramolecular folding of proteins and influences
protein–protein interactions.

It is important to note that the primary structure of the polypeptide influences its
ability to convert into amyloid structures under specific conditions. Certain amino acid se-
quences, particularly those containing regions with a high propensity for β-sheet formation,
are more prone to undergo conformational changes and aggregate into amyloid structures.
For example, aggregation can occur through partially unfolded intermediates and unfolded
states, such as protein translocation across membranes, or protein self-association. Polypep-
tides that are partially unfolded contain hydrophobic segments and demonstrate higher
flexibility than when they are folded, which renders them more susceptible to the process
of aggregation.

The binding of copper, for example, to amyloidogenic proteins significantly affects
protein toxicity by affecting either the aggregation process or the generation of radicals [8].
As for Cu, it is crucial to understand that its primary redox state differs between the
intracellular and the extracellular environment. Cu is predominantly found in its reduced
form, Cu+, inside the cell because of the reducing conditions. Conversely, in extracellular
spaces, Cu2+ is more prevalent. Therefore, the significance of one redox state over the other
depends on the location of the amyloidogenic peptide. Unlike the coordination of Cu+

ions, which typically involves atom donors found in side chains of amino acids such as
methionine (M) or histidine (H), Cu2+ ions attach to the N-terminal amine or the imidazole
group of H, followed by coordination with backbone amide nitrogen atoms. However, this
coordination interaction is hindered when the protein assumes an α-helical conformation,
as observed in the case of PrP, Aβ, and αSyn when interacting with membranes [9]. The
interaction with the membrane, as in the case of αSyn, could modulate the conformational
and aggregation properties of the proteins and also silence the metal-mediated redox
reactivity of the metal–protein complexes [10].

To gain a comprehensive understanding of the intricate molecular processes and struc-
tural changes induced by copper ions in protein aggregation, researchers employ a variety
of chemical and physical methods. The kinetics of amyloid aggregation is usually studied
through ThT-based fluorescence experiments, while circular dichroism (CD), Nuclear Mag-
netic Resonance (NMR), and Molecular Dynamics (MD) simulations offer insights into the
structural modifications occurring during the process, providing atomic-resolution struc-
tures of the species. To examine the size and morphologies of metal–protein aggregates,
Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM)/Atomic
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Force Microscopy (AFM) images are utilized, respectively. Additionally, other methods
such as Isothermal Titration Calorimetry (ITC), Mass spectrometry (MS), Electron Param-
agnetic Resonance (EPR), and Fourier Transform Infrared Spectroscopy (FTIR) are used
to investigate the interactions between metal ions and amyloidogenic peptides/proteins
to obtain information on the metal-binding affinity and amino acid residues involved in
metal complexation. Moreover, chemical tools play a crucial role in controlling the impact
of metal–protein interactions on amyloid aggregation and toxicity, as well as in probing the
aggregation pathways.

Various amyloidogenic peptides and their variants have been intensely investigated
for their coordination sites with Cu+ or Cu2+, but not to an equal extent. Among these
peptides, Aβ has been the most extensively examined, followed by αSyn and IAPP [11–15].
On the other hand, tau and other amyloid proteins have a smaller amount of information
available regarding their interactions with metal ions [16–18]. The investigation of the metal
complexes of these proteins has frequently been achieved using specific fragment peptides
of the corresponding amyloid protein containing the metal-binding site, for example,
Aβ1–16. Nevertheless, it is essential to acknowledge that in the case of short peptides
like Aβ and IAPP, numerous studies have been conducted not only on the metal-binding
domain but also on the full-length peptides. Similarly, for the longer αSyn, several studies
have also focused on the full-length form. However, this approach does not apply to tau
or other proteins that are significantly longer, and, for example in the case of tau, exist in
various phosphorylate d states that could influence the metal coordination. If possible, this
article will focus on presenting data acquired from the entire peptide or protein, as it is
believed to better mimic real conditions.

2.1. α-Synuclein

α-Synuclein (αSyn) is a protein of 140 amino acids that is primarily found in the brain,
particularly in regions involved in regulating movement, such as the substantia nigra. It is a
key player in neurodegenerative diseases, particularly PD and dementia with Lewy bodies
(DLB). Abnormal accumulation of αSyn in the form of insoluble aggregates is a hallmark
pathology of these disorders [19]. In PD, the Lewy bodies are involved in the disruption of
normal cellular processes and lead to the degeneration of dopamine-producing cells in the
brain, causing the characteristic motor symptoms of PD [20].

The protein can be divided into three separate parts: the amphipathic N terminus
(residues 1–60), which interacts with lipids; the hydrophobic self-aggregating sequence,
also called the non-Aβ component (NAC) because it is a component of the amyloid plaques
found in AD patients (residues 61–95); and the acidic C-terminal region (residues 96–140),
which plays a crucial role in the chaperone-like activity of αSyn (Figure 1) [21].
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Figure 1. Schematic representation of the full-length αSyn sequence, showing the major regions and
some elements of secondary structure.

In its normal, healthy state, αSyn is soluble and it is believed to be involved in regulat-
ing neurotransmitter release, maintaining synaptic function, glucose levels, biosynthesis of
dopamine, and modulating synaptic vesicle dynamics [22].

However, in PD and DLB, αSyn undergoes a conformational change, adopting a mis-
folded and aggregated form (Lewy bodies and Lewy neurites). It is still not clear precisely
how αSyn aggregates contribute to neurodegeneration, but it is believed that they disrupt
cellular processes, impair protein degradation mechanisms, and induce toxicity, leading to
neuronal dysfunction and death [21]. Research suggests that genetic and environmental
factors contribute to the accumulation and aggregation of αSyn. Mutations or duplica-
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tions in the SNCA gene, which encodes αSyn, are associated with familial forms of PD,
highlighting the significance of this protein in disease development. Autosomal dominant
early onset PD is induced as a result of different missense mutations in the αSyn gene
(A30P, A53T, and E46K) or as a result of the overexpression of the wild-type αSyn [23].
The αSyn fibrillation occurs through the formation of nuclei from monomers, leading to
the formation of β-sheet-aligned, fibrillar aggregates. Recent findings suggest that αSyn
fibrils from external regions can be taken up by neuronal cells and serve as seeds for the
internal fibrillation of αSyn, leading to neurotoxicity in the neurons. The structural and
size differences observed in αSyn fibrils also play a role in determining the toxicity [24]. It
is worth noting that fibrils can release prefibrillar oligomers of αSyn that have the ability to
effectively traverse neuronal membranes and make them permeable, leading to damage
to the cells. Comparatively, short fibrils are more detrimental to neurons than long fibrils,
as they possess a greater ratio of fibrillar ends, intensifying their neurotoxicity [25]. The
formation of αSyn aggregates is influenced by various factors, including post-translational
modifications, pH, polyamines, and the concentration of αSyn [26]. Furthermore, there
is evidence that external factors, such as exposure to metal ions or oxidative stress, may
trigger the misfolding and aggregation of αSyn. Aggregation rates of αSyn have been
demonstrated to be impacted by the presence of metal ions such as Cu2+, Zn2+, Al3+, Fe3+,
Ca2+, and Mg2+ [27–30].

As for copper ions, they can bind to αSyn and influence its behavior and aggregation
properties. Because there is evidence of copper imbalances in PD [31], the interaction
of αSyn with copper ions could occur. In PD patients, copper levels are elevated in the
cerebrospinal fluid and are associated with the presence of Lewy bodies. αSyn has three
sites where it can bind copper: residues 1–9, H50, and loop 119–127. αSyn and Cu2+ form
different complex species: at pH < 6 Cu2+ binds to M1 and D2 in a 2N2O (NH2, N−, COO−,
Owater) species, whereas at pH7.4 H50 is involved in forming a 3N1O (NH2, N−, NH50,
COO−) complex species; a second Cu2+ ion binds to H50 in a 2N2O/3N1O (NH50, N−,
N−/O, O) species, while the first equivalent occupies the N-terminal binding site (M1
and D2) [32]. Finally, Cu2+ also binds to a nonspecific site 3 at the C-terminal region (loop
D119-M127). There is also the possibility of ternary species, such as αSyn−Cu2+-αSyn′

where the Cu2+ ion bridges two distinct protein molecules [32]. In this arrangement, αSyn
is bound by its N-terminal part, while αSyn′ is bound by the H50 residue.

This interaction between αSyn and Cu may also have an impact on the aggregating
properties, which are widely recognized as a crucial event in the development of PD. While
other metal ions interact at the 119DPDNEA124 motif, in which D121 acts as the main
anchoring site in the C-terminus of αSyn [33], copper binds to the N-terminal region with a
moderate affinity and strongly affects the fibrillation process of αSyn. Increasing evidence
suggests that the effect of Cu2+ on αSyn aggregation in laboratory settings is not solely due
to specific binding with histidine or the interaction with negatively charged residues in the
C-terminal region of αSyn. The mechanism of aggregation triggered by Cu2+ shares com-
mon features with the other divalent ions only when the protein is exposed to a millimolar
concentration of the metal ion [34]. However, this process shows considerable dissimilarity
from the specific binding of Cu2+ to the N-terminus of αSyn [34]. The promotion of αSyn
amyloid formation by copper is a direct result of the formation of a complex between αSyn
and copper (with dissociation constants ranging from 10−10 to 10−9 M) [34] specifically
at the 1MDVFM5 segment, located in the N-terminal region of the protein. Unlike Aβ

and PrpC, where the aggregation is influenced by the formation of H-Cu2+ complexes, the
presence of H50 in αSyn does not impact the aggregation initiated by copper binding at the
N-terminal region. This suggests that H50 does not actively participate in the structural and
biological events associated with the mechanism of copper-induced αSyn aggregation. The
interaction between αSyn and copper is complex and can have different effects on αSyn
aggregation [35]. The balance between these effects and the specific conditions under which
they occur is still an area of active research. Copper ions can facilitate the transition of
αSyn from a monomeric form to aggregated structures, such as oligomers. The presence of
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annular oligomers during the initial phase of αSyn aggregation has also been reported only
in the presence of Cu [36]. Rapid molecular dynamics simulations of αSyn suggest that
the presence of Cu(II) ions leads to modifications in the secondary structure pattern of the
peptide, resulting in the formation of enhanced and more enduring secondary structural
elements like β-strands and hairpins [37]. The aggregated forms of αSyn are believed to be
toxic to neurons and contribute to the development and progression of neurodegenerative
diseases like PD. In particular, Cu2+-promoted αSyn nucleation delays the elongation of
fibrils. The interaction between αSyn monomers and Cu2+ through macrochelation causes
a strain in the conformation of the monomer. This strain disrupts the elongation of fibrils
but promotes their nucleation. H50 is situated within the β-sheet-aligned core region of
αSyn, and the conformation of the αSyn-Cu2+ complex is constrained specifically within
residues 1–50. As a result, the structural reorientation of residues 1–50, which is neces-
sary for the assembly onto the αSyn nucleus, is altered [38]. This is further supported
by evidence that H50 in mature fibrils cannot coordinate copper [39]. This non-canonical
process leads to the formation of shortened αSyn fibrils enriched in β-sheet structures,
which are smaller in size (<0.2 µm). These shortened fibrils exhibit rapid transmission and
accumulation in neuronal cells, ultimately resulting in neuronal cell death. This is in stark
contrast to typical αSyn fibrils, which are larger in size (approximately 1 µm) [38]. TETA
(triethylenetetramine) has been demonstrated to mitigate the harmful impact of copper
ions on the toxic spread of αSyn fibrils. In a C. elegans model of PD, TETA treatment
resulted in the restoration of the organism’s lifespan [40]. These findings highlight TETA as
a promising therapeutic approach for PD.

Additionally, the interaction between αSyn and copper can lead to the generation of
reactive oxygen species (ROS) through redox reactions. One of the most relevant relations
between the formation of copper-αSyn and its toxicity is represented by post-translational
modifications induced by metal-induced oxidative stress, copper can also directly or indi-
rectly mediate these post-translational modifications that further alter the structure and
function of αSyn, promoting its aggregation and toxicity [41,42].

Understanding the role of copper in αSyn biology may provide insights into the
underlying mechanisms of neurodegenerative diseases and could potentially lead to the
development of therapeutic strategies targeting this interaction.

2.2. Prion Protein

A prion is an infectious, misfolded, and self-replicating protein that can cause neu-
rodegenerative diseases, such as Creutzfeldt–Jakob disease (CJD) in humans or bovine
spongiform encephalopathy (BSE) in cattle. Prions do not contain genetic material like
viruses or bacteria but can transmit their abnormal conformation to normal proteins, lead-
ing to a chain reaction of misfolding and aggregation, ultimately causing damage to the
brain and nervous system. Prion diseases are often fatal and difficult to treat [43–45]. Prions
are composed of an abnormal isoform of a cellular protein called PrPC (Prion Protein). PrPC

is a soluble protein with a functional role, consisting of 208 amino acid residues, and is
highly expressed in the central nervous system. It comprises two distinct structural regions:
an unstructured N-terminal region and a globular C-terminal domain, primarily composed
of α-helices. This C-terminal domain is anchored to the pre- and postsynaptic membranes
through a GPI (Glycosylphosphatidylinositol) lipid anchor motif (Figure 2) [46].
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However, in prion diseases, the misfolded form, known as PrPSc (Sc for scrapie, a prion
disease in sheep), adopts a different conformation with a high content of β-sheet structures.

The misfolded PrPSc acts as a template, converting the normal PrPC into the abnormal
form by inducing its misfolding and aggregation. This process leads to the accumulation of
PrPSc aggregates, which are resistant to proteolytic degradation and form insoluble amyloid
fibrils. The exact function of the prion protein remains elusive, and many roles have been
hypothesized [46]. Based on its similarity to ZIP family proteins [47], it is believed that
the prion protein may be involved in metal homeostasis. Considering the dysregulation
associated with prion diseases, this is certainly a hypothesis that is being studied. Based
on this, superoxide dismutase activity, transmembrane copper transport, copper buffering,
neuronal protection, and neuritogenesis have been proposed as activities of PrPC [47].
Moreover, the key role of copper-binding sites in maintaining the neuritogenesis function
of PrP has been recently reported [48].

The PrPC protein can bind up to six divalent metal ions, including Cu2+, through two
distinct domains with different affinities and coordination modes for the metal ion. The
coordination properties of PrP are highly dependent on Cu2+ concentration, Cu2+/protein
ratio, and pH. Cu coordination properties of the N-terminal region of human PrPC are
excellently reviewed elsewhere [49]. Briefly, the six H residues that act as anchoring sites for
Cu ions are: H61, H69, H77, and H85 in the octarepeat (OR) region, and H96 and H111 in the
non-OR region. The N-terminal domain contains the OR region, consisting of four tandem
PHGGGWGQ repeats, and binds Cu2+ with a good affinity (around 0.1 nM). The OR region
of PrPC is one example of Cu2+ coordination toward the C-terminus of the protein as the
P residue near the copper-binding region−PHGGGWSQ−hinders coordination toward
the N-terminal region [50]. The non-octarepeat region, located nearby, binds Cu2+ ions
with weaker affinity, probably exploiting H96 and H111 as ligands (Figure 2). Studies have
shown that the OR region can bind up to four Cu2+ ions, with the first ion having the
highest affinity.

The complex formation of Cu2+ with PrPC may influence the interaction of the protein
with other systems (proteins, lipids, etc.) through multiple mechanisms. These mechanisms
include regulating its localization at lipid rafts, causing conformational changes (such as
cis-interdomain interactions) that might be recognized by other proteins, forming ternary
protein-Cu2+-PrPC complexes, or competing for protein-binding sites [51]. Furthermore,
copper may play a crucial role in controlling the infectivity of the prion protein. Specifically,
the copper-binding site outside the octarepeat region (95-HNQWNKPSKPKTNLK H-110)
could be involved in this ability [52]. Compelling evidence suggests that copper facilitates
stabilizing interactions between the N-terminal and C-terminal domains, resulting in a
more compact folding of PrPC as reviewed elsewhere. [52]. The functional consequences of
this Cu2+-mediated structural alteration are yet to be thoroughly explored. However, this
interdomain interaction might hold significant relevance in the physiological activity of
PrPC [46]. Moreover, a recent study has proposed that Cu2+ ions could be important factors
in converting the PrPC into amyloid structures of the neurotoxic PrPSc form. Through CD
experiments, it has been observed that copper (particularly at higher copper concentrations)
induces the transition of OR peptides from random coil and PPII helix conformations to
β-sheet structures [53].

The exact role of copper binding to PrPC and its implications in prion diseases are still
areas of active research and investigation. The interaction between copper and PrP may
have implications in the misfolding and aggregation of the PrPC and could potentially play
a role in the pathogenesis of prion diseases. However, more research is needed to fully
understand the significance of copper binding to PrP and its consequences.

2.3. 6aJL2

Light-chain amyloidosis, also known as AL amyloidosis, is a rare disease character-
ized by the abnormal deposition of misfolded light-chain proteins in various organs and
tissues throughout the body. It is a type of systemic amyloidosis, where excess light chains
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produced by abnormal plasma cells misfold and aggregate, forming insoluble amyloid
fibrils. These fibrils can deposit in organs such as the heart, kidneys, liver, nervous sys-
tem, and gastrointestinal tract, leading to organ dysfunction and a wide range of clinical
manifestations [54,55].

The symptoms and complications of light-chain amyloidosis can vary depending
on the organs affected. Common symptoms may include heart-related issues like heart
failure or arrhythmias, kidney dysfunction, liver enlargement, peripheral neuropathy,
and gastrointestinal problems [56]. While there are no direct pieces of evidence linking
metal ions to the development of this disease, there have been reports indicating that the
destabilization of plasma proteins, including LC, could occur in the presence of elevated
levels of copper ions.

The main components of the amyloid deposits in AL are primarily derived from
fragments of the variable region of the immunoglobulin light chain. Approximately 30%
of reported AL cases are associated with λ6 proteins, which has been observed in over
30% of AL patients. Furthermore, it has been noted that 25% of these amyloidogenic
proteins have a mutation involving an Arginine to Glycine substitution at position 24.
In vitro, studies have demonstrated that this mutation reduces the protein’s stability and
increases its tendency to form larger aggregates [57]. Overall, the protein 6aJL2-R24G is
composed of eight β-strands (A–C, C′, and D–G) forming a β-sandwich comprising 111
amino acid residues (Figure 3) [58]. Studies have indicated that the protein, in its native
or fully unfolded state, does not undergo fibrillar aggregation. This suggests that the
formation of aggregates involves the participation of partially unfolded intermediaries
as supported by a recent paper [57]. Cu2+ has been associated with the development of
degenerative diseases, showing affinities similar to those observed for 6aJL2-R24G [59].
Therefore, the binding of Cu2+ to 6aJL2-R24G could potentially trigger the aggregation
under physiological conditions. In particular, the study revealed that 6aJL2-R24G has the
capability to bind Cu2+ with submicromolar affinity, and this binding process promotes the
formation of protein fibrils at a higher rate as demonstrated by ThT and thermal stability
assays. H99 has been indicated as the main interaction site. Moreover, MD simulations of
the complexes demonstrated binding site-specific effects, “inducing larger fluctuations of
the CDR1 and loop C′′ and resulting in increased flexibility and disrupted interactions in
critical regions of the molecule [58].

Figure 3. Schematic representation of the primary sequence of the protein 6aJL2-R24G, displaying
some elements of the secondary structure.

2.4. Amyloid-Beta

AD is primarily associated with the accumulation of two types of protein aggregates:
β-amyloid (Aβ) plaques and tau tangles. Aβ peptides form plaques outside the neurons
whereas Tau isoforms, which are normally involved in stabilizing the structure of neurons,
become abnormally phosphorylated and aggregate into tangles within the neurons. The
accumulation of Aβ plaques and tau tangles and the interaction between Aβ and tau
seem to be related to neuronal dysfunction, leading to the cognitive decline observed in
AD [60,61]. Furthermore, disrupted metal homeostasis in the brain and oxidative stress
are observed in AD. Notably, Aβ plaques contain higher concentrations of metal ions (Cu,
Zn, Fe) compared to normal brain tissue [62]. The binding of metal ions can alter the
aggregation of Aβ, leading to disruptions in metalloenzyme activity and promoting the
generation of ROS.

The Aβ peptide, derived from the amyloid precursor protein (APP), is produced
through cleavage events by α-, β-, and γ-secretases, resulting in predominantly Aβ1–40
and Aβ1–42 forms [63]. Additionally, truncation at the N-terminus leads to Aβ3(p)–n, Aβ4–n,
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and Aβ11(p)–n peptides (p refers to pyroglutamate) found in amyloid deposits [64]. Aβ

exists in three forms in the brain: membrane-associated, aggregated, and soluble [63].
In AD, the aggregated and soluble fractions of Aβ increase significantly compared to
healthy individuals. Aβ1–40 or Aβ1–42 undergo on-pathway aggregation, involving primary
nucleation, elongation, and plateau phases [65,66]. In particular, Aβ1–42 monomers, which
are partially folded, form relatively stable oligomers (e.g., pentamers and hexamers) that
can further aggregate into protofibrils and fibrils. On the other hand, Aβ1–40 initially is a
blend of monomers, dimers, trimers, and tetramers, and it undergoes self-assembly into
fibrils at a slower rate. Additionally, monomers can transform into nuclei on the surface
of fibrils, known as secondary nucleation. Soluble oligomers are currently considered the
most toxic species and cause toxicity by interacting with lipid rafts and synaptic receptors
on cellular membranes [67,68].

Due to the strong affinity of Aβ peptides for metal ions, the interaction between them
and Cu has been extensively studied [69–71]. Numerous research groups have put forth
various coordination models for Cu2+-Aβ complex species based on the data obtained
via several techniques such as EPR, CD, NMR, X-ray absorption spectroscopy, and more.
Copper complex species of Aβ peptides have been the subject of numerous reviews [71–74].
In conditions close to physiological pH, the Cu2+-Aβ complex exists in two main species
known as components I and II. Component II is formed from component I by deprotonating
an amide bond in the peptide backbone and subsequently binding it to Cu2+. The shift
from component I to II occurs at approximately pH 7.8. Both species adopt a distorted
square-planar geometry. In component I, Cu2+ is involved in a 2N2O coordination mode,
equatorially bound to 1D, the adjacent CO from the 1DA2 peptide bond, an N atom from
H6, and another N atom from either H13 (component Ia), H14 (component Ib), or both H13
and H14 (component Ic). The apical position can be occupied by an O atom from a water
molecule or the carboxylate group of D or E. In component II, the equatorial Cu2+ ligands
consist of the N-terminal amine, the amide from the 1DA2 bond, the adjacent CO from the
2AE3 peptide bond, and one N atom from one of the three H residues.

Through the integration of capillary electrophoresis studies and the ThT assay, it
is possible to confirm different aggregation pathways of Aβ contingent on the ratio of
metal-to-peptide [65,75]. When exposed to sub-equimolar and equimolar concentrations of
Cu2+, Aβ1–40 predominantly exhibited linear fibrils, whereas the treatment with 2 equiv
of Cu2+ resulted in a combination of linear fibrils and amorphous aggregates as demon-
strated by AFM. Upon increasing the Cu2+-to-Aβ1–40 stoichiometry to 6:1, the predominant
observation shifted to amorphous aggregates. CD spectroscopy also confirms the changes
from random coil structures to anti-parallel β-sheets in the presence of Cu2+. Cu2+ has
the potential to worsen the neurotoxic effects of Aβ since it has been observed that the
Cu2+-Aβ complex is more toxic than Aβ alone. The binding of Cu to amyloid plaques
disrupts the balance of Cu levels between the intracellular and extracellular environments.

Moreover, proposed mechanisms of the higher toxicity involve Cu-catalyzed ROS pro-
duction and/or its ability to alter the Aβ conformation, thereby promoting the formation
of more toxic Aβ aggregates [76]. It has been proposed the ROS production by Cu-Aβ

species passes through a low-populated “catalytic in-between state” that is in equilibrium
with the resting state of both Cu+–Aβ and Cu2+–Aβ [77–80]. This state is responsible
for Cu-catalyzed ROS production and contributes to oxidative stress that is another hall-
mark of AD, as indicated by early changes in neurons and pathological signs of oxidative
damage [81,82]. Several studies have shown that the Aβ–Cu2+ complex is particularly con-
cerning as it catalytically generates harmful ROS, especially in the presence of cholesterol
and vitamin C, resulting in the production of superoxide anion (O2

−), hydrogen peroxide
(H2O2), and hydroxyl radical (·OH) [83,84].

In response to the Cu dyshomeostasis observed in AD and the toxicity triggered by
copper-Aβ species, extensive research and clinical trials have been conducted with the
primary goal of addressing this issue using copper ionophores or chelators [7,76,85–88].
Recently, strategies that exploit the coordination sphere of Cu2+ bound to Aβ using a
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chemical reagent by promoting copper–O2 chemistry, have been proposed to inhibit Cu2+

binding to Aβ and alter the aggregation and toxicity of Aβ [89].

2.5. Tau

Tau is a protein with a native unfolded structure and plays a crucial role in the assembly
of microtubules. In tauopathies such as AD, Pick’s disease, and progressive supranuclear
palsy, tau becomes hyperphosphorylated, leading to the formation of insoluble aggregates
called neurofibrillary tangles [90,91]. These disrupt the normal functioning of neurons,
impairing their ability to communicate and transport essential nutrients and molecules. As
a result, affected neurons may degenerate, leading to progressive neurological dysfunction
and cognitive decline. In addition to the harmful effects of aggregated tau, it has been sug-
gested that a potential loss of its normal physiological function could result in microtubule
destabilization and impaired axonal transport.

The full-length human tau protein is generally around 352 to 441 amino acids long,
depending on the isoform. Some of the key amino acids and regions in the tau protein
include: (i) the N-terminal region, which contains the projection domain, which interacts
with microtubules; (ii) the proline-rich region, which contains proline residues that con-
tribute to tau’s conformation and binding capabilities; (iii) microtubule-binding repeats,
which consist of four-repeat (4R) or three-repeat (3R) units, which play a role in binding
to microtubules; and (iv) the C-terminal region, which contains the region involved in
promoting self-assembly and aggregation (Figure 4) [92]. The specific amino acid sequence
of tau determines its functions and interactions with other molecules within the cell [93–95].
However, due to the complexity of tau isoforms and post-translational modifications, tau’s
function and behavior can be highly diverse and regulated in various ways [96].

Figure 4. Schematic representation of human tau, showing the main domains.

The exact role of copper in tauopathies is still not fully understood, and it is likely
to be influenced by various factors, including genetic predisposition, copper levels, and
other environmental factors [97]. Moreover, the relationship between copper and tau is just
one aspect of the complex mechanisms involved in neurodegenerative diseases. However,
there is evidence that copper binds tau, but the formed complex species (binding sites) and
the effects of Cu on tau aggregation are controversial in the literature [17,98–102]. Probably,
the analysis is complicated by different conditions (pH, equivalents of Cu) and the different
fragments of tau that have been studied. Cu2+ interacts with full-length microtubule (MT)
binding repeats R1 (244–274), R2 (275–305), R3 (306–336), and R4 (337–368), leading to
peptide aggregation, fibril formation, and ROS generation for R2 and R3. Ahmadi et al.
demonstrated the involvement of H268 in R1 and H363 in R4 in copper binding. Moreover,
they revealed through MS studies that while for R1 and R4, metalation was observed
leading to the formation of M+Cu and M+2Cu adducts, for R2 and R3, MS results showed
the presence of metal complexes related to R2 and R3 dimers [103]. The thiol groups of
C residues located in R2 (C291) and R3 (C322) are oxidized in disulfide bonds upon Cu2+

complexation. There are notable variations in the capacity of R1-R4 to form aggregates in
the presence of Cu2+. R1 and R4 exhibited oligomeric aggregates within 3 days, followed
by the subsequent formation of larger amorphous aggregates. TEM images revealed that
Cu2+ played a role in mediating the formation of fibrils and protofibrils for R2 and R3,
respectively [103].

These findings shed light on the role of Cu2+ in various stages of aggregation, inducing
conformational changes in MT binding repeats, promoting the dimerization of R2 and R3,
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forming amorphous aggregates in R1 and R4, and initiating fibrillization in R2 and R3. The
results emphasize the involvement of Cu in producing small toxic aggregates that may
contribute to neuronal death and ROS formation through the redox chemistry of C291 and
C322 [103]. However, as stated before, the high molecular weight of tau, the large number
of different post-translational modifications, and the various isoforms make the study of
the complex Cu-tau species truly intricate. The same can be said on the effects that copper
can have on the function, aggregation, and toxicity of tau. Therefore, much remains to be
unveiled about this complex interaction.

2.6. Amylin

Amylin, also known as islet amyloid polypeptide (hIAPP), is a peptide hormone com-
posed of 37 amino acids. The native form of amylin is amidated at the C-terminus and has a
C2-C7 disulfide bridge [104,105]. It plays a role in regulating blood sugar levels and appetite,
thereby preventing sudden spikes in post-prandial blood glucose levels [106,107]. hIAPP
is produced and secreted by the β cells of the pancreas, along with insulin, in response to
food intake. Amylin acts as a partner to insulin in controlling glucose metabolism [108].
However, hIAPP cannot be used as a diabetic treatment drug due to its propensity to form
cytotoxic fibrils, which have been linked to β-cell degeneration in T2DM [109,110]. The
aggregation of amylin is affected by several environmental variables (such as pH, metal
ions, and temperature) and components present in pancreatic β-cells [111]. For instance,
when the pH of the secretory granule is low (pH 5.5), H18 of hIAPP remains protonated,
preventing fibrillation from occurring under these conditions [112].

At physiological pH (pH 7.4) and temperature (37 ◦C), the peptide alone can self-
assemble into β-sheet-rich aggregates, leading to the formation of amyloid fibrils, particu-
larly in conditions like type 2 diabetes. The minimal unit for the Cu binding to hIAPP is
defined as HSSNN [113–115] toward the C-terminal of peptide. Cu2+ forms a 3N1O species
where it coordinates with the N1 (also known as Nδ) of H18, two deprotonated amides
from S19 and S20, and one O atom provided by either the hydroxyl group or the backbone
carbonyl of S20. These coordination modes form two sets of three chelate rings with seven,
five, and five members each [113]. S20 is also identified as an important residue that
stabilizes Cu2+ coordination to hIAPP, providing the ligands necessary for forming a stable
chelate with two five-membered rings. Further research is needed to fully elucidate the
active site environment and the binding interactions in the Cu2+-IAPP complex. According
to other reports, Cu-hIAPP forms a square-planar complex with a 4N ligating mode at pH
6.0 and above [116] whereas Seal and Dey suggest that the presence of multiple complex
species with a 1:1 M/L ratio based on pH, and particularly two of these species, would
be physiologically and pathologically relevant [117]. However, Cu2+ coordination with
hIAPP involves key residues that play a crucial role in the aggregation of hIAPP [118]. H18
serves as the anchoring residue for Cu2+ coordination to the disordered peptide and is
positioned within the β-sheet structure of the hIAPP fibrils. This binding of Cu2+ competes
with β-sheet formation, leading to an inhibitory effect on amyloid aggregation.

Upon binding to amylin, copper stabilizes a set of peptide conformers that would not
be capable of undergoing conversion into β-sheet structures, raising the energetic barrier to
amyloid fibril formation and effectively inhibiting its fibrillation process. Studies indicate
that copper effectively inhibits hIAPP fibrillation in a dose-dependent manner but does not
reduce its toxicity [119]. Instead, copper stabilizes hIAPP in certain oligomeric intermedi-
ates [120], which exhibit higher toxicity compared to hIAPP fibrils [111]. Analogously to
Aβ and prion, it has also been demonstrated that Cu2+ ions induce dityrosine cross-linking
in hIAPP but not in mIAPP. This effect is enhanced by the addition of H2O2 [121]. The
deposition of amyloidogenic IAPP aggregates, the generation of oxidative stress and the
formation of dityrosine species in T2DM patients support the existence of IAPP dimers
linked by dityrosine in vivo.

The combined effects of copper and insulin on hIAPP aggregation have been studied.
NMR, fluorescence, CD, AFM, and cell cytotoxicity assay data have shown that copper
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induces hIAPP to form stable toxic oligomers both in the presence and absence of insulin,
inhibiting fibrillation. To be precise, the toxic oligomers formed in the presence of insulin
show a slightly higher level of toxicity compared to those generated in the absence of
insulin [119]. Finally, it is worth noting that IAPP can simultaneously interact and co-
deposit with Aβ1–40/42 and tau peptides in the cerebrovascular system and gray matter of
aging brains, a phenomenon observed in both AD and T2DM. Traditionally, AD and T2DM
have been considered as two separate disorders. Nevertheless, mounting epidemiological,
observational, and fundamental molecular research evidence has connected T2DM to an
increased risk of AD and vice versa [122]. Copper appears to play a leading role in both
pathologies. Therefore, points of intersection between copper interaction and IAPP and Aβ

should be actively pursued for the development of effective therapies.

2.7. Serum Amyloid A Protein (SSA)

Serum amyloid A (SAA) is a well-conserved family of inflammatory acute-phase
proteins, and plays a critical role as a major component in secondary amyloidosis [123].
This condition affects approximately 1% of patients with chronic inflammation, such as
those suffering from rheumatoid arthritis and neoplastic diseases [124]. The structure and
aggregation of SAA proteins strongly affect the function and pathological implications of
these proteins. SAAs are acute-phase reactant proteins, meaning their production increases
significantly in response to inflammation or infection. Under certain conditions, such
as chronic inflammation or prolonged elevation of SAA levels, the protein can undergo
conformational changes and form aggregates, leading to the deposition of amyloid fibrils
in tissues [125].

Despite the careful cataloging of their sequences and polymorphisms, the three-dimensional
structures of SAA proteins, which are small in size, have remained elusive because of their
poor water solubility. Lu et al. have reported the crystal structure of SAA1.1 that exists as a
hexamer with subunits displaying a four-helix bundle fold stabilized by the interactions
present in the C-terminus [124].

Factors such as pH, temperature, and the presence of cofactors can influence the
propensity of SAA to aggregate [126,127]. Additionally, genetic mutations in the SAA
gene can also increase the risk of amyloidosis [128]. The effects of copper on human SSA1
proteins have not been thoroughly investigated yet; there is only one study concerning the
interaction between murine SAA2.2 and metal ions such as copper and zinc. In particular, it
was observed that the presence of copper (10–100 µM) alters the equilibrium from hexamer
to monomer, while having minimal impact on the stability of the tertiary and secondary
structure of SAA2.2 [129]. Since SAA1 and murine SAA2 have some differences in their
amino acid sequences, including the conservation of specific residues of H (probably an
anchoring site for copper ions, of the three H present in both proteins only the one at
position 7 is conserved), it is not easy to predict if copper would have a similar effect on
SAA1 as observed in SAA2.

Further research and experimentation would be needed to investigate the specific
impact of copper on SAA1 and whether it induces similar structural changes.

2.8. Transthyretin

Transthyretin (TTR) is a protein that exists in both the blood and cerebrospinal fluid.
It is primarily synthesized by the liver and acts as a carrier, facilitating the transportation
of thyroid hormones and retinol (vitamin A) throughout the body [130,131].

TTR is a tetrameric protein composed of four identical units and has been associated
with familial amyloid polyneuropathy (FAP) and senile systemic amyloidosis (SSA) [132].
Indeed, TTR can misfold and aggregate, leading to the formation of amyloid fibrils that can
accumulate and damage organs, impairing their normal function. Amyloidosis associated with
TTR is known as TTR amyloidosis or ATTR (Amyloid Transthyretin) amyloidosis [130,131].

TTR interacts with copper in certain contexts, and copper can bind to TTR to form
copper-TTR complexes. The copper ion is chelated between H88, H90, and D72 on monomer
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B, and between H90 and D72 on monomer A of TTR. This results in a unique conformation
for the stretch of residues 72–92, which differs from that observed in the other TTR-metal
complexes [133]. Copper seems to mediate the interaction of TTR with Aβ and could
promote the cerebral clearance of Aβ [133].

2.9. Neurokinin B

Neurokinin B (NKB) is a decapeptide (DMHDFFVGLM-amide) that plays a significant
role in the nervous system [134]. It is a member of the tachykinin family of peptides. NKB
is involved in various physiological processes, including the regulation of neurotransmitter
release, pain perception, and inflammation. Studies have shown that NKB can activate its
specific G protein-coupled receptor known as NK3R, which triggers intracellular signaling
pathways leading to various cellular responses [135]. The activation of NK3R by NKB
has been linked to its involvement in reproductive functions, neuroendocrine regulation,
and behavioral responses. Furthermore, NKB has been implicated in various pathological
conditions [136,137]. Dysregulation of NKB signaling has been associated with disorders
such as migraines, neurodegenerative diseases, and certain cancers.

NKB has been recognized as a peptide capable of coordinating Cu2+ through its
N-terminal amino acids even in the presence of competing synaptic cuproproteins like
the prion protein. NKB forms a neutral binary complex with Cu2+ [CuII(NKB)2]. This
complex involves two N-terminal amine and two imidazole nitrogen ligands from each
NKB molecule, and this binding significantly alters the peptide structure [18]. However,
despite these structural changes, It appears that coordination with copper does not alter
the ability of NKB to interact with NK3R and does not hinder intracellular calcium release
in 1321N1 astrocytoma cells [18]. Copper binding influences the aggregation of NKB.

NKB shows rapid formation of ThT-positive fibrils with a very short lag phase.
Jayawardena et al. have suggested that the lack of a significant lag phase for NKB could
help limit the generation of toxic oligomers. Moreover, H3 seems to act as the molecular
switch regulating fibrillogenesis; H residue is probably involved in π–π stacking interac-
tions with F side chains, leading to a conformation that promotes fibril formation [138]. In
the same paper, the role of copper in the fibrillization process is reported. Cu2+ inhibits
the formation of fibrils in a dose-dependent manner and disassembles preformed NKB
fibrils. These findings have led to the hypothesis that copper may play a role in mediating
the conformation of the peptide in the synaptic region, where it can reach micromolar
concentrations [138]

Better understanding of the roles and mechanisms of NKB in the nervous system and
its interactions with metal ions may provide valuable insights into potential therapeutic
strategies for various neurological and endocrine-related conditions. Ongoing research in
this area aims to shed more light on the multifaceted functions of Neurokinin B and its
implications for human health.

3. Conclusions

All the cases reported in this article clearly demonstrate the central role played by
copper and the effects it can have, both in modifying the folding of certain proteins and, for
example, in regulating their function and toxicity. In some cases, copper has been shown to
accelerate aggregation towards fibrils, while in others, it blocks the aggregation process
by stabilizing oligomers, which in turn have shown varying degrees of toxicity. Having a
clearer understanding of all the complex species involved in these physiological conditions
and their “function/toxicity” in the future could enable us to control pathogenic processes,
promoting normal physiological functioning. Copper ionophores or, even better, specific
copper shuttles could play a fundamental role in countering pathogenic events.
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15. Dzień, E.; Dudek, D.; Witkowska, D.; Rowińska-Żyrek, M. Thermodynamic Surprises of Cu(II)–Amylin Analogue Complexes in
Membrane Mimicking Solutions. Sci. Rep. 2022, 12, 425. [CrossRef]

16. Di Natale, G.; Sabatino, G.; Sciacca, M.F.M.; Tosto, R.; Milardi, D.; Pappalardo, G. Aβ and Tau Interact with Metal Ions, Lipid
Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer’s Disease? Molecules
2022, 27, 5066. [CrossRef] [PubMed]

17. Martic, S.; Rains, M.K.; Kraatz, H.B. Probing Copper/Tau Protein Interactions Electrochemically. Anal. Biochem. 2013, 442, 130–137.
[CrossRef]

18. Russino, D.; McDonald, E.; Hejazi, L.; Hanson, G.R.; Jones, C.E. The Tachykinin Peptide Neurokinin b Binds Copper Forming
an Unusual [CuII(NKB)2] Complex and Inhibits Copper Uptake into 1321N1 Astrocytoma Cells. ACS Chem. Neurosci. 2013,
4, 1371–1381. [CrossRef]

19. Graves, N.J.; Gambin, Y.; Sierecki, E. α-Synuclein Strains and Their Relevance to Parkinson’s Disease, Multiple System Atrophy,
and Dementia with Lewy Bodies. Int. J. Mol. Sci. 2023, 24, 12134. [CrossRef]

20. Becerra-Calixto, A.; Mukherjee, A.; Ramirez, S.; Sepulveda, S.; Sinha, T.; Al-Lahham, R.; De Gregorio, N.; Gherardelli, C.; Soto, C.
Lewy Body-like Pathology and Loss of Dopaminergic Neurons in Midbrain Organoids Derived from Familial Parkinson’s Disease
Patient. Cells 2023, 12, 625. [CrossRef]

21. Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-Synuclein in Parkinson’s Disease
and Other Synucleinopathies: From Overt Neurodegeneration Back to Early Synaptic Dysfunction. Cell Death Dis. 2023, 14, 176.
[CrossRef] [PubMed]

22. Villar-Piqué, A.; Lopes da Fonseca, T.; Outeiro, T.F. Structure, Function and Toxicity of Alpha-Synuclein: The Bermuda Triangle in
Synucleinopathies. J. Neurochem. 2016, 139, 240–255. [CrossRef] [PubMed]

23. Oliveira, L.M.A.; Gasser, T.; Edwards, R.; Zweckstetter, M.; Melki, R.; Stefanis, L.; Lashuel, H.A.; Sulzer, D.; Vekrellis, K.;
Halliday, G.M.; et al. Alpha-Synuclein Research: Defining Strategic Moves in the Battle against Parkinson’s Disease. NPJ Park.
Dis. 2021, 7, 65. [CrossRef]

24. Emin, D.; Zhang, Y.P.; Lobanova, E.; Miller, A.; Li, X.; Xia, Z.; Dakin, H.; Sideris, D.I.; Lam, J.Y.L.; Ranasinghe, R.T.; et al. Small
Soluble α-Synuclein Aggregates Are the Toxic Species in Parkinson’s Disease. Nat. Commun. 2022, 13, 5512. [CrossRef]

https://doi.org/10.1056/NEJMc1917321
https://www.ncbi.nlm.nih.gov/pubmed/32294353
https://doi.org/10.1038/s41580-018-0060-8
https://doi.org/10.1016/j.ccr.2022.214978
https://doi.org/10.1039/C8CS00034D
https://www.ncbi.nlm.nih.gov/pubmed/31192324
https://doi.org/10.1016/j.cub.2021.03.054
https://www.ncbi.nlm.nih.gov/pubmed/33974864
https://doi.org/10.1038/s41392-022-01229-y
https://doi.org/10.1016/j.ccr.2020.213474
https://doi.org/10.1039/C9RA09350H
https://doi.org/10.1016/j.ccr.2016.06.018
https://doi.org/10.3390/biom13020287
https://doi.org/10.1016/j.ccr.2018.04.007
https://doi.org/10.1016/j.jinorgbio.2019.03.006
https://www.ncbi.nlm.nih.gov/pubmed/30884319
https://doi.org/10.1016/j.jinorgbio.2023.112344
https://doi.org/10.1016/j.jinorgbio.2022.111715
https://www.ncbi.nlm.nih.gov/pubmed/35074552
https://doi.org/10.1038/s41598-021-04197-5
https://doi.org/10.3390/molecules27165066
https://www.ncbi.nlm.nih.gov/pubmed/36014310
https://doi.org/10.1016/j.ab.2013.07.015
https://doi.org/10.1021/cn4000988
https://doi.org/10.3390/ijms241512134
https://doi.org/10.3390/cells12040625
https://doi.org/10.1038/s41419-023-05672-9
https://www.ncbi.nlm.nih.gov/pubmed/36859484
https://doi.org/10.1111/jnc.13249
https://www.ncbi.nlm.nih.gov/pubmed/26190401
https://doi.org/10.1038/s41531-021-00203-9
https://doi.org/10.1038/s41467-022-33252-6


Molecules 2023, 28, 6446 14 of 18

25. Cascella, R.; Chen, S.W.; Bigi, A.; Camino, J.D.; Xu, C.K.; Dobson, C.M.; Chiti, F.; Cremades, N.; Cecchi, C. The Release of Toxic
Oligomers from α-Synuclein Fibrils Induces Dysfunction in Neuronal Cells. Nat. Commun. 2021, 12, 1814. [CrossRef]

26. Oliveri, V. Toward the Discovery and Development of Effective Modulators of α-Synuclein Amyloid Aggregation. Eur. J. Med.
Chem. 2019, 167, 10–36. [CrossRef] [PubMed]

27. Li, Y.; Yu, Y.; Ma, G. Modulation Effects of Fe3+, Zn2+, and Cu2+ Ions on the Amyloid Fibrillation of α-Synuclein: Insights from a
FTIR Investigation. Molecules 2022, 27, 8383. [CrossRef]

28. Zhao, Q.; Tao, Y.; Zhao, K.; Ma, Y.; Xu, Q.; Liu, C.; Zhang, S.; Li, D. Structural Insights of Fe3+ Induced α-Synuclein Fibrillation in
Parkinson’s Disease. J. Mol. Biol. 2023, 435, 167680. [CrossRef]

29. Gonzalez-Garcia, M.; Fusco, G.; De Simone, A. Metal Interactions of α-Synuclein Probed by NMR Amide-Proton Exchange. Front.
Chem. 2023, 11, 1167766. [CrossRef]

30. Atarod, D.; Mamashli, F.; Ghasemi, A.; Moosavi-Movahedi, F.; Pirhaghi, M.; Nedaei, H.; Muronetz, V.; Haertlé, T.; Tatzelt, J.;
Riazi, G.; et al. Bivalent Metal Ions Induce Formation of α-Synuclein Fibril Polymorphs with Different Cytotoxicities. Sci. Rep.
2022, 12, 11898. [CrossRef]

31. Carboni, E.; Lingor, P. Insights on the Interaction of Alpha-Synuclein and Metals in the Pathophysiology of Parkinson’s Disease.
Metallomics 2015, 7, 395–404. [CrossRef] [PubMed]

32. De Ricco, R.; Valensin, D.; Dell’Acqua, S.; Casella, L.; Dorlet, P.; Faller, P.; Hureau, C. Remote His50 Acts as a Coordination Switch
in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein. Inorg. Chem. 2015, 54, 4744–4751. [CrossRef] [PubMed]

33. Binolfi, A.; Rasia, R.M.; Bertoncini, C.W.; Ceolin, M.; Zweckstetter, M.; Griesinger, C.; Jovin, T.M.; Fernández, C.O. Interaction of
α-Synuclein with Divalent Metal Ions Reveals Key Differences: A Link between Structure, Binding Specificity and Fibrillation
Enhancement. J. Am. Chem. Soc. 2006, 128, 9893–9901. [CrossRef] [PubMed]

34. Binolfi, A.; Quintanar, L.; Bertoncini, C.W.; Griesinger, C.; Fernández, C.O. Bioinorganic Chemistry of Copper Coordination to
Alpha-Synuclein: Relevance to Parkinson’s Disease. Coord. Chem. Rev. 2012, 256, 2188–2201. [CrossRef]

35. Wittung-Stafshede, P. Crossroads between Copper Ions and Amyloid Formation in Parkinson’s Disease. Essays Biochem. 2022,
66, 977–986. [CrossRef]

36. Synhaivska, O.; Bhattacharya, S.; Campioni, S.; Thompson, D.; Nirmalraj, P.N. Single-Particle Resolution of Copper-Associated
Annular α-Synuclein Oligomers Reveals Potential Therapeutic Targets of Neurodegeneration. ACS Chem. Neurosci. 2022,
13, 1410–1421. [CrossRef]

37. Savva, L.; Platts, J.A. How Cu(II) Binding Affects Structure and Dynamics of α-Synuclein Revealed by Molecular Dynamics
Simulations. J. Inorg. Biochem. 2023, 239, 112068. [CrossRef]

38. Choi, T.S.; Lee, J.; Han, J.Y.; Jung, B.C.; Wongkongkathep, P.; Loo, J.A.; Lee, M.J.; Kim, H.I. Supramolecular Modulation of
Structural Polymorphism in Pathogenic A-Synuclein Fibrils Using Copper(II) Coordination. Angew. Chem. 2018, 130, 3153–3157.
[CrossRef]

39. Bloch, D.N.; Kolkowska, P.; Tessari, I.; Baratto, M.C.; Sinicropi, A.; Bubacco, L.; Mangani, S.; Pozzi, C.; Valensin, D.; Miller, Y.
Fibrils of α-Synuclein Abolish the Affinity of Cu2+-Binding Site to His50 and Induce Hopping of Cu2+ Ions in the Termini. Inorg.
Chem. 2019, 58, 10920–10927. [CrossRef]

40. Li, Y.; Yang, C.; Wang, S.; Yang, D.; Zhang, Y.; Xu, L.; Ma, L.; Zheng, J.; Petersen, R.B.; Zheng, L.; et al. Copper and Iron Ions
Accelerate the Prion-like Propagation of α-Synuclein: A Vicious Cycle in Parkinson’s Disease. Int. J. Biol. Macromol. 2020,
163, 562–573. [CrossRef]

41. Falcone, E.; Ahmed, I.M.M.; Oliveri, V.; Bellia, F.; Vileno, B.; El Khoury, Y.; Hellwig, P.; Faller, P.; Vecchio, G. Acrolein and Copper
as Competitive Effectors of α-Synuclein. Chem.-A Eur. J. 2020, 26, 1871–1879. [CrossRef] [PubMed]

42. Valensin, D.; Dell’Acqua, S.; Kozlowski, H.; Casella, L. Coordination and Redox Properties of Copper Interaction with α-Synuclein.
J. Inorg. Biochem. 2016, 163, 292–300. [CrossRef] [PubMed]

43. Uliassi, E.; Nikolic, L.; Bolognesi, M.L.; Legname, G. Therapeutic Strategies for Identifying Small Molecules against Prion Diseases.
Cell Tissue Res. 2023, 392, 337–347. [CrossRef]

44. Baiardi, S.; Mammana, A.; Capellari, S.; Parchi, P. Human Prion Disease: Molecular Pathogenesis, and Possible Therapeutic
Targets and Strategies. Expert Opin. Ther. Targets 2023, 2023, 1–14. [CrossRef] [PubMed]

45. Astolfi, A.; Spagnolli, G.; Biasini, E.; Barreca, M.L. The Compelling Demand for an Effective PrPC-Directed Therapy against Prion
Diseases. ACS Med. Chem. Lett. 2020, 11, 2063–2067. [CrossRef]

46. Legname, G. Elucidating the Function of the Prion Protein. PLoS Pathog. 2017, 13, 6–11. [CrossRef]
47. Watts, J.C.; Bourkas, M.E.C.; Arshad, H. The Function of the Cellular Prion Protein in Health and Disease. Acta Neuropathol. 2018,

135, 159–178. [CrossRef]
48. Nguyen, X.T.A.; Tran, T.H.; Cojoc, D.; Legname, G. Copper Binding Regulates Cellular Prion Protein Function. Mol. Neurobiol.

2019, 56, 6121–6133. [CrossRef]
49. Sánchez-López, C.; Rossetti, G.; Quintanar, L.; Carloni, P. Structural Determinants of the Prion Protein N-Terminus and Its

Adducts with Copper Ions. Int. J. Mol. Sci. 2019, 20, 18. [CrossRef]
50. Burns, C.S.; Aronoff-Spencer, E.; Dunham, C.M.; Lario, P.; Avdievich, N.I.; Antholine, W.E.; Olmstead, M.M.; Vrielink, A.;

Gerfen, G.J.; Peisach, J.; et al. Molecular Features of the Copper Binding Sites in the Octarepeat Domain of the Prion Protein.
Biochemistry 2002, 41, 3991–4001. [CrossRef]

https://doi.org/10.1038/s41467-021-21937-3
https://doi.org/10.1016/j.ejmech.2019.01.045
https://www.ncbi.nlm.nih.gov/pubmed/30743095
https://doi.org/10.3390/molecules27238383
https://doi.org/10.1016/j.jmb.2022.167680
https://doi.org/10.3389/fchem.2023.1167766
https://doi.org/10.1038/s41598-022-15472-4
https://doi.org/10.1039/C4MT00339J
https://www.ncbi.nlm.nih.gov/pubmed/25648629
https://doi.org/10.1021/acs.inorgchem.5b00120
https://www.ncbi.nlm.nih.gov/pubmed/25926427
https://doi.org/10.1021/ja0618649
https://www.ncbi.nlm.nih.gov/pubmed/16866548
https://doi.org/10.1016/j.ccr.2012.05.004
https://doi.org/10.1042/EBC20220043
https://doi.org/10.1021/acschemneuro.2c00021
https://doi.org/10.1016/j.jinorgbio.2022.112068
https://doi.org/10.1002/ange.201712286
https://doi.org/10.1021/acs.inorgchem.9b01337
https://doi.org/10.1016/j.ijbiomac.2020.06.274
https://doi.org/10.1002/chem.201904885
https://www.ncbi.nlm.nih.gov/pubmed/31804737
https://doi.org/10.1016/j.jinorgbio.2016.04.012
https://www.ncbi.nlm.nih.gov/pubmed/27112900
https://doi.org/10.1007/s00441-021-03573-x
https://doi.org/10.1080/14728222.2023.2199923
https://www.ncbi.nlm.nih.gov/pubmed/37334903
https://doi.org/10.1021/acsmedchemlett.0c00528
https://doi.org/10.1371/journal.ppat.1006458
https://doi.org/10.1007/s00401-017-1790-y
https://doi.org/10.1007/s12035-019-1510-9
https://doi.org/10.3390/ijms20010018
https://doi.org/10.1021/bi011922x


Molecules 2023, 28, 6446 15 of 18

51. Posadas, Y.; López-Guerrero, V.E.; Segovia, J.; Perez-Cruz, C.; Quintanar, L. Dissecting the Copper Bioinorganic Chemistry of the
Functional and Pathological Roles of the Prion Protein: Relevance in Alzheimer’s Disease and Cancer. Curr. Opin. Chem. Biol.
2022, 66, 102098. [CrossRef] [PubMed]

52. Legname, G. Copper Coordination Modulates Prion Conversion and Infectivity in Mammalian Prion Proteins. Prion 2023, 17, 1–6.
[CrossRef] [PubMed]
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