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Abstract: With the rapid development of sonodynamic therapy (SDT), sonosensitizers have evolved
from traditional treatments to comprehensive diagnostics and therapies. Sonosensitizers play a crucial
role in the integration of ultrasound imaging (USI), X-ray computed tomography (CT), and magnetic
resonance imaging (MRI) diagnostics while also playing a therapeutic role. This review was based on
recent articles on multifunctional sonosensitizers that were used in SDT for the treatment of cancer
and have the potential for clinical USI, CT, and MRI applications. Next, some of the shortcomings of
the clinical examination and the results of sonosensitizers in animal imaging were described. Finally,
this paper attempted to inform the future development of sonosensitizers in the field of integrative
diagnostics and therapeutics and to point out current problems and prospects for their application.
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1. Introduction

Despite enormous efforts to cure cancer, it is still the most serious health problem
human beings face in the 21st century due to its high morbidity and mortality [1]. Presently,
there are four primary approaches that have received approval for the clinical management
of cancer: surgery, chemotherapy, radiotherapy, and immunotherapy [2]. However, these
treatments are also associated with high recurrence rates and uncontrollable adverse effects.
Therefore, what is the future of anti-cancer therapy with high efficiency and low medical
costs? Recently, several non-invasive cancer treatment modalities have attracted the atten-
tion of researchers worldwide, among which photothermal therapy (PTT), photodynamic
therapy (PDT), and sonodynamic therapy (SDT) are representative methods [3–5]. PTT
induces necrosis or decomposition of cancerous tissue by activating the energy converted
through the photothermal agents (PTAs) [3–5]. PTT converts the absorbed light energy into
heat energy by activating photothermal agents (PTAs) to induce necrosis or disintegration
of cancer tissue. Although PTT has been recognized for its efficacy in the treatment of
cancer since the 19th century, it is poorly targeted to cancer patients due to photothermal
agents (PTAs). PTT may cause unnecessary medical harm by causing damage to healthy
tissues unrelated to treatment [6,7]. Both PDT and SDT are considered high-precision and
non-invasive treatment modalities. PDT is a treatment based on the conversion of light
energy absorbed by photosensitizer molecules into reactive oxygen species (ROS), thereby
mediating tumor cell death. However, since light can only penetrate a few millimeters of
tumor tissue, PDT is only suitable for some superficial tumors.

As the research progresses, the benefits of SDT in the treatment of tumors have at-
tracted our strong interest. SDT is a non-invasive treatment that does not require incisions
or punctures, reducing surgical risks and recovery time. SDT can maximize the protection
of surrounding healthy tissue by adjusting the energy and depth of focus of ultrasound.
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Compared with radiation therapy or chemotherapy, SDT treatment does not produce radia-
tion, reducing the damage to surrounding normal tissues. Depending on the patient, SDT
allows for individualized treatment plans to be designed to improve outcomes. Because
SDT has so many advantages, its use in oncology has been widely studied. The research and
development were simultaneously able to treat and provide imaging guidance, providing
valuable direction for multimodal therapeutic applications of cancer treatment [8].

This paper began with a comprehensive summary of the mechanics of SDT. Next, it
will focus on sonosensitizers with clinical translation potential and integrated diagnostic
and therapeutic capabilities. Finally, the clinical application of diagnostic and therapeutic
integrated sonosensitizers, as well as the future development direction, were prospected.

2. Overview of SDT

The origins of SDT can be traced back to the evolution of PDT. PDT is a technology
that uses the photodynamic effect produced by photosensitizers for disease diagnosis
and treatment. The process is that light at a specific wavelength (600–800 nm) activates
a photosensitizer in the target tissue, which in turn transmits the received energy to
oxygen molecules in an excited state in the tissue, thereby inducing the generation of ROS.
Singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radicals (·OH) are the
main components of ROS. Reactive oxygen species produce cytotoxic effects, leading to
cell damage and even death [9,10]. SDT shares similarities in mechanism with PDT, but
it uses acoustic energy rather than light energy. SDT has several advantages over PDT.
The penetration depth of ultrasound into biological tissues is much deeper than that of
light [11]. Therefore, SDT can be used to treat deep tumors, such as those in the liver, brain,
and pancreas [12,13]. In addition, the cavitation effect of ultrasound can cause mechanical
damage to cells, and ultrasound can also change the fluidity of the phospholipid bilayer,
thereby changing the membrane permeability [14]. Besides, the acoustic force has lower
operating and instrument costs. Furthermore, since visible light can activate most of the
photosensitizing chemicals used in PDT therapy, patients may experience photosensitizing
allergic reactions after the use of photosensitizers that may affect the quality of their
survival [15]. It is generally accepted that SDT is a method of producing cytotoxic effects
by means of acoustic sensitizers with very low biotoxicity [16]. Therefore, SDT is a more
promising tumor treatment strategy than PDT.

SDT, as a non-intrusive means, can kill cancer cells precisely by controlling the in-
tensity, frequency, and time of ultrasound irradiation to activate the sonosensitizers accu-
mulated at the tumor site. The cytotoxic effects of SDT were first reported in 1989, when
researchers observed that the combination of US and the photosensitizer hematoporphyrin
produced cytotoxic effects on mouse sarcoma cells [17]. Subsequently, the phenomenon
of hematoporphyrin producing cytotoxic effects under ultrasonic irradiation was named
the “sonodynamic method” [18]. In recent years, various types of sonosensitizers, in-
cluding porphyrins, phthalocyanines, chlorines, and a variety of acoustic nanomaterials,
have been discovered that can generate ROS and exert cytotoxic effects triggered by US
irradiation [19,20]. The toxic effects of SDT on tumor cells can be achieved by activating
apoptosis and immunity and affecting the tumor microenvironment. Studies have shown
that the generated ROS in SDT treatment caused a decrease in mitochondrial membrane
potential, which led to damage to mitochondria, and then cytochrome c (Cyt c) was released
from the mitochondria into the cytoplasm, and finally the caspase-dependent apoptotic
pathway was activated [21,22]. Honda et al. [23] reported that disrupted mitochondrial
membrane potential released ROS, which further activated Caspase-3 and ultimately led
to the induction of DNA breaks. The growth and metastasis of cancer cells depend on
the tumor microenvironment. Over the past few years, several studies have revealed that
the tumor microenvironment is regulated by multiple factors, including SDT treatment.
Gao et al. [24] found that SDT can induce ROS production in the tumor microenvironment,
which can significantly inhibit the proliferation, migration, and invasion of endothelial
cells. In addition, SDT can activate immune responses via SDT-injured tumor debris or
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immune response complexes in the tumor microenvironment. The results showed that
M2 macrophages in the tumor were converted to the M1 phenotype during SDT treatment.
Meanwhile, dendritic cells (DCs) in the tumor microenvironment tended to mature as the
expression levels of CD80 and CD86 molecules increased in activated T cells [25]. SDT
treatment promotes the proliferation of cytotoxic T-lymphocytes (CD8+ T-cells) in tumors
by upregulating the expression of CRT, HMGB1, and HSP70 [26].

3. Mechanisms of SDT

Thermal and non-thermal effects may be the main pathways through which SDT
works [16]. Figure 1 depicts the principle of SDT operation.
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Figure 1. Principles of SDT for oncology treatment. (A) Ultrasound carries acoustic energy that can
produce both thermal and non-thermal effects in the tumor region. The thermal effect can directly
cause cellular damage. Non-thermal effects mainly occur as cavitation effects. (B) ROS generation.
Ultrasound induces intracellular ROS generation inside the tumor by producing cavitation effects
and activating sonosensitizers. (C) ROS cause tumor cell death by inducing cellular autophagy and
necrosis, among other pathways. Created with BioRender.com (accessed on 23 August 2023).

3.1. Thermal Damage

When tissues are irradiated by ultrasound, some of the energy carried by the sound
waves is converted into heat energy. If the temperature of the tissue exceeds the threshold
(56 ◦C), it becomes thermotoxic, leading to irreversible coagulative necrosis of the cells.
It has been developed as a strategy to focus high-energy ultrasound on the lesion for the
thermal ablation of tumors [27]. High-intensity focused ultrasound (HIFU) has been used
in clinical disease since the latter half of the 1990s and achieves thermal coagulation in
less than 12 s. In clinical practice, HIFU treatment uses conventional frequencies rang-
ing from 0.8 to 3.5 MHz. High-frequency ultrasound between these frequencies carries
a higher energy beam than diagnostic ultrasound. At lower deposition energy doses
(<55 ◦C), the induced hyperthermia increases the cell permeability to facilitate nanoparticle
delivery effectively [28]. This is advantageous when used in conjunction with thermally
modulated carrier molecules. At higher doses of deposition energy (>55 ◦C), cells die due
to coagulative necrosis [29].

BioRender.com
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3.2. Non-Thermal Effects

The non-thermal effects of ultrasound can be categorized as follows: (i) ultrasonic
cavitation effect; (ii) generation of ROS; and (iii) ultrasound-induced apoptosis of cancer cells.

3.2.1. Ultrasonic Cavitation Effect

When intense ultrasound waves irradiate tissue fluid, much of the microbubbles are
produced and collapse, a process known as cavitation, which contains inertial cavitation and
non-inertial cavitation in general [30,31]. The inertial cavitation process includes the stages
of nucleation, expansion, oscillation, and implosive collapse of microbubbles in liquids,
which process generates localized extremely high temperatures (>10,000 K) and pressures
(>81 MPa) as well as free radicals [32]. Non-inertial cavitation, sometimes called “stable
cavitation,” is a sustained linear or nonlinear oscillation around the equilibrium radius of
an acoustically driven bubble [33]. Stable cavitation leads to microflows characterized by
the generation of fluid flow [28]. However, microfluidics can lead to cell lysis and death [34].
Also, the stable cavitation generates heat due to the loss of viscosity at the bubble surface
boundary. As these extreme physical conditions dramatically alter the environmental
balance within the tissue, irreversible damage to cellular structures is induced, ultimately
leading to cellular necrosis.

3.2.2. Generation of Reactive Oxygen Species

The production of ROS, including singlet oxygen (1O2), hydroxyl radicals (OH), perox-
ides, and superoxide (O2

−), is the main source of cytotoxicity in SDT. It has been suggested
that the interaction of ultrasound with different types of sonosensitizers to produce ROS
may involve acoustic cavitation, acoustoluminescence, and pyrolysis [2]. Although differ-
ent types of cavitation effects produce mechanical effects, acoustic-chemical species are
only produced by inertial cavitation [35]. Inertial cavitation is an ultra-violent process of
nanometer bubble activity at a microsecond level, usually accompanied by extremely high
temperature (>10,000 K) and pressure, which leads to the pyrolysis of water vapor within
the microbubble, generating highly reactive hydroxyl radicals and hydrogen atoms [35]. It
was reported that when receiving ultrasonic energy, nanobubbles can behave as cores for
inertial cavitation, thereby inducing ROS production [36]. After receiving acoustic energy
from ultrasonic cavitation, the sonosensitizers are mobilized from the basal state to the
exciting mode, and then the activated sonosensitizers return to the basal state, releasing
energy and reacting directly with the surrounding oxygen to produce single-linear oxy-
gen [35]. As the cavitation bubble expands and eventually collapses, a transient hot spot
of high temperature and high pressure is formed, generating self-luminescence light from
ultraviolet (UV) to visible light, called sonoluminescence. Studies have shown that some
sonosensitizers with photosensitizing properties are able to absorb and convert the light
generated during ultrasonic cavitation into heat and reactive oxygen species [37]. The
sonosensitizers were activated by sonoluminescence and finally transferred electrons to O2,
generating cytotoxic ROS, which can induce membrane lipid peroxidation, cell membrane
instability, and irreversible cellular damage [38,39]. However, for some sonosensitizers
that lack photosensitivity, ROS cannot be generated via the acoustoluminescent pathway.
Kessel et al. [40] showed that ultrasound-mediated inertial cavitation of microbubbles on
the liquid surface at high localized temperatures induced the decomposition of ultrasound
sensitizers. The widely accepted theory suggests that ROS generated during inertial cavita-
tion can be directly pyrolyzed or chemically reacted with sonosensitizers to generate free
radicals, which further react with other endogenous substances to generate more ROS [41].

4. Integration of Diagnosis and Treatment

Therapeutics refers to treatment strategies that combine diagnostic tests with specific
treatments based on test results, a term derived from “diagnosis” and “treatment” [42].
This capability to integrate imaging and therapy is critical for the future treatment of cancer.
As a result, sonosensitizers have recently received extensive research in the field of cancer
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diagnosis and treatment [43]. In recent years, with the development of novel nanoparticles
(NPs), some multifunctional sonosensitizers can not only treat tumors but also play the
function of imaging, including MRI, USI, CT, photoacoustic imaging (PAI), and fluorescence
imaging (FLI), realizing the integration of cancer diagnosis and therapy [44–50] (Figure 2).
In cancer diagnostics, many multifunctional sonosensitizers can be used as contrast agents
(CA) for imaging examinations, which is easily achieved due to their targeted nature
and specific enrichment in tumor tissues [51,52]. Compared with conventional scanning
techniques, nanoparticle-based contrast agent micrography features noninvasive, instant
monitoring, targeting, and high spatial and temporal resolution, which provides a basis for
accurate diagnosis and visual tracking during healing. In tumor therapy, sonosensitizers
as imaging contrast agents play a role in treating tumors while visually tracking their
accumulation in tumor tissue with the help of their imaging capabilities. Comparison of the
gray-scale changes of tumor tissues and their quantitative gray-scale values in the imaging
maps of the imaging instruments (CT, US, and MRI) before and after SDT treatment allows
a visual and easy assessment of the treatment effect [8,48]. In addition, the use of ultrasound
bio-imaging capabilities and continuous tracking of drug retention time in the tumor allows
for accurate and timely information during treatment, thus improving the accuracy of SDT
and the optimal duration of treatment after i.v. administration. Therefore, combining
these sonosensitizers with clinical examination can effectively improve the accuracy of
image information and facilitate clinical analysis and treatment. This review focuses on
three imaging modalities (MRI, USI, and CT) mediated by sonosensitizers and their basic
principles, aiming at a better understanding of sonosensitizers for imaging and therapeutic
use and looking ahead to the challenges of clinical translation.
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Figure 2. Summary of the integrated diagnosis and treatment scheme involving sonodynamic
therapy. MRI: magnetic resonance imaging. CEUS: Contrast-Enhanced Ultrasound. Fluorescence
imaging includes FL microscopy images [47] and near infra-red (nIR) fluorescence imaging [50].
IR: infrared image [53]. Afterglow luminescence image [54]. Mult-Mode image contains Dual-mode
and Triple-mode. PA: Photoacoustic imaging [55]. Created with BioRender.com (accessed on 23
August 2023).
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5. Sonosensitizers with Various Imaging Functions
5.1. Contrast-Enhanced Ultrasound (CEUS)

Ultrasound (US) is a sound wave with a frequency of more than 20,000 Hz that is
inaudible to the human ear. Ultrasound has the advantages of low-cost, simple, rapid, non-
invasive, non-radioactive, accurate, continuous, dynamic, and repeatable scans [43,56,57].
Using the physical properties of ultrasound, various cross-sectional images of organs and
surrounding organs can be displayed, which is close to the anatomical real structure. There-
fore, ultrasound is often used as the first choice for the examination of solid organs and
fluid-containing organs. In particular, ultrasound elastography and contrast-enhanced
ultrasound (CEUS) are well established as being used for diagnosis. In CEUS, intravenously
injected microbubbles are excited by longitudinal ultrasound in the examined area, pro-
ducing nonlinear oscillations. The corresponding contrast agent software can distinguish
the diseased tissues from the received contrast agent signals [58]. However, currently,
78.5% of radiology departments use diagnostic ultrasound imaging as a routine diagnostic
imaging method, while only 26% of them use contrast-enhanced ultrasound [58]. The
excessively expensive price of ultrasound contrast agents and their lower selectivity limited
the clinical application of CEUS. It was found that some sonosensitizers used for SDT
treatment also showed promising results in CEUS. Table 1 lists the sonosensitizers and
imaging capabilities used for CEUS imaging. Sonosensitizers produce stable microbubbles
(MBs) or nanobubbles (NBs) under CEUS cavitation to achieve enhanced imaging [59–61].
Sonosensitizers achieve synergistic drug delivery and tumor therapy by affecting the le-
sion’s tissue structure. Therefore, with the development of sonosensitizers, the clinical
application of contrast-enhanced ultrasound is becoming more and more broad.

Table 1. US Imaging Characteristics of the Multifunctional Sonosensitizers.

Sonosensitizers Probes Biological Model SDT Result Imaging Effect Ref.
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and particularly after
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FA-PEG-PLGA-

Ptx@ICG-Pfh NPs  

Pfh 
MDA-MB231 tu-
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model 

- 
a contrast-enhanced ultrasound 
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Chen M. et al. [49] reported a liposomal nanoparticle based on porphyrin/camptoth-
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IR780-NDs

PFP breast cancer 4T1
nude mice Tumor weight drop

24 h after the injection of
IR780-NDs a bright US signal

occurred at the
tumor site.

[47]
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Chen M. et al. [49] reported a liposomal nanoparticle based on porphyrin/camptothecin-
floxuridine triad microbubbles (PCF-MBs). The novel PCF-MB not only realized ultrasound
imaging but also achieved chemo-photodynamic combination therapy. After intravenously
injecting 1 mg/mL of PCF-MBs into Balb/c nude mice bearing HT-29 colon cancer, the
ability of PCF-MBs to potentiate ultrasound imaging was investigated by a fixed-frequency
ultrasound transducer. The results showed that before the injection, there was hardly any
sonographic signal in the tumor. The ultrasound imaging signals peaked 20 s after injection,
and the peak state lasted more than 3 min (Figure 3A).
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Zhang et al. [66] synthesized a composite system in which Mn-doped In2S3/InOOH
(SMISO) is loaded in spinodal silica (r-SiO2) to integrate ultrasound imaging and SDT for
the detection and treatment of breast cancer. The live Type B US imaging results showed
that the grayscale was changed after injection of SiO2, MISO, or SMISO solutions in the
4T1 breast tumor model, and there was a statistical difference between SMISO and the
control group (p < 0.01), suggesting SMISO could achieve ultrasound imaging (Figure 3B,C).
Further, it was found that the signal intensity increased after SMISO NPs injection and
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peaked at 12 h, guiding the optimal time for ultrasound irradiation. And then, 12 h after the
NPs injection, the signal intensity gradually decreased until it disappeared, indicating that
the NPs were eliminated from the tumor. Under US irradiation, the SMISO NPs effectively
inhibited tumor growth. In summary, the nanoplatform simultaneously had therapeutic
efficacy and imaging capability.

Zhang L et al. [47] fabricated an innovative nanoplatform capable of multimodal
(FLI/PAI/USI) imaging using IR780 and perfluoropentane (PFP), as well as guiding SDT
for tumor treatment. After intravenous injection of IR780-NDs, researchers acquired
enhanced ultrasound images of xenograft tumors in nude mice with 4T1 breast cancer. At
24 h after administration in the caudal i.v., the US signal in CEUS mode showed brightness
(Figure 3D). In addition, the quantification data indicated that the echo intensity was much
stronger in the post-injection group than in the pre-injection group.

Ho et al. [45] designed multi-functional superhydrophobic mesoporous silica nanopar-
ticles (FMSNs) for the encapsulation of the clinical anti-cancer drug Doxorubicin (FMSNs-
Dox). In this study, monodisperse silica super-hydrophobicity was utilized to significantly
improve the contrast of ultrasound images by enhancing the accumulation of interfa-
cial nanobubbles (INBs). FMSNs-Dox possessed excellent ultrasound imaging ability, an
anti-vascular effect, and antitumor treatment capability under ultrasound irradiation. US
images showed that the contrast was significantly enhanced by INBs in tumor tissue from
1–9 days.

5.2. X-ray Computed Tomography (CT)

CT scanning utilizes a computer to process a combination of several X-ray images
acquired from different angulations to develop an anatomical picture of the scanned
object [73]. CT has become a popular noninvasive clinical imaging method because of its
reproducibility, low price, and ease of use [74]. CT scans are divided into conventional
and enhanced scans according to whether contrast media is used or not. Since plain
CT cannot distinguish between tissues with similar mass attenuation coefficients (e.g.,
normal organs and tumors), exogenous X-ray attenuating CT contrast materials need
to be injected intravenously to identify diseased tissues. Iodine contrast is commonly
used in clinical practice but has the following limitations: (1) susceptibility to allergic
reactions and nephrotoxicity; (2) low dose-efficiency ratio; and (3) lack of targeting. Studies
have investigated the utilization of sonosensitizers as CT imaging agents to overcome the
shortcomings of commonly used clinical contrast agents. Table 2 lists the sonosensitizers
and imaging capabilities used for CT imaging.

Cao et al. [51] designed and synthesized titanium oxide (TiO2) nanosheets with triph-
enylphosphine (TPP) and AS1411 aptamer structure to realize mitochondria-targeted, CT
imaging, and sonodynamic-chemotherapy for cancer treatment (Figure 4A). Relative to the
control group, Au-TiO2-A-TPP-treated mice displayed significant CT signals at the tumor
sites, which validated the capability of Au-TiO2-A-TPP to diagnose tumors by CT imaging
in vivo (Figure 4B). As the concentration of Au-TiO2-A-TPP increased, the brightness and
CT values of CT images increased, suggesting a linear relationship between CT grayscale
values and concentration (Figure 4C). As mentioned previously, contrast agents commonly
used in clinical practice may not be appropriate for patients with renal insufficiency, who
may be better suited for contrast agents with a short half-life in vivo and low nephrotoxic-
ity. Surprisingly, the half-life of Au-TiO2-A-TPP in the blood circulation of mice was only
4.71 h, indicating Au-TiO2-A-TPP was very promising for patients with renal insufficiency
(Figure 4D).

Cheng K et al. [48] developed an AgBiS2@DSPE-PEG2000-FA (ABS-FA) with good
biosafety and active targeted CT imaging capability that combined photothermal and
ultrasound kinetic treatment capabilities. It was found that ABS-FA had significant targeting
in tumor tissues in vivo, and the CT signals at the site of the tumor were steadily enhanced
after ABS-FA (300 µL, 5 mg/mL) injection, reaching a peak at 6–12 h. However, the
non-targeted ABS-NH2 signals did not change at different time points at the tumor site
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(Figure 4E). The results of low-power (0.35 W/cm2) infrared thermography were consistent
with those of CT, which showed that the thermal signal appeared 2 h after drug injection
and reached its maximum 10 h after injection (Figure 4F).

Zhang et al. [75] constructed a novel oral nanoparticle, Au@mSiO2/Ce6/DOX/SLB-
FA@CMC (GMCDS-FA@CMC), that endowed the pH/ultrasonic dual-response to realize
the combination of SDT with chemotherapy for colorectal cancer treatment. After oral
delivery of GMCDS-FA@CMC, a well-defined tumor CT signal was observed in situ in
colorectal cancer model mice and persisted for 7–9 h. It was found that the enteric-coated
particles possessed good CT imaging effects in vivo by oral delivery and could be used to
direct SDT-chemotherapy for colorectal cancer treatment.

Table 2. CT Imaging Characteristics of the Multifunctional Sonosensitizers.

Sonosensitizers Probes Biological Model Treatment Result Imaging Effect Ref.

Molecules 2023, 28, x FOR PEER REVIEW 11 of 23 
 

 

Table 2. CT Imaging Characteristics of the Multifunctional Sonosensitizers. 

Sonosensitizers Probes Biological Model Treatment Result Imaging Effect Ref 

 
MnWOX-PEG 

W(CO)6 
4T1 tumor-bearing 

mice 
Tumor weight drop 

CT imaging signal intensity was 
almost 2.4 times higher than that 

of the control group 
[44] 

 
AgBiS2@DSPE-

PEG2000-FA 

AgBiS2 
HeLa tumor-bear-

ing mice 
Tumor size drop 

The CT signal intensity at the tu-
mor site gradually increased and 
peaked at 6h after the injection 

[48] 

 
Au-TiO2-A-TPP 

Au-TiO2 
MCF-7 tumor-
bearing mice 

Tumor weight drop 
The CT signal in the tumor area 

reached its maximum at 24 h 
[51] 

 
GMCDS-FA@CMC 

Au@mSiO2 
orthotopic colorec-

tal tumor 

Decreased number and 
smaller diameter of col-

orectal tumors 

The nanoprobe remained in the 
colorectal 

region 
[75] 

Cao et al. [51] designed and synthesized titanium oxide (TiO2) nanosheets with tri-
phenylphosphine (TPP) and AS1411 aptamer structure to realize mitochondria-targeted, 
CT imaging, and sonodynamic-chemotherapy for cancer treatment (Figure 4A). Relative 
to the control group, Au-TiO2-A-TPP-treated mice displayed significant CT signals at the 
tumor sites, which validated the capability of Au-TiO2-A-TPP to diagnose tumors by CT 
imaging in vivo (Figure 4B). As the concentration of Au-TiO2-A-TPP increased, the bright-
ness and CT values of CT images increased, suggesting a linear relationship between CT 
grayscale values and concentration (Figure 4C). As mentioned previously, contrast agents 
commonly used in clinical practice may not be appropriate for patients with renal insuffi-
ciency, who may be better suited for contrast agents with a short half-life in vivo and low 
nephrotoxicity. Surprisingly, the half-life of Au-TiO2-A-TPP in the blood circulation of 
mice was only 4.71 h, indicating Au-TiO2-A-TPP was very promising for patients with re-
nal insufficiency (Figure 4D). 

MnWOX-PEG

W(CO)6 4T1 tumor-bearing mice Tumor weight drop
CT imaging signal intensity
was almost 2.4 times higher

than that of the control group
[44]

Molecules 2023, 28, x FOR PEER REVIEW 11 of 23 
 

 

Table 2. CT Imaging Characteristics of the Multifunctional Sonosensitizers. 

Sonosensitizers Probes Biological Model Treatment Result Imaging Effect Ref 

 
MnWOX-PEG 

W(CO)6 
4T1 tumor-bearing 

mice 
Tumor weight drop 

CT imaging signal intensity was 
almost 2.4 times higher than that 

of the control group 
[44] 

 
AgBiS2@DSPE-

PEG2000-FA 

AgBiS2 
HeLa tumor-bear-

ing mice 
Tumor size drop 

The CT signal intensity at the tu-
mor site gradually increased and 
peaked at 6h after the injection 

[48] 

 
Au-TiO2-A-TPP 

Au-TiO2 
MCF-7 tumor-
bearing mice 

Tumor weight drop 
The CT signal in the tumor area 

reached its maximum at 24 h 
[51] 

 
GMCDS-FA@CMC 

Au@mSiO2 
orthotopic colorec-

tal tumor 

Decreased number and 
smaller diameter of col-

orectal tumors 

The nanoprobe remained in the 
colorectal 

region 
[75] 

Cao et al. [51] designed and synthesized titanium oxide (TiO2) nanosheets with tri-
phenylphosphine (TPP) and AS1411 aptamer structure to realize mitochondria-targeted, 
CT imaging, and sonodynamic-chemotherapy for cancer treatment (Figure 4A). Relative 
to the control group, Au-TiO2-A-TPP-treated mice displayed significant CT signals at the 
tumor sites, which validated the capability of Au-TiO2-A-TPP to diagnose tumors by CT 
imaging in vivo (Figure 4B). As the concentration of Au-TiO2-A-TPP increased, the bright-
ness and CT values of CT images increased, suggesting a linear relationship between CT 
grayscale values and concentration (Figure 4C). As mentioned previously, contrast agents 
commonly used in clinical practice may not be appropriate for patients with renal insuffi-
ciency, who may be better suited for contrast agents with a short half-life in vivo and low 
nephrotoxicity. Surprisingly, the half-life of Au-TiO2-A-TPP in the blood circulation of 
mice was only 4.71 h, indicating Au-TiO2-A-TPP was very promising for patients with re-
nal insufficiency (Figure 4D). 

AgBiS2@DSPE-PEG2000-FA

AgBiS2 HeLa tumor-bearing mice Tumor size drop

The CT signal intensity at the
tumor site gradually increased

and peaked at 6h after
the injection

[48]

Molecules 2023, 28, x FOR PEER REVIEW 11 of 23 
 

 

Table 2. CT Imaging Characteristics of the Multifunctional Sonosensitizers. 

Sonosensitizers Probes Biological Model Treatment Result Imaging Effect Ref 

 
MnWOX-PEG 

W(CO)6 
4T1 tumor-bearing 

mice 
Tumor weight drop 

CT imaging signal intensity was 
almost 2.4 times higher than that 

of the control group 
[44] 

 
AgBiS2@DSPE-

PEG2000-FA 

AgBiS2 
HeLa tumor-bear-

ing mice 
Tumor size drop 

The CT signal intensity at the tu-
mor site gradually increased and 
peaked at 6h after the injection 

[48] 

 
Au-TiO2-A-TPP 

Au-TiO2 
MCF-7 tumor-
bearing mice 

Tumor weight drop 
The CT signal in the tumor area 

reached its maximum at 24 h 
[51] 

 
GMCDS-FA@CMC 

Au@mSiO2 
orthotopic colorec-

tal tumor 

Decreased number and 
smaller diameter of col-

orectal tumors 

The nanoprobe remained in the 
colorectal 

region 
[75] 

Cao et al. [51] designed and synthesized titanium oxide (TiO2) nanosheets with tri-
phenylphosphine (TPP) and AS1411 aptamer structure to realize mitochondria-targeted, 
CT imaging, and sonodynamic-chemotherapy for cancer treatment (Figure 4A). Relative 
to the control group, Au-TiO2-A-TPP-treated mice displayed significant CT signals at the 
tumor sites, which validated the capability of Au-TiO2-A-TPP to diagnose tumors by CT 
imaging in vivo (Figure 4B). As the concentration of Au-TiO2-A-TPP increased, the bright-
ness and CT values of CT images increased, suggesting a linear relationship between CT 
grayscale values and concentration (Figure 4C). As mentioned previously, contrast agents 
commonly used in clinical practice may not be appropriate for patients with renal insuffi-
ciency, who may be better suited for contrast agents with a short half-life in vivo and low 
nephrotoxicity. Surprisingly, the half-life of Au-TiO2-A-TPP in the blood circulation of 
mice was only 4.71 h, indicating Au-TiO2-A-TPP was very promising for patients with re-
nal insufficiency (Figure 4D). 

Au-TiO2-A-TPP

Au-TiO2 MCF-7 tumor-bearing mice Tumor weight drop The CT signal in the tumor area
reached its maximum at 24 h [51]

Molecules 2023, 28, x FOR PEER REVIEW 11 of 23 
 

 

Table 2. CT Imaging Characteristics of the Multifunctional Sonosensitizers. 

Sonosensitizers Probes Biological Model Treatment Result Imaging Effect Ref 

 
MnWOX-PEG 

W(CO)6 
4T1 tumor-bearing 

mice 
Tumor weight drop 

CT imaging signal intensity was 
almost 2.4 times higher than that 

of the control group 
[44] 

 
AgBiS2@DSPE-

PEG2000-FA 

AgBiS2 
HeLa tumor-bear-

ing mice 
Tumor size drop 

The CT signal intensity at the tu-
mor site gradually increased and 
peaked at 6h after the injection 

[48] 

 
Au-TiO2-A-TPP 

Au-TiO2 
MCF-7 tumor-
bearing mice 

Tumor weight drop 
The CT signal in the tumor area 

reached its maximum at 24 h 
[51] 

 
GMCDS-FA@CMC 

Au@mSiO2 
orthotopic colorec-

tal tumor 

Decreased number and 
smaller diameter of col-

orectal tumors 

The nanoprobe remained in the 
colorectal 

region 
[75] 

Cao et al. [51] designed and synthesized titanium oxide (TiO2) nanosheets with tri-
phenylphosphine (TPP) and AS1411 aptamer structure to realize mitochondria-targeted, 
CT imaging, and sonodynamic-chemotherapy for cancer treatment (Figure 4A). Relative 
to the control group, Au-TiO2-A-TPP-treated mice displayed significant CT signals at the 
tumor sites, which validated the capability of Au-TiO2-A-TPP to diagnose tumors by CT 
imaging in vivo (Figure 4B). As the concentration of Au-TiO2-A-TPP increased, the bright-
ness and CT values of CT images increased, suggesting a linear relationship between CT 
grayscale values and concentration (Figure 4C). As mentioned previously, contrast agents 
commonly used in clinical practice may not be appropriate for patients with renal insuffi-
ciency, who may be better suited for contrast agents with a short half-life in vivo and low 
nephrotoxicity. Surprisingly, the half-life of Au-TiO2-A-TPP in the blood circulation of 
mice was only 4.71 h, indicating Au-TiO2-A-TPP was very promising for patients with re-
nal insufficiency (Figure 4D). 

GMCDS-FA@CMC

Au@mSiO2 orthotopic colorectal tumor
Decreased number and

smaller diameter of
colorectal tumors

The nanoprobe remained in the
colorectal

region
[75]

5.3. Magnetic Resonance Imaging (MRI)

Since the first implementation of MRI in 1973 as a non-invasive and multi-contrast
detection method, MR imaging has been widely used in various biomedical fields [76].
MRI can reflect tissue lesions by combining parameters such as flow effects and electro-
magnetic wave-related proton density after the excitation of strong magnetic field pulses
and the formation of magnetic resonance phenomena through hydrogen atoms in human
water molecules [77]. The images are also processed with the aid of computer technol-
ogy to obtain an excellent diagnosis of the pathology, which has high spatial and tissue
resolution [78–80]. Therefore, it is extensively utilized clinically in the diagnosis and prog-
nostic status of various diseases. Magnetic resonance imaging is not sensitive, but this
obstacle can be overcome by exogenous contrast agents by decreasing the relaxation time of
bulk water [80,81]. It was found that appropriate contrast agents are important for enhanc-
ing the susceptibility and specificity of diagnosis, enhancing the degree of signal contrast,
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and improving the resolution of soft tissue images for clinical application [76]. For example,
with the help of gadolinium (Gd)-based T1 agents, information about the boundaries of
brain tumors can be observed more clearly [82]. In recent years, some new nuclear magnetic
sensitizers containing Mn and Fe have been applied to MRI tumor imaging [83,84]. Table 3
lists the sonosensitizers and imaging capabilities used for MRI imaging.
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Figure 4. (A) The process of synthesis of Au-TiO2-A-TPP. (B) Comparison of CT images of mice
before and after intravenous injection of Au-TiO2-A-TPP (10 mg/kg). The red circles highlight
the tumor sites. (C) In vitro CT imaging and CT signal values about different concentrations of
Au-TiO2-A-TPP. (D) Blood circulation time in MCF-7 tumor-bearing mice after intravenous injection
of Au-TiO2-A-TPP (10 mg/kg). (E) CT imaging of HeLa tumor-bearing mice after in vivo injection of
ABS-FA and ABS; red dashed circle: tumor sites. (F) Low power (0.35 W/cm2) infrared thermograms
of tumor-bearing mice taken at different time points. The white arrows highlight the tumor sites.
Notes: (A–D) Adapted with permission from Ref. [51]. Copyright 2019, American Chemical Society.
(E,F) Adapted with permission from Ref. [48]. Copyright 2020, American Chemical Society.

Lei et al. [83] recommended iron-doped vanadium disulfide nanosheets (Fe-VS2 NSs)
as novel sonosensitizers modified with polyethylene glycol (PEG) to achieve the combina-
tion of SDT with chemodynamic therapy (CDT) for cancer therapy. Fe-VS2-PEG NSs have
magnetic resonance imaging capability and strong tumor inhibility in vivo. At 24 h after
intravenous administration of Fe-VS2-PEG, MR imaging of the tumor demonstrated signifi-
cant enhancement, and the quantitative analysis showed that signal strength was 2.04 times
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stronger than that before administration. (Figure 5B,C). In addition, the concentration of
Fe-VS2-PEG NSs was positively correlated with MR signal intensity (Figure 5D).

Table 3. MR Imaging Characteristics of the Multifunctional Sonosensitizers.

Sonosensitizers Probes Biological Model SDT Result Imaging Effect Ref.

Molecules 2023, 28, x FOR PEER REVIEW 13 of 23 
 

 

the combination of SDT with chemotherapy for colorectal cancer treatment. After oral de-
livery of GMCDS-FA@CMC, a well-defined tumor CT signal was observed in situ in colo-
rectal cancer model mice and persisted for 7–9 h. It was found that the enteric-coated par-
ticles possessed good CT imaging effects in vivo by oral delivery and could be used to 
direct SDT-chemotherapy for colorectal cancer treatment. 

5.3. Magnetic Resonance Imaging (MRI) 
Since the first implementation of MRI in 1973 as a non-invasive and multi-contrast 

detection method, MR imaging has been widely used in various biomedical fields [76]. 
MRI can reflect tissue lesions by combining parameters such as flow effects and electro-
magnetic wave-related proton density after the excitation of strong magnetic field pulses 
and the formation of magnetic resonance phenomena through hydrogen atoms in human 
water molecules [77]. The images are also processed with the aid of computer technology 
to obtain an excellent diagnosis of the pathology, which has high spatial and tissue reso-
lution [78–80]. Therefore, it is extensively utilized clinically in the diagnosis and prognos-
tic status of various diseases. Magnetic resonance imaging is not sensitive, but this obsta-
cle can be overcome by exogenous contrast agents by decreasing the relaxation time of 
bulk water [80,81]. It was found that appropriate contrast agents are important for enhanc-
ing the susceptibility and specificity of diagnosis, enhancing the degree of signal contrast, 
and improving the resolution of soft tissue images for clinical application [76]. For exam-
ple, with the help of gadolinium (Gd)-based T1 agents, information about the boundaries 
of brain tumors can be observed more clearly [82]. In recent years, some new nuclear mag-
netic sensitizers containing Mn and Fe have been applied to MRI tumor imaging [83,84]. 
Table 3 lists the sonosensitizers and imaging capabilities used for MRI imaging. 

Table 3. MR Imaging Characteristics of the Multifunctional Sonosensitizers. 

Sonosensitizers Probes 
Biological 

Model 
SDT Result Imaging Effect Ref 

 
UPFB 

MOFs 
(Fe3+) 
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4T1 tumor-bear-
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in BALB/c mice 
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vival period 
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Wang et al. [84] designed and constructed Janus nanostructures called UPFB, consisting
of upconversion nanoparticles (UCNPs) (NaYF4:20%Yb, 1%Tm@NaYF4:10% Yb@NaNdF4)
and porphyrin-based metal organic frameworks (MOFs) (PCN-224(Fe)). UPFB promoted
ROS production by GSH depletion and oxygen supply and realized the integration of SDT
and chemodynamic therapy (CDT) for oncology treatment under MRI guidance. Compared
with the UPF group, the UPFB group darkened overtime at the tumor site, indicating that
the T2 contrast signal was enhanced and the accumulation of UPFB was in a time-related
manner (Figure 5E). UPFB was highly enriched in tumor tissues by quantitative analysis of
the biodistribution of Zr and Fe elements by inductively coupled plasma mass spectrometry
(ICP-MS) Figure 5F,G). Furthermore, the circulation half-life of UPFB was calculated to be
3.381 h (Figure 5H). All these results suggested that the UPFB possessed excellent tumor
target ability and could be utilized as a contrast agent for T2-weighted.

Guan et al. [91] reported a novel biodegradable nanomaterial derived from a mesoporous
zeolitic-imidazolate framework@MnO2/doxorubicin hydrochloride (ZIF-90@MnO2/DOX,
mZMD NCs) to achieve T1-weighted MRI-guided SDT/CDT/chemotherapy. It was found that
the MR image brightness increased with the concentration of mZMD NCs (Figure 5I). After
8 h of intravenous administration, the tumor region was significantly brighter for imaging,
indicating that mZMD NCs can effectively aggregate at the tumor site and release Mn2+ for
T1-weighted MR imaging. The mZMD NCs showed good biocompatibility and biosafety
and effectively suppressed the growth of tumor cells.

5.4. Multi-Modal Imaging

All imaging methods have their disadvantages: MRI has the characteristics of long
acquisition time and low space coverage; CT has the risk of ionizing radiation; and the US
has limited penetration ability [92–95]. Single-modality imaging cannot meet the grow-
ing demand for accuracy and reliability in clinical diagnostics or clinical research [96].
The combined application of multiple testing techniques has become a hot research topic,
complementing each other’s advantages and realizing more precise diseases [97]. Com-
pared with single-mode imaging, multimode imaging achieves multiple imaging functions
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through a single nanomaterial, providing a basis for accurate cancer diagnosis [98]. To date,
several nanoparticle-based bimodal co-imaging materials have been reported to achieve
better imaging and treatment.
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Figure 5. (A) Schematic diagram of the synthesis of Fe-VS2 NSs. (B) Comparative T1-weighted MR
grayscale images of 4T1 tumor-bearing mice before and after intravenous injection of Fe-VS2-PEG
NSs. The red circles highlight the tumor sites. (C) Qualitative analysis of MR intensity showed in
B. (D) T1-weighted magnetic resonance image and r1 of Fe-VS2-PEG solutions at different molar
concentrations of V. (E) In vivo T2-MRI of tumor-bearing mice by intravenous injection of UPF or
UPFB at different time intervals. Mice were imaged on a 1.2 T MRI scanner (Shanghai, China) for
different periods. Tumor sites are marked with red ellipses. (F) Biodistribution of Zr (% injected
dose (ID) of Zr per gram of tissues) in major tissues and tumors at different times after injection of
UPFB. (H) Fe (% injected dose (ID) of Fe per gram of tissues) content in major tissues and tumors
at different times after UPFB injection. (G) Blood circulation profile after intravenous injection
of UPFB (n = 5). The half-time (t1/2) was calculated to be ≈3.381 h. (I) T1 relaxation rate (1/T1)
of mZMD NCs measured using the concentration of Mn2+ (inset: MR images of different concen-
trations of mZMD NCs in PBS (pH 6.5). Notes: (A–D) Adapted with permission from Ref. [83].
Copyright 2020, American Chemical Society. (E–H) Adapted with permission from Ref. [84]. Copy-
right 2021, American Chemical Society. (I) Adapted with permission from Ref. [91]. Copyright 2022
Wiley-VCH GmbH.
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Wang et al. [99] prepared hollow CoP@N-carbon@PEG (CPCs@PEG) nanospheres
(∼60 nm) as sonosensitizers to inhibit tumor growth by promoting ROS production under
US irradiation. With the incorporation of cobalt ions, which had magnetic properties and
X-ray attenuation coefficients, CPCs@PEG were capable of both CT and MRI. Further, the
authors also performed MRI imaging studies in vivo using 4T1 tumor-bearing mice as a
model. After the injection of CPC10@PEG, the contrast of the cancer site became darker.
In addition, the researchers conducted a CT imaging capability study. With the increase
in CPC10@PEG concentration, the CT signal was gradually enhanced. The researchers
also investigated the in vivo CT imaging capabilities of CPC10@PEG, which showed a
significant increase in the brightness of the cancer site after intravenous injection compared
with pre-injection.

Gong et al. [44] designed and prepared a novel high-performance multifunctional
sonosensitizer built on ultramicroscopic oxygen-deficient bimetallic oxide MnWOX nanopar-
ticles for multimodal imaging-guided SDT for cancer therapy. The MnWOX-PEG nanopar-
ticles exhibited effective SDT effects by producing 1O2 and ·OH and possessed the glu-
tathione depletion capability to enhance the SDT efficacy. MnWOX-PEG exhibited good
biosafety and excellent tumor growth suppression in mice under ultrasound irradiation.
Due to the high attenuation of X-rays by the W element, MnWOX-PEG can also be applied
in CT imaging and as a reduction agent for T1 in magnetic resonance imaging. The findings
indicated that after 24 h of intravenous injection of MnWOX-PEG 4T1, the tumor-bearing
mice showed significant CT (2.4 times) and MRI (1.8 times) signals in the tumor site. These
multimodal imaging results demonstrated that MnWOX-PEG can efficiently accumulate in
tumors, and sonosensitizers had diagnostic imaging capabilities and assisted in the precise
treatment of tumors with SDT.

6. Conclusions and Outlook

This review summarized the mechanism of action of SDT and further described
the advantages and disadvantages of the three molecular imaging modalities commonly
practiced in clinical practice, as well as summarized studies using sonosensitizers as
contrast agents. SDT has the advantages of a good therapeutic effect, profound organization
penetration, and small collateral damage, which makes it a promising cancer treatment.
There have been efforts to use SDT for the treatment of cancer and the production of
related sonosensitizers since its discovery in 1989. Now, the door seems to have been
opened to the great value of sonosensitizers for imaging in addition to cancer treatment,
which is becoming an attractive trend. Clinical imaging techniques contribute to earlier
and more predictable detection of cancer, provide an accurate and effective evaluation
of tumor treatment, and help patients improve their prognosis and survival. However,
the limitations of current clinical contrast agents are taken into account. Therefore, it is
particularly important to create sonosensitizers with better diagnostic contrast capabilities.

First, although current research on sonosensitizers is in full swing, most of them are
facing different problems. Feng et al. [8] developed a sequential strategy for ultrasound-
mediated nano-therapy based on TPZ/HMTNPs-SNO. When encountered with ultrasound,
TPZ/HMTNPs-SNO further sensitizes the release of nitric oxide (NO) bubbles for ultra-
sound cancer imaging in a controlled manner. However, when compared with clinical
ultrasound contrast agents (Albunex, Echovist, etc.), the ultrasound imaging performance
of HMTNPs-SNO is not satisfactory due to the limited NO concentration. Although
research on sonosensitizers is in full swing, it still faces great challenges, such as low
sensitization efficiency, a lack of accumulation in lesion areas, and insufficient research
on therapy mechanisms. To overcome these restrictions, cross-disciplinary collaboration
shall be strengthened to construct functionalized sonosensitizers with highly productive
diagnostic and therapeutic methods.

Second, the biosafety assessment of sonosensitizers is a central barrier to promoting
clinical translation. However, the phototoxicity of organic sonosensitizers and the com-
position of inorganic sonosensitizers greatly limit their clinical translation. Most of the
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sonosensitizers currently used for CT and MRI contain heavy metals (e.g., manganese and
titanium) whose metabolism, biodegradation, bioavailability, and toxicity in humans are
unknown. Therefore, we still need to explore sonosensitizers that are less toxic or even
non-toxic to humans. Meanwhile, a comprehensive and systematic evaluation of their
toxicity and pharmacology is needed to promote the development of sonosensitizers.

Third, from a clinical perspective, many factors remain to be considered to maximize
the imaging quality of sonosensitizers. The identification and validation of novel imaging
targets must be attended to, and other features must be investigated in the context of the
need for clinical application. We hypothesized that we could contribute to the scientific
community’s great progress in cancer imaging and therapy by highlighting the latest
achievements in this field. The future development of sonosensitizers for SDT will provide
valuable information and insights to facilitate the clinical translation of sonosensitizers
for SDT for therapeutic and diagnostic purposes. Based on the research advances in this
study, these nanoparticles for imaging and therapeutic versatility will hopefully provide
new expectations for clinical applications in cancer therapy.
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