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Abstract: A fluorescent and colorimetric poly (acrylamide)-based copolymer probe P(AAm-co-
RBNCH) has been designed via free radical polymerization of a commercial acrylamide monomer
with a rhodamine-functionalized monomer RBNCH. Metal ion selectivity of RBNCH was investi-
gated by fluorescence and colorimetric spectrophotometry. Upon addition of Fe3+, a visual color
change from colorless to red and a large fluorescence enhancement were observed for the ring-
opening of the rhodamine spirolactam mechanism. The monomer gives a sensitive method for
quantitatively detecting Fe3+ in the linear range of 100–200 µM, with a limit of detection as low as
27 nM and exhibiting high selectivity for Fe3+ over 12 other metal ions. The hydrogel sensor was
characterized by FTIR, and the effects of RBNCH amount on gel content and swelling properties
were explored. According to the recipe of 1.0 mol% RBNCH to the total monomers, the fabricated
hydrogel sensor displayed a good swelling property and reversibility performance and has potential
for application in the imaging of Fe3+ level in industrial wastewater.

Keywords: hydrogel sensor; rhodamine; selectivity; naked-eye detection; free radical polymerization

1. Introduction

Owing to their three-dimensional hydrophilic polymeric networks, hydrogels can
easily swell, up to hundreds or thousands of times their original size, in aqueous media
and respond smartly to electricity, light, pH or temperature variations [1–6]. Multiple
hydrogels have played extremely important roles in the fields of antimicrobial materials,
drug delivery systems, tissue engineering and superabsorbents [7–11]. Additionally, their
transparent and manipulative properties make these hydrogels excellent candidates for
smart sensing materials with colorimetric or fluorescent signal change [12,13].

Chemosensors possess simpler operation, higher selectivity and more rapid response
compared with instrumental assays such as atomic absorption spectrometry (AAS), induc-
tively coupled plasma-atomic emission spectroscopy (ICP-AES), ion selective electrodes
(ISE) and UV-vis spectrophotometry [14–16]. Nowadays, the construction of chemosensors
for the specific heavy metal ions that are essential in living systems or have a toxic impact
on our environment attracts considerable interest. Fe3+, as a vital physiologically relevant
metal ion, is indispensable in the process of cellular metabolism, oxygen metabolism, en-
zyme catalysis and protein synthesis [17–19]. An excess or deficiency of Fe3+ in a living
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organism can lead to physiological diseases including anemia, heart failure, hepatitis and
neurodegenerative disease [20–22]. In the last decade, colorimetric and fluorescent probes
based on coumarin, BODIPY, dansyl chloride, and pyrene have been developed for the
quantitative determination of Fe3+ [23–26]. Among diverse organic fluorophores, rho-
damines are noted for their high fluorescence quantum yield, large absorption coefficient
and wide wavelength range. In recent years rhodamine-based sensors have been widely ap-
plied to recognize metal ions [27–34]. However, most of these sensors are insoluble in water
due to their hydrophobicity. Although several hydrophilic molecular sensors have been
reported, their reusability is poor due to inconvenience [35–37]. Crosslinked hydrogels en-
compass hydrophilic and insoluble properties, allowing researchers to gain insight into the
design of reusable and visible sensors of specific heavy metal ions. In 2012, Lin et al., syn-
thesized thiourea functionalized polyacrylamide hydrogel sensors containing polystyrene
photonic crystals for the detection of Cd2+ [38]. Subsequently, a 5, 6-dicarboxylic fluorescein
cross-linked amine-functionalized polyacrylamide hydrogel as visual volumetric sensor for
Cu2+ recognition was designed by Wu’s group [39]. Recently, Qu and coworkers reported a
rhodamine-immobilized optical hydrogel for the selective sensing of Hg2+ [40]. In addition,
DNA cross-linked hydrogels were synthesized based on the acrydite-DNA strands, and
these act as capillary sensors for Pb2+ monitoring in the literature [41]. Apart from the
abovementioned sensitive sensors for several metal ions, developing a simple-to-prepare
and reusable hydrogel sensor for the detection of Fe3+ would greatly enrich the types of
smart sensing materials. In 2013, Ozay et al., developed a colorimetric hydrogel sensor for
Fe3+ recognition based on the Rhodamine G fluorophore [42]. Liu et al., reported a portable
Fe3+ hydrogel sensor based on the urea-linked functionalized rhodamine monomers [43].

In this study, a transparent hydrogel sensor that shows fluorescence in response to
selective sensing Fe3+ was synthesized and characterized. The rhodamine fluorophore
was anchored to the side chain of polyacrylamide by radical co-polymerization using the
synthesized novel monomer RBNCH. When exposed to Fe3+, the color of the hydrogel
turns to shiny red under the UV light at 365 nm, and the color intensity is associated with
the Fe3+ ion concentration. In addition, we investigated the reusability of the hydrogel
sensor using ethylenediamine (EDA) solution.

2. Results and Discussion
2.1. Design and Synthesis

In the strategy for design of fluorescence sensors, rational selection of organic dyes
as the signaling subunit is very important. Rhodamine skeleton has been widely utilized
as the fluorophore based on the fluorescence produced by the structure change from
spirocyclic ring to open ring form. The designed monomer RBNCH is nonfluorescent and
colorless in the spirolactam structure. In the case of the RBNCH complex with Fe3+, the
lactam ring of the spirane structure opens up and leads to strong fluorescence emission.
Conceivably, the rhodamine structure anchored to the copolymer main chain could also
enable the hydrogel P(AAm-co-RBNCH) to allow selective recognition of Fe3+ (Figure 1).
The monomer RBNCH and intermediate RBNH were synthesized from the commercially
available and inexpensive rhodamine B as shown in Figure 1; structures of both compounds
were confirmed by NMR and HRMS (Figures S1–S3, Supplementary Materials).

2.2. Fluorescent Spectra Studies of RBNCH

To verify this design hypothesis, we tested the fluorescence response of RBNCH
to Fe3+. The fluorescence spectra of the probe for Fe3+ detection in various solvents is
shown in Figure 2. The solutions of RBNCH alone exhibited weak fluorescence emis-
sion above 500 nm, while the maximum fluorescence enhancement could be observed in
CH3CN upon addition of Fe3+, which indicates the relatively significant solvent effect in
the sensing system.
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Considering the poor solubility of the monomer in water, we optimized the
CH3CN/H2O ratio of the detection system. At room temperature (25 ◦C), it can be found
that the fluorescence intensity decreased when elevating H2O content in the solvent, achiev-
ing the highest enhancement with CH3CN/H2O = 9:1, v/v (Figure S4, Supplementary
Materials). The alteration of fluorescence against various incubation times was also exam-
ined (Figure S5, Supplementary Materials). After adding Fe3+, the fluorescence intensity
of the sensing system increased gradually with an extended incubation time, reaching a
steady state at 1.5 h. Hence, we chose 1.5 h as the best incubation time for the subsequent
experiments. In this scenario, the subsequent analysis was carried out in testing solutions
(CH3CN/H2O = 9:1, v/v) with 1.5 h as incubation time. It is worth noting that the color
change begins after 5 min, and the fluorescent intensity increased to 200 a.u. within 20 min
(the moment at which color change is detected by eye). Therefore, it can be considered that
the probe can produce a significant fluorescence response within 20 min, which gives it a
rapid response speed.

To test sensitivity, the presentation of fluorescent spectra with varied concentrations
of Fe3+ was studied. After adding Fe3+ to the RBNCH solution, a dramatic increase
was observed in the fluorescence intensity of the solution and the fluorescent emission
maximum is centered at about 586 nm (Figure 3a). It was determined that the fluores-
cence intensity was proportional to the concentration of Fe3+ and a linear equation of
F586nm = 247.85 + 0.632 [Fe3+] (R2 = 0.9949) was obtained, with a limit of detection (LOD)
calculated to be as low as 27 nM, according to LOD = 3σ/k (where σ is the standard devia-
tion of blank measurement and k is the slope between the fluorescence intensity versus Fe3+

concentration) (Figure 3b). The results above demonstrated that RBNCH is highly sensitive
to Fe3+ and could be used to synthesize fluorescent sensing materials. Additionally, the
synthesized monomer possesses higher sensitivity compared to the reported probes for
monitoring Fe3+ (Table S1, Supplementary Materials).
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Figure 3. (a) The fluorescence spectra of RBNCH (50 µM) before and after addition of Fe3+ (0–200 µM).
Inset: photographs of 1 mM of RBNCH without Fe3+ (I) and with 1 mM of Fe3+ (II) under 365 nm UV
illumination; (b) the linear correlations between fluorescence intensity at 586 nm andconcentration of
Fe3+ (100–200 µM), λex = 308 nm.

To further investigate the binding mode between RBNCH and Fe3+, a test solution
with a total concentration of 100 µM and a ratio of [Fe3+]/([Fe3+] + [RBNCH]) ranging from
0.1 to 0.9 was prepared for fluorescence spectroscopy. The resulting Job’s plot is shown in
Figure 4. It can be seen that the fluorescence intensity is maximum when the ratio is 0.5,
which indicates that the binding value of the RBNCH-Fe3+ complex was 1:1.



Molecules 2023, 28, 6572 5 of 13

Molecules 2023, 28, x FOR PEER REVIEW 5 of 14 
 

 

  

Figure 3. (a) The fluorescence spectra of RBNCH (50 μM) before and after addition of Fe3+ (0–200 

μM). Inset: photographs of 1 mM of RBNCH without Fe3+ (I) and with 1 mM of Fe3+ (II) under 365 

nm UV illumination; (b) the linear correlations between fluorescence intensity at 586 nm andcon-

centration of Fe3+ (100–200 μM), λex = 308 nm. 

To further investigate the binding mode between RBNCH and Fe3+, a test solution 

with a total concentration of 100 μM and a ratio of [Fe3+]/([Fe3+] + [RBNCH]) ranging from 

0.1 to 0.9 was prepared for fluorescence spectroscopy. The resulting Job’s plot is shown in 

Figure 4. It can be seen that the fluorescence intensity is maximum when the ratio is 0.5, 

which indicates that the binding value of the RBNCH-Fe3+ complex was 1:1. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

50

100

150

200

250

300

F
L

 i
n

te
n

si
ty

 (
a

.u
.)

[Fe3+] / [Fe
3+

+ RBNCH]  

Figure 4. Job’s plot titration of RBNCH with Fe3+. 

The implementation of competitive experiments indicated that RBNCH gratifyingly 

enabled anti-interference capability against other metal ions (Figure 5). Only Fe3+ resulted 

in a remarkable fluorescence enhancement at 586 nm, whereas a range of common metal 

ions, including alkali and alkali-earth metal ions (K+, Na+, Ca2+ and Mg2+), transition metal 

ions (Zn2+, Ni2+, Cu2+, Mn2+, Pb2+, Cd2+ and Al3+) and rare-earth metal ions (Pr3+) merely 

caused a slight enhancement in the fluorescence, even when K+, Na+, Mg2+ and Ca2+ were 

added at millimolar levels. 

Figure 4. Job’s plot titration of RBNCH with Fe3+.

The implementation of competitive experiments indicated that RBNCH gratifyingly
enabled anti-interference capability against other metal ions (Figure 5). Only Fe3+ resulted
in a remarkable fluorescence enhancement at 586 nm, whereas a range of common metal
ions, including alkali and alkali-earth metal ions (K+, Na+, Ca2+ and Mg2+), transition metal
ions (Zn2+, Ni2+, Cu2+, Mn2+, Pb2+, Cd2+ and Al3+) and rare-earth metal ions (Pr3+) merely
caused a slight enhancement in the fluorescence, even when K+, Na+, Mg2+ and Ca2+ were
added at millimolar levels.
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Figure 5. Fluorescence intensity changes of RBNCH (50 µM) upon addition of common metal ions:
1, none; 2, K+ (2 mM); 3, Na+ (2 mM); 4, Ca2+ (1 mM); 5, Mg2+ (1 mM); 6, Ni2+ (100 µM); 7, Cu2+

(100 µM); 8, Mn2+ (100 µM); 9, Pb2+ (100 µM); 10, Zn2+ (100 µM); 11, Pr3+ (100 µM); 12, Al3+ (100 µM);
13, Cd2+ (100 µM). Black bars: probe treated with the marked metal ions in the absence of Fe3+;
red bars: probe treated with the marked metal ions followed by Fe3+ (100 µM). Each group of
experiments was measured three times in parallel and error bars were determined based on their
standard deviations.

2.3. Colorimetric Spectra Studies of RBNCH

The colorimetric response of RBNCH to metal ions is an important indicator of the
naked-eye detection ability of the probe. A series of common metal ions (K+, Na+, Ca2+,
Mg2+, Ni2+, Cu2+, Mn2+, Pb2+, Zn2+, Fe3+, Pr3+, Al3+ and Cd2+) were chosen to investigate
the colorimetric selectivity of the RBNCH. As shown in Figure 6, in the absence of metal
ions, the UV-vis spectra of RBNCH exhibited weak absorption. Upon the addition of Fe3+,
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a notable increase in absorbance at 555 nm is observed. In contrast, the addition of other
metal ions does not result in significant spectral alterations or color changes under similar
conditions. Consequently, the monomer RBNCH exhibits excellent colorimetric selectivity
for Fe3+ and has the potential to be used as a naked-eye detection sensor.
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Figure 6. UV-vis spectra of RBNCH (50 µM) upon addition of common metal ions: K+ (2 mM), Na+

(2 mM), Ca2+ (1 mM), Mg2+ (1 mM), Ni2+ (100 µM), Cu2+ (100 µM), Mn2+ (100 µM), Pb2+ (100 µM),
Zn2+ (100 µM), Fe3+ (100 µM), Pr3+ (100 µM), Al3+ (100 µM) and Cd2+ (100 µM).

The UV/vis titration absorption spectra of RBNCH are presented in Figure 7a. The
monomer RBNCH exhibits a weak visible-range absorption in the absence of Fe3+, which
can be attributed to the fact that RBNCH exists as a spirocyclic structure in solution. Upon
addition of Fe3+ to RBNCH, a significant shift occurs in the visible range. A distinct
absorption band centered at 555 nm was observed when 0–200 µM Fe3+ was added. As
the Fe3+ concentration increased from 40 to 200 µM, the absorption peak intensity at
555 nm gradually increased, exhibiting a linear relationship between A555 nm and [Fe3+]
(R2 = 0.9915) (Figure 7b).
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(40–200 µM).

2.4. Characterization and Application of Rhodamine-Anchored Hydrogel Sensors

The utilization of molecular sensors in metal ion contaminant detection can be con-
fronted with problems such as the terrible compatibility of water insoluble sensors, or
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ineffective reusability of hydrophilic sensors. Alternatively, hydrogels can swell in water
and are renewable, making them promising for use as smart sensors in environmental mon-
itoring. For the aforementioned reasons, P(AAm-co-RBNCH) hydrogels were synthesized,
via free radical polymerization, using the different molar ratios of acrylamide (AAm) and
RBNCH given in Table 1.

Table 1. Synthesis of P(AAm-co-RBNCH) hydrogel sensors 1.

Hydrogel Code RBNCH/g AAm/g Molar Ratio H2O/mL DMSO/mL

P-1 0.0807 2.12 0.5/99.5 1.5 6
P-2 0.121 2.11 0.75/99.25 1.5 6
P-3 0.161 2.11 1/99 1.5 6
P-4 0.242 2.10 1.5/98.5 1.5 6
P-5 0.323 2.09 2/98 1.5 6

1 Total monomer amount: 0.03 mol, 0.1 mol% K2S2O8, 5 mol% N, N′-Methylenebisacrylamide (MBA), 0.1 mL N,
N, N′, N′-Tetramethylethylenediamine (TEMED).

To verify the success of co-polymerization, monomer RBNCH, homo-polymer
Poly(acrylamide) (PAM) and hydrogel P-4 were characterized by FT-IR spectra (Figure 8).
In the IR spectra of RBNCH, the peaks at 1670 cm−1 and 1623 cm−1 represent the C=O
stretching band for acryl amide and lactam group, respectively. The characteristic C=C and
C-O stretching frequencies were observed at 1512 cm−1 and 1130 cm−1. In the spectrum of
hydrogel P-4, the C=O band for the lactam group was covered by the stretching of acryl
amide due to the low level of RBNCH in the co-polymer. However, the C-O stretching
vibration at 1020 cm−1 can be clearly observed, while the characteristic C=C frequency at
1512 cm−1 disappears. Accordingly, the FT-IR spectra revealed that the RBNCH group was
successfully polymerized into a hydrogel sensor.
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Gelation and swelling ratios were found to be directly related to the RBNCH ratio. As
displayed in Figure 9a, the gelation ratio was inversely proportional to the added RBNCH
in the co-polymer. When the content of RBNCH increased to 2 mol% (P-5), the gelation
ratio fell to 67.3 ± 3.7%. From the perspective of rigidity and flexibility of molecular
structure, the rhodamine-based monomer RBNCH possesses a rigid, highly conjugated
xanthene structure as well as a considerable molecular weight, making copolymerization
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difficult. Therefore, the decreased gelation ratio may be due to the fact that cross-linking
of two polymer chains was partially inhibited due to the rigid and sterically hindered
rhodamine segment. With an increasing amount of RBNCH, the maximum swelling ratio
of hydrogels in deionized water gradually increased and saturated when 1 mol% RBNCH
was added. The reason for the lower swelling ability when the sensor monomer content
exceeded 1 mol%, may be on account of incomplete polymerization and restricted cross-
linking. Encompassing a compromise between adequate gelation and swelling properties,
P-3 was selected as the hydrogel sensor for the following tests. Swelling profiles of the
hydrogels bearing different RBNCH content are shown in Figure 9b, which demonstrates
that P-3 has the best swelling rate and equilibrium swelling degree. The excellent water
absorption capability of P-3 may be due to the hydrophilic groups, such as -NH-, -CONH-,
in the rhodamine skeleton, which could bind molecular water and expand the three-
dimensional networks. Although previous reports on hydrogels have shown that an
increase in rhodamine content leads to an increase in the swelling rate and equilibrium
swelling degree. The lower swelling ratio of P-4 and P-5 in our work may derive from the
limited three-dimensional network caused by the decreased gel content.
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The fluorescent response behavior of hydrogel sensors is displayed in Figure 10. It can
be seen that the anchored rhodamine skeleton endows the copolymer with the ability of a
colorimetric and fluorescence response to Fe3+. The detection limits of hydrogel sensors
were determined in Fe3+ solutions ranging from 0.1 µM to 100 µM. The colorimetric and
fluorescent intensities of hydrogels were enhanced with the increasing Fe3+ concentration,
and the color change of the sensor can still be observed clearly, even in 0.1 µM Fe3+

solutions. The response time was related to the concentration of Fe3+. The color changes of
a 3 mm thickness hydrogel in the presence of Fe3+ at 1 µM, 10 µM and 100 µM after 2.5 h,
respectively.

The reversibility performance was tested by putting a hydrogel sensor that has been
sensing for Fe3+ into 200 µM ethylenediamine (EDA) solution. It can be seen in Figure 11a
that an obvious fluorescent peak appears at 586 nm upon the addition of Fe3+ to the
hydrogel P-3, and the fluorescence emission almost quenches after adding EDA to the
detection solution. The fluorescent signal change derives from the stronger binding ability
of EDA with Fe3+, which can capture Fe3+ from the P(AAm-co-RBNCH)-Fe3+ complex and
lead to the rhodamine moieties transforming to original state. Simultaneously, the color
changes from colorless to deep red and then, correspondingly, to colorless (Figure 11b inset),
indicating the regeneration of the hydrogel fluorescent sensor. The subsequent addition
of Fe3+ leads to an enhancement in fluorescence emission, indicating that the regenerated
hydrogel can still recognize Fe3+. As shown in Figure 11b, within 9 Fe3+/EDA cycles in



Molecules 2023, 28, 6572 9 of 13

aqueous solution, the P(AAm-co-RBNCH) still displays a response to Fe3+, revealing that
the hydrogel chemosensor has excellent reversibility.
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Figure 11. (a) Reversible changes in the fluorescence intensity of hydrogel sensor P-3 after alternately
adding Fe3+ (200 µM) and EDA (200 µM). (b) Repeatability of Fe3+-sensing behavior of the hydrogel
sensor P-3. Inset: the color changes of P-3 during the reuse process under ultraviolet light at 365 nm.

3. Materials and Methods
3.1. Materials

Rhodamine B (99%), ethanediamine (99%), acryloyl chloride (98%), acrylamide (AAm,
99%), N, N′-methylenebisacrylamide (MBA, 99%), N, N, N′, N′-tetramethylethylenediamine
(TEMED, 99%), potassium persulfate (99%), ethylenediamine (EDA), Et3N, CH2Cl2, EtOH,
DMSO, anhydrous Na2SO4 and metal salts, such as chloride salts of K+, Na+, Mg2+, Ca2+,
Zn2+, Ni2+, Cu2+ and Fe3+ and nitrate of Mn2+, Pb2+ and Pr3+, were all purchased from
Shanghai Aladdin Bio-Chem Technology Co, LTD and used directly as received. All the
reagents were of analytical grade, or the highest purity available, and were used without
further purification. All solutions (monomer and metal ions) were prepared using CH3CN
or distilled water.

3.2. Instrumental Characterization

NMR spectra were measured and recorded by a Varian instrument (400 MHz) using
CDCl3 as the solvent and tetramethylsiliane (TMS) as the internal reference. Chemical
shifts were expressed in ppm and coupling constants (J) in Hz. The Fourier transform
infrared radiation (FT-IR) spectra of the hydrogels were recorded with an FT-IR (Perkin
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Elmer Spectrum 100) instrument using an ATR apparatus with 4 cm−1 resolution between
4000 and 650 cm−1. The model of mass spectrometer used was a Thermo Scientific Q
Exactive, Orbitrap, Waltham, MA, USA. The emission spectra were measured by a Hitach
F-4600 fluorescence spectrophotometer, Hitach, Tokyo, Japan.

3.3. Synthesis of Monomer RBNCH

Synthesis of intermediate RBNH: Rhodamine B (2.40 g, 5 mmol) and ethanediamine
(1.80 g, 30 mmol) were dissolved in 60 mL EtOH, and refluxed for 12 h. After cooling to
ambient temperature, the reaction mixture was added to 60 mL saturated brine solution and
extracted with 3 × 20 mL CH2Cl2. The combined organic phase was dried with anhydrous
Na2SO4 and concentrated by rotary evaporation. The crude product was purified by
neutral alumina column, using CH2Cl2/MeOH (10:1, v:v) as eluent, to obtain RBNH as a
pale yellowish solid (1.87 g, 77.8% yield). 1H NMR (400 MHz, CDCl3) δ 7.89 (dd, J = 5.9,
2.8 Hz, 1H), 7.49–7.40 (m, 2H), 7.08 (dd, J = 5.8, 2.8 Hz, 1H), 6.43 (d, J = 8.8 Hz, 2H), 6.37 (d,
J = 2.4 Hz, 2H), 6.27 (dd, J = 8.9, 2.4 Hz, 2H), 3.33 (q, J = 7.1 Hz, 8H), 3.22 (t, J = 6.1 Hz, 2H),
2.53 (t, J = 6.1 Hz, 2H), 1.16 (t, J = 7.0 Hz, 12H).

Synthesis of RBNCH: RBNH (0.48 g, 1 mmol) and triethylamine (0.15 g, 1.5 mmol) were
added to a round bottom flask containing 15 mL dehydrated THF and cooled to 0 ◦C.
Acryloyl chloride (0.11 g, 1.2 mmol) was added to the above solution, dropwise via syringe,
and stirred for 12 h at ambient temperature. CH2Cl2/MeOH (20:1, v:v) was used as eluent
to get the pale yellow solid RBNCH (0.43 g, 80.1% yield). 1H NMR (400 MHz, CDCl3) δ
7.91 (dd, J = 5.9, 2.7 Hz, 1H), 7.46 (dd, J = 5.4, 3.3 Hz, 2H), 7.18–7.04 (m, 2H), 6.51–6.34 (m,
4H), 6.28 (d, J = 7.3 Hz, 2H), 6.19 (dd, J = 17.1, 1.4 Hz, 1H), 6.02 (dd, J = 17.1, 10.3 Hz, 1H),
5.55 (dd, J = 10.3, 1.3 Hz, 1H), 3.34 (q, J = 6.8 Hz, 10H), 3.14 (s, 2H), 1.73 (s, 2H), 1.17 (s, 12H).
HRMS: [M + H]+ (m/z), 539.2984.

3.4. General Procedures for Spectroscopic Analysis of RBNCH

The stock solution (5 mM) was obtained by dissolving RBNCH in CH3CN. The metal
ion (K+, Na+, Mg2+, Ca2+, Zn2+, Ni2+, Cu2+, Mn2+, Pb2+ and Pr3+) stocks in deionized water
were prepared at a concentration of 5 mM. Test solutions were prepared by mixing the
stock solution of the RBNCH (10 µL) with an appropriate amount of metal ions and then
diluting with a mixed solution (CH3CN/H2O = 9/1, v/v) to keep the volume of each test
solution at 1 mL. The test solutions were shaken for 90 min and then the fluorescence or
absorption was measured. Ion recognizing properties were investigated by fluorescent
spectrophotometer with the excitation wavelength at 308 nm.

3.5. Synthesis and Swelling Properties of P(AAm-co-RBNCH) Hydrogel Sensors

According to the synthetic procedure shown in Figure 1, P(AAm-co-RBNCH) hydro-
gels were synthesized via free radical polymerization by different molar ratios of acrylamide
and RBNCH given in Table 1. Monomer RBNCH was dissolved in DMSO, AAm was dis-
solved in deionized water, and both were mixed in a round bottom flask treated with argon
gas. Then, cross-linking agent (MBA, 0.5 mol% based on total monomer amount), catalyst
(TEMED, 0.1 mL) and initiator (K2S2O8, 0.1 mol% based on total monomer amount) were
added to the above monomer solution. This mixture was stirred until a homogeneous
solution formed; the reaction mixture was then transferred to sealed plastic tubes using
an injector and kept at 70 ◦C for 5 h. When the mixture solution lost its flowability, the
hydrogel sensor was extracted from the mold, washed with DMSO for 24 h, and later
washed with deionized water for 24 h. One piece of each hydrogel was dried in an oven at
40 ◦C to study the water absorption properties of hydrogel.

The prepared hydrogel’s gel content was determined using a gravimetric method. The
untreated hydrogel was dried in an oven at 60 ◦C to a constant weight (Mi). After washing
with DMSO for 24 h and water for 24 h to remove any unreacted monomers and solvent,
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the sample was dried to a constant weight (Md). The gel content was calculated using
Equation (1):

G% =
Md
Mi
× 100% (1)

Swelling kinetics of hydrogel sensors were studied by adding a 0.133 g dried hydrogel
to deionized water and the increase in mass was measured at certain intervals. The swelling
ratio of hydrogel can be calculated according to Equation (2). MS and MD in the equation
represent the weight of swollen hydrogel and dried hydrogel, respectively.

S% =
MS −MD

MD
× 100% (2)

3.6. The Application of Hydrogels as Fluorescent Naked-Eye Sensors

The selective recognition of metal ions was proceeded by placing the fully swollen
P(AAm-co-RBNCH) hydrogels into different metal ion solutions. The detection limits were
determined by putting the hydrogel sensors into a range of Fe3+ solutions (0.1–200 µM).
Furthermore, the reusability of the sensors was investigated by the following process:
after the absorption of Fe3+, the sensors were soaked in EDA solutions for 1 h to form a
decolored hydrogel, and then washed by deionized water until neutral pH.

4. Conclusions

In summary, polyacrylamide hydrogel sensors with anchored rhodamine dye in the
side chain were designed and synthesized via free radical polymerization based on the
RBNCH monomer. The hydrogels exhibited excellent gelation and swelling ratios in
aqueous media, and inherited the ability of the monomer to selectively and sensitively
recognize Fe3+, which allowed the hydrogels to serve as naked-eye sensors under visible
light and UV light. Hydrogel sensors were able to successfully detect 0.1 µM Fe3+ in
solution, which indicates that the hydrogels could satisfy the demand for monitoring trace
Fe3+ in the environment. Ultimately, this method provides new insights to profoundly
explore smarter sensing systems that synergistically couple visual detection with reusability.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28186572/s1, Figure S1: The 1H NMR spec-
tra of RBNH; Figure S2: The 1H NMR spectra of RBNCH; Figure S3: The fluorescence spectra of
different water content; Figure S4: The fluorescence spectra of response time; Figure S5: The flu-
orescence spectra of response time. Fluorescence emission spectra (λex = 308 nm) of the sensing
system containing 50 µM RBNCH, with 100 µM Fe3+ for different reaction time; Table S1: Compari-
son of the proposed method for Fe3+ detection with other previously reported fluorescent probes.
References [44–49] are cited in the Supplementary Materials.
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