Terpenoid Glucosides from Gentiana macrophylla That Attenuate TNF-α Induced Pulmonary Inflammation in A549 Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of New Compounds
2.2. Anti-Pulmonary Inflammation Activity of Iridoids
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
- (S)-Dehydroxyabscisic alcohol-β-d-glucosyl(1→6)-β-d-glucopyranoside (1): Colorless gum; [α− 218.7 (c 0.16, MeOH); ECD (MeOH, c = 0.40 mg/mL) λmax (Δε) 246 (2.36), 306 (−0.11) nm; IR (KBr) νmax 3373, 2948, 2842, 1656, 1635, 1411, 1031, 635 cm−1; 1H- and 13C-NMR data, see Table 1; HRMS (ESI) (positive) m/z 581.2564 [M + Na]+ (calcd for C27H42O12Na, 581.2569); also see Supplementary Figures S1–S9.
- 2′-O-Caffeoylgentiopicroside (2): Brown amorphous powder; [α− 266.6 (c 0.30, MeOH); UV (MeOH) nm λmax 216 (3.54), 246 (3.49), 284 (3.44), 332 (3.52); IR (KBr) νmax 3355, 2919, 2849, 1627, 1608, 1579, 1410, 1271, 1058, 1033 cm−1; 1H- and 13C-NMR data, see Table 1; HRMS (ESI) (positive) m/z 541.1411 [M + Na]+ (calcd for C25H26O12Na, 541.1417); also see Supplementary Figures S10–S18.
- 2′,6′-Bis-O-(4-O-glucosylcaffeoyl)-gentiopicroside (3): Brown amorphous powder; [α− 110.7 (c 0.56, MeOH); UV (MeOH) nm λmax, 214 (4.38), 240 (4.18), 285 (4.28), 321 (4.10); IR (KBr) νmax 3358, 2921, 2851, 1657, 1630, 1466, 1410, 1076 cm−1; 1H- and 13C-NMR data, see Table 1; HRMS (ESI) (positive) m/z 1027.2686 [M + Na]+ (calcd for C46H52O15Na, 1027.2690); also see Supplementary Figures S19–S27.
- 1β,2α,3α,24-Tetrahydroxyolean-12-en-28-oic acid 28-O-[β-d-glucosyl-(1→2)]-[β-d-glucosyl-(1→6)]-β-d-glucosyl ester (4): White amorphous powder; [α+ 4.3 (c 0.23, MeOH); IR (KBr) νmax 3679, 2922, 1055, 1033, 1013 cm−1; 1H-NMR data δH (J in Hz): 5.43 (1H, d, 8.0, H-1′), 5.24 (1H, dd, 3.7, 3.5, H-12), 4.80 (1H, d, 7.8, H-1″), 4.34 (1H, d, 7.8, H-1‴), 4.11 (1H, br d, 11.6, H-6′), 3.90 (1H, dd, 11.3, 2.4, H-6″), 3.84 (2H, overlapped, H-2′, 6‴), 3.83 (1H, d, 2.9, Hβ-3), 3.78 (1H, dd, 11.6, 4.4, H-6′), 3.67 (1H, overlapped, Hb-24), 3.65 (2H, overlapped, H-3′, 6‴), 3.62 (1H, overlapped, H-6″), 3.61 (1H, overlapped, Hβ-2), 3.50 (2H, overlapped, H-4′, 5′), 3.45 (1H, d, 11.3, Hα-1), 3.41 (1H, d, 11.3, Ha-24), 3.35 (2H, overlapped, H-3″, 3‴), 3.28 (2H, overlapped, H-4‴, 5‴), 3.25 (1H, m, H-5″), 3.20 (1H, m, H-2″), 3.19 (1H, m, H-2‴), 3.13 (1H, br t, 9.3, H-4″), 2.83 (1H, dd, 13.7, 3.9, Hβ-18), 2.45 (1H, m, Hα-11), 2.08 (1H, m, Hβ-11), 2.00 (1H, m, Hα-16), 1.90 (1H, m, Hα-9), 1.85 (1H, m, Hβ-16), 1.73 (1H, m, Hα-15), 1.70 (1H, m, Hβ-19), 1.69 (1H, m, Hα-22), 1.62 (1H, m, Hβ-22), 1.53 (1H, m, Hβ-6), 1.48 (1H, m, Hα-6), 1.46 (1H, m, Hα-7), 1.41 (2H, overlapped, Hα-5, Hα-21), 1.35 (1H, m, Hβ-7), 1.21 (1H, m, Hβ-21), 1.17 (3H, s, Me-27), 1.14 (1H, m, Hα-19), 1.06 (3H, s, Me-23), 1.02 (1H, m, Hβ-15), 0.98 (3H, s, Me-25), 0.94 (3H, s, Me-30), 0.91 (3H, s, Me-29), 0.77 (3H, s, Me-26); 13C-NMR data δC: 178.2 (C-28), 144.0 (C-13), 124.7 (C-12), 104.7 (C-1‴), 103.7 (C-1″), 93.9 (C-1′), 81.2 (C-1), 78.7(C-3′), 78.2 (C-2′), 78.0 (C-3″, 5″, 3‴, 5‴), 77.8 (C-5′), 75.8 (C-2″), 75.2 (C-3, 2‴), 72.5 (C-4″), 71.7 (C-2), 71.5 (C-4‴), 70.7 (C-4′), 69.5 (C-6′), 65.7 (C-24), 63.7 (C-6″), 62.7 (C-6‴), 49.9 (C-9), 49.5 (C-5), 48.0 (C-17), 47.2 (C-19), 44.9 (C-4), 44.3 (C-10), 42.7 (C-14), 42.4 (C-18), 41.5 (C-8), 34.9 (C-21), 34.5 (C-7), 33.5 (C-29), 33.1 (C-22), 31.6 (C-20), 29.8 (C-15), 28.2 (C-11), 26.5 (C-27), 24.2 (C-30), 23.5 (C-16), 23.1 (C-23), 19.4 (C-6), 18.0 (C-26), 13.6 (C-25); HRMS (ESI) (positive) m/z 991.5103 [M + H]+ (calcd for C48H79O21, 991.5108); also see Supplementary Figures S28–S36.
3.4. Acid Hydrolysis, Acetylation, and GC Analysis of Compounds 1–4
3.5. Quantum Chemical Calculation of ECD Spectrum of 1
3.6. Reagents
3.7. Cell Culture and Cytotoxicity Test
3.8. Cytokines ELISA Assay
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhang, X.; Zhan, G.; Jin, M.; Zhang, H.; Dang, J.; Zhang, Y.; Guo, Z.; Ito, Y. Botany, traditional use, phytochemistry, pharmacology, quality control, and authentication of Radix Gentianae Macrophyllae-A traditional medicine: A review. Phytomedicine 2018, 46, 142–163. [Google Scholar] [PubMed]
- Yu, F.; Yu, F.; Li, R.; Wang, R. Inhibitory effects of the Gentiana macrophylla (Gentianaceae) extract on rheumatoid arthritis of rats. J. Ethnopharmacol. 2004, 95, 77–81. [Google Scholar]
- Jia, N.; Li, Y.; Wu, Y.; Xi, M.; Hur, G.; Zhang, X.; Cui, J.; Sun, W.; Wen, A. Comparison of the anti-inflammatory and analgesic effects of Gentiana macrophylla Pall. and Gentiana straminea Maxim., and identification of their active constituents. J. Ethnopharmacol. 2012, 144, 638–645. [Google Scholar] [PubMed]
- Huang, C.Y.; Hsu, T.C.; Kuo, W.W.; Liou, Y.F.; Lee, S.D.; Ju, D.T.; Kuo, C.H.; Tzang, B.S. The root extract of Gentiana macrophylla Pall. alleviates cardiac apoptosis in lupus prone mice. PLoS ONE 2015, 10, e0127440. [Google Scholar] [CrossRef]
- Gong, T.; Su, X.T.; Xia, Q.; Wang, J.G. Gentiana macrophylla Pall (Gentianaceae) extract exerts protective effects against osteoporosis in mice. Trop. J. Pharm. Res. 2018, 17, 429–434. [Google Scholar] [CrossRef]
- Sheu, M.J.; Chiu, C.C.; Yang, D.J.; Hsu, T.C.; Tzang, B.S. The root extract of Gentiana macrophylla Pall. alleviates B19-NS1-exacerbated liver injuries in NZB/W F1 mice. J. Med. Food 2017, 20, 56–64. [Google Scholar]
- Jiang, M.; Cui, B.W.; Wu, Y.L.; Nan, J.X.; Lian, L.H. Genus Gentiana: A review on phytochemistry, pharmacology and molecular mechanism. J. Ethnopharmacol. 2021, 264, 113391. [Google Scholar] [PubMed]
- Tan, R.X.; Wolfender, J.L.; Zhang, L.X.; Ma, W.G.; Fuzzati, N.; Marston, A.; Hostettmann, K. Acyl secoiridoids and antifungal constituents from Gentiana macrophylla. Phytochemistry 1996, 42, 1305–1313. [Google Scholar] [PubMed]
- Jiang, Z.B.; Liu, H.L.; Liu, X.Q.; Shang, J.N.; Zhao, J.R.; Yuan, C.S. Chemical constituents of Gentiana macrophylla Pall. Nat. Prod. Res. 2010, 24, 1365–1369. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K. New compounds from Siberian Gentiana species. I. Iridoid glycosides. Chem. Nat. Compd. 2021, 57, 673–680. [Google Scholar]
- Hu, W.; He, Y.; Yin, Y.; Yang, Y.; Fu, H.; Li, Z.; Yue, Z. Three rare furan derivatives transformed from secoiridoids were isolated from the roots of Gentiana macrophylla. Rec. Nat. Prod. 2022, 16, 651–656. [Google Scholar]
- Wu, W.; Ye, H.; Tang, M.; Peng, A.; Shi, J.; Li, S.; Zhong, S.; He, S.; Lai, H.; Zhao, J.; et al. Using high-performance counter-current chromatography combined with preparative high performance liquid chromatography for the separation of bioactive compounds from the water extract of Gentiana macrophylla Pall. Sep. Sci. Technol. 2012, 47, 762–768. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K. New compounds from Siberian Gentiana species. II. Xanthone and C,O-glycosylflavone. Chem. Nat. Comp. 2021, 57, 681–684. [Google Scholar] [CrossRef]
- Hou, S.B.; Wang, X.; Huang, R.; Liu, H.; Hu, H.M.; Hu, W.Y.; Lv, S.T.; Zhao, H.; Chen, G. Seven new chemical constituents from the roots of Gentiana macrophylla pall. Fitoterapia 2020, 141, 104476. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Sun, W.; Tu, G.; Shi, Z.; Zhang, Y. Chemical constituents of Gentiana macrophylla Pall. from Shaanxi. Nat. Prod. Comm. 2006, 1, 527–530. [Google Scholar] [CrossRef]
- Wu, L.H.; Bligh, S.W.A.; Leon, C.J.; Li, X.S.; Wang, Z.T.; Branford-White, C.J.; Simmonds, M.S.J. Chemotaxonomically significant roburic acid from Section Cruciata of Gentiana. Biochem. Syst. Ecol. 2012, 43, 152–155. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, Y.L.; Zhang, J.; Li, W.Y.; Wang, Y.Z. Phytochemistry and pharmacological activities of the genus Gentiana (Gentianaceae). Chem. Biodivers. 2016, 13, 107–150. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Hu, W.Y.; Hou, S.B.; Zhao, H.; Wang, X.; Chen, G. The chemical constituents of Gentiana macrophylla pall. under acidic condition using gentiopicroside-rich secoiridoids extract. Phytochem. Lett. 2020, 39, 30–34. [Google Scholar] [CrossRef]
- Wang, M.; Li, H.; Wang, Y.; Hao, Y.; Huang, Y.; Wang, X.; Lu, Y.; Du, Y.; Du, Y.; Fu, F.; et al. Anti-rheumatic properties of gentiopicroside are associated with suppression of ROS-NF-κB-NLRP3 axis in fibroblast-like synoviocytes and NF-κB pathway in adjuvant-induced arthritis. Front. Pharmacol. 2020, 11, 515. [Google Scholar] [CrossRef]
- Jia, N.; Wang, L.; Cui, J.; Zha, Y.; Ma, H.; Zhang, T.; Ding, Y.; Wang, J. Gentiopicroside attenuates collagen-induced arthritis in mice via modulating the CD147/p38/NF-κB pathway. Int. Immunopharmacol. 2022, 108, 108854. [Google Scholar] [CrossRef]
- Zhao, L.; Ye, J.; Wu, G.T.; Peng, X.J.; Xia, P.F.; Ren, Y. Gentiopicroside prevents interleukin-1 beta induced inflammation response in rat articular chondrocyte. J. Ethnopharmacol. 2015, 172, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Takano, F.; Hojo, H. Suppression of chemically and immunologically induced hepatic injuries by gentiopicroside in mice. Planta Med. 1994, 60, 414–416. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Z.; Zhang, L.; Yin, B.; Lv, L.; He, J.; Chen, Z.; Wen, X.; Qiao, B.; Sun, W.J.; et al. Protective effect of gentiopicroside from Gentiana macrophylla Pall. in ethanol-induced gastric mucosal injury in mice. Phytother. Res. 2018, 32, 259–266. [Google Scholar] [CrossRef]
- Deng, Y.T.; Wang, X.S.; Zhao, M.G.; Huang, X.X.; Xu, X.L. Gentiopicroside protects neurons from astrocyte-mediated inflammatory injuries by inhibition of nuclear factor-κB and mitogen-activated protein kinase signaling pathways. NeuroReport 2018, 29, 1114–1120. [Google Scholar]
- Yu, K.; Yi, X.; Ma, S.; Chen, Q.; Li, Z.; Ai, Y.; Chen, Q. A comparative transcriptomic with UPLC-Q-Exactive MS reveals differences in gene expression and components of iridoid biosynthesis in various parts of Gentiana macrophylla. Genes 2022, 13, 2372. [Google Scholar]
- Zhou, T.; Bai, G.; Bai, G.; Hu, Y.; Ruhsam, M.; Yang, Y.; Zhao, Y. De novo genome assembly of the medicinal plant Gentiana macrophylla provides insights into the genomic evolution and biosynthesis of iridoids. DNA Res. 2022, 29, dsac034. [Google Scholar] [CrossRef]
- Zhou, M.; Shen, S.; Zhao, X.; Gong, X. Luteoloside induces G0/G1 arrest and pro-death autophagy through the ROS-mediated AKT/mTOR/p70S6K signalling pathway in human non-small cell lung cancer cell lines. Biochem. Bioph. Res. 2017, 494, 263–269. [Google Scholar] [CrossRef]
- Xu, J.R.; Li, G.F.; Wang, J.Y.; Zhou, J.R.; Han, J. Gout prophylactic constituents from the flower buds of Lonicera japonica. Phytochem. Lett. 2016, 15, 98–102. [Google Scholar] [CrossRef]
- Zou, L.C.; Zhu, T.F.; Xiang, H.; Yu, L.; Yan, Z.H.; Gan, S.C.; Wang, D.C.; Zeng, S.; Deng, X.M. New secoiridoid glycosides from the roots of Picrorhiza scrophulariiflora. Molecules 2008, 13, 2049–2057. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Yang, C.R. Two triterpenoids from Gentiana tibetica. Phytochem. 1994, 36, 997–999. [Google Scholar]
- Lahlou, H.E.; Hirai, N.; Tsuda, M.; Ohigashi, H. Triterpene phytoalexins from nectarine fruits. Phytochemistry 1999, 52, 623–629. [Google Scholar] [CrossRef]
- Kojima, H.; Ogura, H. Configurational studies on hydroxy groups at C-2,3 and 23 or 24 of oleanene and ursene-type triterpenes by NMR spectroscopy. Phytochemistry 1989, 28, 1703–1710. [Google Scholar] [CrossRef]
- Takeda, Y.; Masuda, T.; Honda, G.; Takaishi, Y.; Ito, M.; Ashurmetov, O.A.; Khodzhimatov, O.K.; Otsuka, H. Secoiridoid glycosides from Gentiana olivieri. Chem. Pharm. Bull. 1999, 47, 1338–1340. [Google Scholar] [CrossRef]
- Mpondo, E.M.; Ghulia, A.J. 6′-O-β-d-Glucosyl gentiopicroside: A new secoiridoid from Gentiana asclepiadea. Planta Med. 1988, 54, 185–186. [Google Scholar] [CrossRef]
- Sunghwa, F.; Koketsu, M. Phenolic and bis-iridoid glycosides from Strychnos cocculoides. Nat. Prod. Res. 2009, 23, 1408–1415. [Google Scholar] [CrossRef]
- Lee, I.K.; Kim, M.A.; Lee, S.Y.; Hong, J.K.; Lee, J.H.; Lee, K.R. Phytochemical constituents of Schizonepeta tenuifolia Briquet. Nat. Prod. Sci. 2008, 14, 100–106. [Google Scholar] [CrossRef]
- Li, Y.; Jian, Y.; Xu, F.; Luo, Y.; Li, Z.; Ou, Y.; Wen, Y.; Jin, J.; Zhang, C.; Gan, L. Five new terpenoids from Viburnum odoratissimum var. sessiliflorum. Chin. J. Nat. Med. 2023, 21, 298–307. [Google Scholar] [CrossRef]
- Spartan 18; Wavefunction Inc.: Irvine, CA, USA, 2018.
- Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009.
- Stephens, P.J.; Harada, N. ECD cotton effect approximated by the Gaussian curve and other methods. Chirality 2010, 22, 229–233. [Google Scholar] [CrossRef]
No. | 1 | 2 | 3 | |||||
---|---|---|---|---|---|---|---|---|
δH | δC | δH | δC | δH | δC | |||
1 | - | 37.4 | 5.67 d (2.0) | 97.9 | 5.67 d (1.9) | 97.7 | ||
2 | α 2.08 d (16.8) β 2.44 d (16.8) | 48.5 | / | / | / | / | ||
3 | - | 202.1 | 7.32 s | 149.4 | 7.29 s | 149.4 | ||
4 | 5.90 s | 126.0 | - | 105.3 | - | 105.2 | ||
5 | - | 166.0 | - | 126.6 | - | 126.5 | ||
6 | 2.75 d (9.5) | 57.3 | 5.60 m | 118.1 | 5.55 m | 118.1 | ||
7 | 5.64 dd (15.5, 9.5) | 127.3 | 4.84 overlapped 4.95 overlapped | 70.6 | 4.71 overlapped 4.83 overlapped | 70.6 | ||
8 | 6.28 d (15.5) | 139.3 | 5.71 ddd (17.1, 10.3, 6.4) | 134.7 | 5.70 ddd (17.1, 10.4, 6.4) | 134.7 | ||
9 | - | 137.9 | 3.28 br d (6.4) | 46.4 | 3.27 br d (6.4) | 46.3 | ||
10 | 5.69 dd (7.3, 6.4) | 128.5 | a 5.16 br d (10.3) b 5.19 br d (17.1) | 118.3 | a 5.14 dd (10.4, 1.5) b 5.17 dd (17.1, 1.5) | 118.2 | ||
11 | a 4.35 dd (12.7, 7.3) b 4.51 dd (12.7, 6.4) | 66.6 | - | 166.0 | - | 165.8 | ||
12 | 1.82 s | 13.1 | / | / | / | / | ||
13 | 1.93 s | 23.8 | / | / | / | / | ||
14 | β 0.98 s | 27.5 | / | / | / | / | ||
15 | α 1.04 s | 28.11 | / | / | / | / | ||
1′ | 4.31 d (8.1) | 103.4 | 4.85 overlapped | 97.5 | 4.87 overlapped | 97.2 | ||
2′ | 3.19 m | 75.1 | 4.76 dd (9.0, 8.6) | 74.5 | 4.76 m | 74.6 | ||
3′ | 3.35 overlapped | 77.9 | 3.62 dd (9.1, 9.0) | 75.7 | 3.71 m | 75.5 | ||
4′ | 3.35 overlapped | 71.5 | 3.37 m | 71.7 | 3.38 m | 72.2 | ||
5′ | 3.45 m | 77.1 | 3.41 m | 78.6 | 3.78 m | 75.7 | ||
6′ | 3.79 dd (11.5, 5.8) 4.16 dd (11.5, 2.1) | 69.8 | 3.70 dd (11.8, 5.8) 3.93 br d (11.8) | 62.7 | 4.40 dd (11.8, 8.1) 4.57 dd (11.8, 2.1) | 64.8 | ||
6′-glucosyl | 2′-caffeoyl | 2′-caffeoyl | 6′-caffeoyl | |||||
1 | 4.39 d (7.8) | 104.9 | - | 127.6 | - | 130.8 | - | 131.2 |
2 | 3.22 m | 75.0 | 7.04 br s | 115.3 | 7.04 d (2.0) | 116.7 | 7.15 d (2.0) | 116.2 |
3 | 3.35 overlapped | 77.9 | - | 146.7 | - | 148.3 | - | 148.7 |
4 | 3.26 m | 71.6 | - | 149.7 | - | 148.7 | - | 149.2 |
5 | 3.28 m | 78.0 | 6.78 d (8.0) | 116.4 | 7.13 d (8.5) | 117.8 | 7.25 d (8.4) | 118.6 |
6 | 3.66 dd (11.9, 5.1) 3.87 dd (11.9, 1.8) | 62.8 | 6.94 br d (8.0) | 123.2 | 6.89 dd (8.5, 2.0) | 121.9 | 7.08 dd (8.4, 2.0) | 122.1 |
7 | / | / | 7.51 d (15.8) | 147.6 | 7.40 d (15.9) | 146.7 | 7.62 d (16.0) | 146.4 |
8 | / | / | 6.13 d (15.8) | 114.8 | 6.05 d (15.9) | 116.9 | 6.42 d (16.0) | 117.2 |
9 | / | / | - | 168.0 | - | 167.7 | - | 168.4 |
4″-glucosyl | 4″″-glucosyl | |||||||
1 | / | / | / | / | 4.88 overlapped | 103.0 | 4.89 overlapped | 103.9 |
2 | / | / | / | / | 3.56 overlapped | 74.8 | 3.56 overlapped | 74.8 |
3 | / | / | / | / | 3.52 overlapped | 77.5 | 3.52 overlapped | 77.5 |
4 | / | / | / | / | 3.44 m | 71.7 | 3.41 m | 71.7 |
5 | / | / | / | / | 3.49 overlapped | 78.4 | 3.49 overlapped | 78.5 |
6 | / | / | / | / | 3.73 overlapped 3.92 overlapped | 62.4 | 3.73 overlapped 3.92 overlapped | 62.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.-Q.; Luo, Y.-X.; Zhang, Y.-J.; Li, Z.-X.; Wen, Y.; Zhang, K.; Li, D.-L.; Jin, J.-W.; Wu, R.-H.; Gan, L.-S. Terpenoid Glucosides from Gentiana macrophylla That Attenuate TNF-α Induced Pulmonary Inflammation in A549 Cells. Molecules 2023, 28, 6613. https://doi.org/10.3390/molecules28186613
Huang P-Q, Luo Y-X, Zhang Y-J, Li Z-X, Wen Y, Zhang K, Li D-L, Jin J-W, Wu R-H, Gan L-S. Terpenoid Glucosides from Gentiana macrophylla That Attenuate TNF-α Induced Pulmonary Inflammation in A549 Cells. Molecules. 2023; 28(18):6613. https://doi.org/10.3390/molecules28186613
Chicago/Turabian StyleHuang, Pei-Qi, Yong-Xin Luo, Yu-Jia Zhang, Zhi-Xuan Li, Yan Wen, Kun Zhang, Dong-Li Li, Jing-Wei Jin, Ri-Hui Wu, and Li-She Gan. 2023. "Terpenoid Glucosides from Gentiana macrophylla That Attenuate TNF-α Induced Pulmonary Inflammation in A549 Cells" Molecules 28, no. 18: 6613. https://doi.org/10.3390/molecules28186613
APA StyleHuang, P. -Q., Luo, Y. -X., Zhang, Y. -J., Li, Z. -X., Wen, Y., Zhang, K., Li, D. -L., Jin, J. -W., Wu, R. -H., & Gan, L. -S. (2023). Terpenoid Glucosides from Gentiana macrophylla That Attenuate TNF-α Induced Pulmonary Inflammation in A549 Cells. Molecules, 28(18), 6613. https://doi.org/10.3390/molecules28186613