The Identity and Mineral Composition of Natural, Plant-Derived and Artificial Sweeteners
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identity of Sweeteners—Phase Analysis
2.2. Concentrations of Macroelements, Microelements, and Trace Elements
2.3. Statistical Analysis
2.4. Inter-Element Relationships
3. Materials and Methods
3.1. Samples and Reagents
3.2. Microwave-Assisted Closed-Vessel Wet Digestion
3.3. Measurements
3.4. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Britannica. Available online: https://www.britannica.com/topic/sweetener (accessed on 7 July 2023).
- World Health Organization. Guideline: Sugars Intake for Adults and Children; WHO: Geneva, Switzerland, 2015; Available online: https://www.who.int/publications/i/item/9789241549028 (accessed on 21 August 2023).
- Čad, E.M.; Tang, C.S.; de Jong, H.B.T.; Mars, M.; Appleton, K.M.; de Graaf, K. Study protocol of the sweet tooth study, randomized controlled trial with partial food provision on the effect of low, regular and high dietary sweetness exposure on sweetness preferences in Dutch adults. MC Public Health 2023, 23, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Mannan, H.; Saikaly, R.; Attieh, R.; Sacre, Y. Association of non-nutritive sweeteners intake with body weight, daily food consumption and appetite in an adult population. Clin. Nutr. Open Sci. 2023, 49, 67–76. [Google Scholar] [CrossRef]
- Li, S.; Li, K.; Yin, X.; Zhao, D.; Yu, K. Effect of non-nutritive sweeteners on body weight and composition: A systematic review and meta-analysis. Prog. Nutr. 2023, 25, e2023009. [Google Scholar] [CrossRef]
- Akturk, H.K.; Snell-Bergeon, J.; Karakus, K.E.; Shah, V.N. Assessing the relationship between low- calorie sweetener use and quality of life measures in adults with type 1 diabetes. BMC Endocr. Disord. 2023, 23, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Hasan, H.M.; Alkass, S.Y.; de Oliveira, D.S.P. Impact of Long-Term Cyclamate and Saccharin Consumption on Biochemical Parameters in Healthy Individuals and Type 2 Diabetes Mellitus Patients. Medicina 2023, 59, 698. [Google Scholar] [CrossRef]
- Ahmed, K.S.; Hasan, G.M.M.A.; Satter, M.A.; Sikdar, K. Making ice cream with natural sweetener stevia: Formulation and characteristics. Appl. Food Res. 2023, 3, 100309. [Google Scholar] [CrossRef]
- Mora, M.; Wijaya, F.; Jiang, G.; Gibney, P.; Dando, R. Sensory profiling of natural sweeteners and sucrose–sweetener binary mixtures. J. Food Sci. J. Food Sci. 2023, 88, 2984–2995. [Google Scholar] [CrossRef]
- Yu, X.; Yu, F.; Li, Z.; Shi, T.; Xia, Z.; Li, G. Occurrence, distribution, and ecological risk assessment of artificial sweeteners in surface and ground waters of the middle and lower reaches of the Yellow River (Henan section, China). Environ. Sci. Pollut. Res. 2023, 30, 52609–52623. [Google Scholar] [CrossRef]
- Kalaboka, M.; Sakkas, V. Magnetic Solid-Phase Extraction Based on Silica and Graphene Materials for Sensitive Analysis of Emerging Contaminants in Wastewater with the Aid of UHPLC-Orbitrap-MS. Molecules 2023, 28, 2277. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Cheiletzari, G.; Panagopoulou, E.I.; Thomaidis, N.S.; Mantzavinosa, D.; Frontistis, Z. Sonochemical degradation of the artificial sweetener acesulfame in aqueous medium and identification of transformation products. J. Water Process Eng. 2023, 53, 103890. [Google Scholar] [CrossRef]
- Schorb, S.; Gleiss, K.; Wedekind, R.; Suonio, E.; Kull, A.-K.; Kuntz, M.; Walch, S.G.; Lachenmeier, D.W. Assessment of Aspartame (E951) Occurrence in Selected Foods and Beverages on the German Market 2000–2022. Foods 2023, 12, 2156. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, D.; Yadav, V.; Maurya, S.K.; Tonk, R.K.; Kumar, D. Simple isocratic RP-UHPLC-MS methods for the determination of steviols and its glycosides: Quality control perspectives. Food Biosci. 2023, 53, 102686. [Google Scholar] [CrossRef]
- Chena, L.; Zhanga, Y.; Zhouc, Y.; Shid, D.; Feng, X.-S. Sweeteners in food samples: An update on pretreatment and analysis techniques since 2015. Food Chem. 2023, 408, 135248. [Google Scholar] [CrossRef] [PubMed]
- Pohl, P.; Stecka, H.; Jamroz, P. Solid phase extraction with flame atomic absorption spectrometry for determination of traces of Ca, K, Mg and Na in quality control of white sugar. Food Chem. 2012, 130, 441–446. [Google Scholar] [CrossRef]
- dos Santos, J.M.; de Andrade, J.K.; Galvão, F.; Felsner, M.L. Optimization and validation of ultrasound-assisted extraction for the determination of micro and macro minerals in non-centrifugal sugar by F AAS. Food Chem. 2019, 292, 66–74. [Google Scholar] [CrossRef]
- Soliman, K.; Zikovsky, L. Determination of Br, Ca, Cl, Co, Cu, I, K, Mg, Mn, Na, Rb, S, Ti and V in Cereals, Oils, Sweeteners and Vegetables Soldin Canada by Neutron Activation Analysis. J. Food Compos. Anal. 1999, 12, 85–89. [Google Scholar] [CrossRef]
- Tahboub, Y.R.; Al-Majeed Al-Ghzawi, A.A.; Al-Zayafdneh, S.S.; AlGhotani, M.S. Levels of trace elements and rare earth elements in honey from Jordan. Environ. Sci. Pollut. Res. 2022, 29, 11469–11480. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Blackburn, J.; Lada, R.R. A comparative physicochemical analysis of maple (Acer saccharum Marsh.) syrup produced in North America with special emphasis on seasonal changes in Nova Scotia maple syrup composition. J. Food Compos. Anal. 2020, 92, 103573. [Google Scholar] [CrossRef]
- Saraiva, A.; Carrascosa, C.; Ramos, F.; Raheem, D.; Raposo, A. Agave Syrup: Chemical Analysis and Nutritional Profile, Applications in the Food Industry and Health Impacts. Int. J. Environ. Res. Public Health 2022, 19, 7022. [Google Scholar] [CrossRef]
- Alves, V.; de Andrade, J.K.; Felsner, M.L. Green and fast ultrasound-assisted extraction procedures for Fe, Mn, Mg and Ca analysis in cane syrups by FAAS. J. Food Compos. Anal. 2023, 123, 105495. [Google Scholar] [CrossRef]
- Saengkrajang, W.; Chaijan, M.; Panpipat, W. Physicochemical properties and nutritional compositions of nipa palm (Nypa fruticans Wurmb) syrup. NFS J. 2021, 23, 58–65. [Google Scholar] [CrossRef]
- de Sousa, R.A.; Ribeiro, A.S.; Vieira, M.A.; Curtius, A.J.; Baccan, N.; Cadore, S. Determination of trace elements in liquid aspartame sweeteners by ICP OES and ICP-MS following acid digestion. Microchim. Acta 2007, 159, 241–246. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Martins, D.L.; Martins, M.L.; Villa, R.D. Determination of Na and K in Brazilian solid dietary sweeteners by flame photometry. Int. Food Res. J. 2016, 23, 2216–2219. [Google Scholar]
- The Recast Drinking Water Directive 2020. (Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption). Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 21 July 2023).
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; 2017 WHO Library Cataloguing-in-Publication Data; WHO: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 21 July 2023).
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006R1881 (accessed on 7 July 2023).
- Acceptable Daily Intake (ADI) of Sweeteners in the EU. Available online: https://ec.europa.eu/jrc/en/ (accessed on 7 July 2023).
- Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/ (accessed on 21 July 2023).
- Substances Added to Food (Formerly EAFUS). Available online: https://www.fda.gov/regulatory-information (accessed on 7 July 2023).
Product Element | S1 | PDS1 | PDS2 | PDS3 | AS1 | AS2 | AS3 | AS4 | CP1 | CP2 |
---|---|---|---|---|---|---|---|---|---|---|
Ag | 0.42 ± 0.05 | <5 ng·g−1 a | <5 ng·g−1 a | <5 ng·g−1 a | <5 ng·g−1 a | <5 ng·g−1 a | <5 ng·g−1 a | <5 ng·g−1 a | <5 ng·g−1 a | <5 ng·g−1 a |
Al | 1.80 ± 0.05 | 0.9 ± 0.1 | 1.5 ± 0.2 | 1.2 ± 0.1 | 1.0 ± 0.1 | 0.26 ± 0.03 | 0.31 ± 0.01 | 0.03 ± 0.01 | 0.66 ± 0.05 | 0.69 ± 0.04 |
B | 0.02 ± 0.00 | 1.0 ± 0.1 | 1.5 ± 0.1 | 4.2 ± 0.6 | 0.9 ± 0.4 | 0.87 ± 0.04 | 1.2 ± 0.3 | <0.3 µg/dm3 | 1.13 ± 0.04 | 1.12 ± 0.04 |
Ba | 0.61 ± 0.03 | 0.05 ± 0.02 | 0.52 ± 0.03 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.00 | 1.4 ± 0.3 | 0.14 ± 0.01 | 0.13 ± 0.02 | 0.07 ± 0.01 |
Bi | 4 ± 1 | <3 ng·g−1 a | <3 ng·g−1 a | <3 ng·g−1 a | <3 ng·g−1 a | <3 ng·g−1 a | <3 ng·g−1 a | <3 ng·g−1 a | 0.5± 0.1 | <3 ng·g−1 a |
Ca | <0.01 ng·g−1 a | 13 ± 4 | 15 ± 3 | 3.1 ± 0.4 | 7.0± 0.4 | 1.9 ± 0.6 | 40 ± 10 | 10.1 ± 0.8 | 30.2 ± 0.8 | 26 ± 2 |
Cd | <0.4 ng·g−1 a | <0.4 ng·g−1 a | <0.4 ng·g−1 a | <0.4 ng·g−1 a | <0.4 ng·g−1 a | <0.4 ng·g−1 a | <0.4 ng·g−1 a | <0.4 ng·g−1 a | 0.02 ± 0.00 | 0.01 ± 0.01 |
Co | 0.03 ± 0.01 | 0.02 ± 0.02 | 0.13 ± 0.03 | <0.8 ng·g−1 a | <0.8 ng·g−1 a | <0.8 ng·g−1 a | 0.11 ± 0.02 | 0.99 ± 0.03 | <0.8 ng·g−1 a | 0.10 ± 0.01 |
Cr | 0.08 ± 0.02 | <0.5 ng·g−1 a | 0.04 ± 0.01 | 0.18 ± 0.03 | 0.41 ± 0.01 | 0.02 ± 0.00 | <0.5 ng·g−1 a | 0.3 ± 0.2 | 0.09 ± 0.01 | 0.04 ± 0.01 |
Cu | 3.5 ± 1.1 | 0.06 ± 0.01 | 0.62 ± 0.01 | 0.06 ± 0.01 | 1.63 ± 0.05 | 0.13 ± 0.00 | <0.6 ng·g−1 a | 0.10 ± 0.01 | 0.20 ± 0.01 | 0.47 ± 0.09 |
Fe | 0.26 ± 0.01 | 1.3 ± 0.2 | 1.6 ± 0.5 | 1.8 ± 0.2 | 18 ± 2 | 0.85 ± 0.09 | 2 ± 1 | 28 ± 7 | 3.0 ± 0.4 | 1.7 ± 0.3 |
Mg | 0.04 ± 0.01 | 0.60 ± 0.08 | 490 ± 20 | 0.7 ± 0.1 | 0.7 ± 0.1 | <0.01 ng·g−1 a | 2.69 ± 0.03 | 1.8 ± 0.7 | 141 ± 3 | 75 ± 1 |
Mn | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.06 ± 0.01 | 0.02 ± 0.00 | 0.57 ± 0.04 | 1.6 ± 0.1 | 0.09 ± 0.01 | 0.05 ± 0.01 |
Mo | 0.39 ± 0.06 | <0.8 ng·g−1 a | <0.8 ng·g−1 a | <0.8 ng·g−1 a | <0.8 ng·g−1 a | <0.8 ng·g−1 a | <0.8 ng·g−1 a | <0.8 ng·g−1 a | <0.8 ng·g−1 a | <0.8 ng·g−1 a |
Ni | <1.3 ng·g−1 a | 0.6 ± 0.1 | 1.1 ± 0.3 | 0.17 ± 0.08 | 0.61 ± 0.09 | <1.3 ng·g−1 a | <1.3 ng·g−1 a | 0.55 ± 0.06 | 0.45 ± 0.06 | 0.6 ± 0.1 |
Pb | 0.02 ± 0.00 | 0.19 ± 0.01 | <3 ng·g−1 a | <3 ng·g−1 a | 0.48 ± 0.00 | 0.3 ± 0.1 | <3 ng·g−1 a | 3.5 ± 0.2 | 0.3 ± 0.1 | 0.38 ± 0.03 |
Sr | 0.05 ± 0.01 | 0.02 ± 0.00 | 0.30 ± 0.02 | 0.02 ± 0.01 | 0.03 ± 0.00 | 0.01 ± 0.00 | 0.22 ± 0.04 | 0.01 ± 0.00 | 0.09 ± 0.00 | 0.08 ± 0.00 |
Ti | <0.13 ng·g−1 a | 0.09 ± 0.01 | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.13 ± 0.01 | 0.02 ± 0.00 | 0.04 ± 0.01 | 0.02 ± 0.00 | 0.08 ± 0.01 | 0.06 ± 0.01 |
V | 0.17 ± 0.04 | <0.4 ng·g−1 a | <0.4 ng·g−1 a | <0.4 ng·g−1 a | <0.4 ng·g−1 a | 0.02 ± 0.00 | <0.4 ng·g−1 a | <0.4 ng·g−1 a | <0.4 ng·g−1 a | <0.4 ng·g−1 a |
Zn | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.26 ± 0.09 | 0.31 ± 0.06 | 0.6 ± 0.1 | 0.14 ± 0.03 | 1.73 ± 0.04 | 0.23 ± 0.01 | 0.42 ± 0.03 | 0.37 ± 0.02 |
Element | Content of Element (μg) in Sweetener Portion | Permissible Limits for Drinking Water According to EU [26] and WHO [27] | Maximum Level of Metal in Foodstuffs [28] (μg/g) | |||
---|---|---|---|---|---|---|
S1 Portion: 10 g | PDS1–PDS4 Portion: 14 g for PDS1 or 10 g | AS1–AS4 AS1: 2.8 g; AS2: 0.63 g; AS3: 0.49 g; AS4: 0.35 g | CP1–CP2 Portion: 10 g | |||
Cd | nd a | nd a | nd a | 0.04–0.22 | 0.005 mg/dm3 | 0.05 (meat, mussel meat of fish and vegetables)–1.0 (kidney, Bivalve mollusks, Cephalopods) |
Cr | 0.79 | 0.42–1.8 | 0.01–1.1 | 0.11–0.88 | 0.05 mg/dm3 | value not given |
Ni | nd a | 1.7–11 | 1.7 | 1.6–4.5 | 0.02 mg/dm3 | value not given |
Pb | 0.15 | 2.7 | 0.17–1.3 | 1.1–3.4 | 0.01 mg/dm3 | 0.020 (raw milk and infant formulae)–1.5 (Bivalve mollusks) |
Element | The Pairs of Sweeteners | Element | The Pairs of Sweeteners |
---|---|---|---|
Al | S1-PDS1, S1-AS3, S1-AS4, S1-CP1, S1-CP2; PDS2-AS2, PDS2-AS3, PDS2-AS4; | Mg | S1-PDS2, S1-CP1, S1-CP2; PDS1-PDS2, PDS1-CP1, PDS1-CP2; PDS2-AS1, PDS2-AS3, PDS2-AS4, PDS2-CP1, PDS2-CP2; PDS3-PDS2, PDS3-CP1, PDS3-CP2; AS3-CP1, AS3-CP2; AS4-CP1, AS4-CP2; CP1-CP2; |
B | S1-PDS3; PDS1-PDS3; PDS3-PDS2, PDS3-AS1; | Mn | S1-AS3, S1-AS4; PDS1-AS4; PDS2-AS4; PDS3-AS3; AS1-AS4; AS2-AS3, AS2-AS4; AS3-AS4; AS3-CP1, AS3-CP2; AS4-CP1, AS4-CP2; |
Ba | S1-PDS1, S1-AS1, S1-AS3; PDS2-AS1, PDS2-AS3, PDS2-CP2; AS1-AS3; AS2-AS3; AS3-AS4, AS3-CP1, AS3-CP2; | Ni | PDS2-PDS3; |
Bi | S1-CP1; | Pb | S1-AS4; PDS1-AS4; PDS3-AS4; AS1-AS4; AS2-AS4; AS4-CP1, AS4-CP2; |
Ca | AS1-AS3; AS2-AS3, AS2-CP1, AS2-CP2; AS3-AS4, | Sr | S1-PDS3, S1-AS3; PDS1-PDS3; PDS2-AS1, PDS2-AS2, PDS2-AS4, PDS2-CP1, PDS2-CP2; PDS3-PDS2, PDS3-AS3; AS1-AS3; AS2-AS3; AS3-AS4; AS3-CP1, AS3-CP2; |
Co | S1-AS4; PDS1-AS4; PDS2-AS4, AS3-AS4, | V | S1-AS2; |
Cr | S1-AS1; PDS2-AS1; PDS3-AS4; AS1-CP1, AS1-CP2; | Zn | S1-AS3; PDS2-AS3; PDS3-AS3; AS1-AS3; AS2-AS3; AS3-AS4; AS3-CP1, AS3-CP2; |
Fe | S1-AS1, S1-AS4; PDS1-AS1, PDS1-AS4; PDS2-AS1, PDS2-AS4; PDS3-AS1, PDS3-AS4; AS1-AS2, AS1-AS3, AS1-CP1, AS1-CP2; AS2-AS4; AS3-AS4; AS4-CP1, AS4-CP2; |
S1 | PDS1 | PDS2 | PDS3 | AS1 | AS2 | AS3 | AS4 | CP1 | CP2 | |
S1 | 1 | |||||||||
PDS1 | −0.073 | 1 | ||||||||
PDS2 | −0.180 | −0.038 | 1 | |||||||
PDS3 | −0.203 | 0.558 | −0.024 | 1 | ||||||
AS1 | −0.041 | 0.355 | −0.090 | 0.384 | 1 | |||||
AS2 | −0.118 | 0.892 | 0.896 | 0.832 | 0.577 | 1 | ||||
AS3 | −0.206 | 0.995 | −0.025 | 0.481 | 0.290 | 0.855 | 1 | |||
AS4 | −0.169 | 0.328 | −0.051 | 0.637 | 0.986 | 0.608 | 0.265 | 1 | ||
CP1 | −0.195 | 0.142 | 0.983 | 0.072 | −0.012 | 0.879 | 0.143 | 0.004 | 1 | |
CP2 | −0.160 | 0.274 | 0.953 | 0.138 | 0.025 | 0.872 | 0.282 | 0.045 | 0.992 | 1 |
Sample | Product | Common Name or European Code | Acceptable Daily Intake |
---|---|---|---|
S1 | Table sugar | Sucrose distilled from Sugar beets | |
PDS1 | Xylitol | E967 | quantum satis a |
PDS2 | Sorbitol | E420 | quantum satis a |
PDS3 | Erythritol | E968 | quantum satis a |
AS1 | Aspartame | E951 | 40 mg/kg bw/day [29,30] 50 mg/kg bw/day [31] |
AS2 | Potassium acesulfame | E950 | 9 mg/kg bw/day [29] 15 mg/kg bw/day [30,31] |
AS3 | Sodium cyclamate | E952 | 7 mg/kg bw/day [29] 11 mg/kg bw/day [30] prohibited [31] |
AS4 | Sodium saccharin | E954 | 5 mg/kg bw/day [29,30] 15 mg/kg bw/day [31] |
CP1 | Erythritol (PDS3) + Steviol glycosides | E968 + E960 | quantum satis a |
CP2 | Sorbitol (PDS2) + Aspartame (AS1) + Magnesium stearate | E420 + E951 + E572 | E951: 40 mg/kg bw [29,30] E420: quantum satis a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leśniewicz, A.; Wełna, M.; Szymczycha-Madeja, A.; Pohl, P. The Identity and Mineral Composition of Natural, Plant-Derived and Artificial Sweeteners. Molecules 2023, 28, 6618. https://doi.org/10.3390/molecules28186618
Leśniewicz A, Wełna M, Szymczycha-Madeja A, Pohl P. The Identity and Mineral Composition of Natural, Plant-Derived and Artificial Sweeteners. Molecules. 2023; 28(18):6618. https://doi.org/10.3390/molecules28186618
Chicago/Turabian StyleLeśniewicz, Anna, Maja Wełna, Anna Szymczycha-Madeja, and Paweł Pohl. 2023. "The Identity and Mineral Composition of Natural, Plant-Derived and Artificial Sweeteners" Molecules 28, no. 18: 6618. https://doi.org/10.3390/molecules28186618
APA StyleLeśniewicz, A., Wełna, M., Szymczycha-Madeja, A., & Pohl, P. (2023). The Identity and Mineral Composition of Natural, Plant-Derived and Artificial Sweeteners. Molecules, 28(18), 6618. https://doi.org/10.3390/molecules28186618