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Abstract: Based on an indirect competitive method, a novel nano-Au/fluticasone propionate elec-
trochemical immunosensor was successfully fabricated by combining the nanoscale effect, superior
conductivity of nano-Au, stable Au−S chemical bond as well as strong interaction between gluco-
corticoid and the receptor, which was used to simultaneously detect eight kinds of glucocorticoids.
The modified immunosensors’ electrochemical properties were explored by means of a cyclic voltam-
metry (CV) method and electrochemical impedance spectroscopy (EIS) measurements. Two factors
(glucocorticoid receptor concentration, incubation time) were studied in order to obtain the opti-
mal results. The immunosensor presents attractive electrochemical performance with a wide linear
range (between 0.1 and 1500 ng·mL−1) and low detection limit (between 0.057 and 0.357 ng·mL−1),
realizing the rapid multi-residue detection of a large class of glucocorticoids. Two glucocorticoids
(hydrocortisone, triamcinolone) were detected in actual skincare samples, which obtained satisfactory
detection results.

Keywords: multi-residue; detection; glucocorticoids; electrochemical immunosensor; receptor

1. Introduction

In 1948, American rheumatologists discovered the miraculous efficacy of hydrocorti-
sone in treating rheumatoid arthritis and won the Nobel Prize [1,2]. Since then, glucocorti-
coids have become one of the most effective immunosuppressive and anti-inflammatory
drugs in clinical practice [3,4]. Glucocorticoids are a class of steroid hormones secreted by
the fascicular zone of the adrenal cortex, binding with glucocorticoid receptors to form
hormone receptor complexes, which regulate the biosynthesis and metabolism of sugars,
fats, and proteins [5–7]. Glucocorticoids can inhibit fibroblast proliferation and reduce sero-
tonin formation, thus having a certain whitening effect on the skin [8,9]. Short-term use of
skincare cosmetics containing glucocorticoids can create a false appearance of smooth and
tender skin [10]. However, high-dose or long-term use may cause various adverse reactions,
such as Cushing’s syndrome [11], severe infection [12], osteoporosis [13], diabetes [14],
behavioral and cognitive changes, etc. [15,16]. For the sake of monitoring the content of
glucocorticoids in skincare cosmetics timely, and to forbid skincare cosmetics containing
the excessive glucocorticoids entering the consumer sector, it is crucial to explore novel
approaches for rapid multi-residue glucocorticoid detection on site.

Currently, the detection techniques for glucocorticoids include thin-layer chromatog-
raphy [17], high performance liquid chromatography (HPLC) [18,19], and HPLC tandem
mass spectrometry [20–23]. Thin-layer chromatography is not suitable for current rapid
quantitative detection of glucocorticoids. Chromatography is the main detection method
for glucocorticoids. However, the detection cost of chromatography is high, sample pre-
treatment is complex, and a large number of negative samples are repeatedly tested, which
is time-consuming and labor-intensive. Chromatographic instruments are expensive, and
limited professional testing institutions cannot meet the practical testing needs.

Molecules 2023, 28, 6619. https://doi.org/10.3390/molecules28186619 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28186619
https://doi.org/10.3390/molecules28186619
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules28186619
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28186619?type=check_update&version=1


Molecules 2023, 28, 6619 2 of 10

The electrochemical immunosensor is a rapidly developing detection technology in
recent years, which uses antigens or antibodies as biological recognition elements and elec-
trochemical detection systems as transducer devices [24,25]. It exhibits the high sensitivity
of electrochemical analysis as well as the high specificity of immune reactions, which also
has the advantages of low detection equipment cost, simple and fast operation, and is not
affected by sample color and turbidity [26]. The immunosensor can directly measure the
concentration of the target and is widely used for qualitative and quantitative analysis of
various substances in fields such as the environment, food, and clinical diagnosis [27–30].
Guo et al. proposed an aptamer–antibody sandwich sensor modified by carbon nanotubes
for detecting cortisol in human saliva [31]. Pan et al. devised an electrochemical–digital
sensor for glucocorticoid hormone detection in human saliva [32]. So far, electrochemical
immunosensor detection of glucocorticoids in skincare cosmetics has not been reported
in academic research at home and abroad. In this article, using an indirect competitive
method, the novel nano-Au/fluticasone propionate immunosensors were prepared by
combining nanotechnology, modification of electrode surface and biological immunity to
detect simultaneously eight kinds of glucocorticoids, which were applied to the detection
of glucocorticoids in actual skincare cosmetics.

2. Results and Discussion
2.1. Detection Principle of Nano-Au/Fluticasone Propionate Immunosensor

The multi-residue detection principle of the nano-Au/fluticasone propionate elec-
trochemical immunosensor was illustrated by Scheme 1. The incubation solution con-
taining the glucocorticoid and receptor were dropped onto the nano-Au/fluticasone pro-
pionate immunosensor. Glucocorticoids competed with fluticasone propionate on the
nano-Au/fluticasone propionate immunosensor to combine the receptor in the incubation
solution. The complex was formed between the glucocorticoid receptor and fluticasone
propionate on the immunosensor, resulting in the change of DPV. Furthermore, the binding
capacity of the receptor with fluticasone propionate on the immunosensor is inversely
proportional with that of glucocorticoid. Accordingly, in a certain range of concentration,
it displays a fine linear relationship between the difference of DPV peak current value
(∆I = Ix − I0, Ix represents the peak current value corresponding to different concentrations
of glucocorticoids, I0 represents the peak current value corresponding to the blank sample)
and the glucocorticoid.
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2.2. Electrochemical Characterization of Immunosensor

The CV describes the electrode modification process, showing in Figure 1A. The GCE
exhibits a pair of obvious redox peaks (curve a) in PBS solution. Because of excellent
conductivity for nano-Au, the electron transfer rate greatly increases, indicating that the
peak current for the nano-Au modified electrode (curve b) is significantly stronger than
that of the GCE. When fluticasone propionates were modified onto the surface, the curve c
decreased, showing that the electrode performance was affected to a certain extent. After
closure of the active site by mercaptohexanol, the peak current further decreased, because
the steric hindrance generated by mercaptohexanol hindered the electron transfer (curve
d). The formation of the complex between fluticasone propionate and receptor results
in the peak current value (curve e) being lower than that of GCE/nano-Au/fluticasone
propionate/mercaptohexanol, indicating that the receptor has bound to the surface of
GCE/nano-Au/fluticasone propionate/mercaptohexanol.
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the electron exchange resistance Ret typically decreased (curve b) when nano-Au was 

Figure 1. (A) CV curves with the modified electrode: (a) GCE; (b) GCE/nano−Au; (c) GCE/nano−
Au/fluticasone propionate; (d) GCE/nano−Au/fluticasone propionate/mercaptohexanol;
(e) GCE/nano−Au/fluticasone propionate/mercaptohexanol/glucocorticoid receptor. (B) EIS curves
of modified electrode: (a) GCE; (b) GCE/nano−Au; (c) GCE/nano−Au/fluticasone propionate;
(d) GCE/nano−Au/fluticasone propionate/mercaptohexanol; (e) GCE/nano−Au/fluticasone
propionate/mercaptohexanol/glucocorticoid receptor.

Figure 1B describes the characterization results of EIS for the modified electrode in
each stage. According to Figure 1B, due to the excellent charge transfer ability of nano-Au,
the electron exchange resistance Ret typically decreased (curve b) when nano-Au was
modified on GCE (curve a), which corresponded well with the results of CV analysis.
After applying fluticasone propionate to the nano-Au modified electrode, Ret increased
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noticeably (curve c) due to the non-conductivity of small molecules, implying that the
influence of molecules on the properties of electrode is considerable. Then, the active site
is closed by mercaptohexanol, and Ret increases significantly (curve d), because the steric
hindrance of mercaptohexanol hinders the electron transfer rate. This illustrates the fact
that the active sites exist on the modified electrode, which is not occupied by fluticasone
propionate. Due to the specific binding of the receptor with fluticasone propionate on the
electrode, the steric hindrance is further increased, resulting in a further increase in Ret
(curve e).

2.3. Optimization of Condition

To achieve the optimal detection effect, the glucocorticoid receptor concentration and
incubation time were investigated, shown in Figure 2. According to Figure 2A, as the
receptor concentration increased, the peak current of DPV gradually reduced. While the
concentration of the glucocorticoid receptor was 10 µg·mL−1, the peak current reached
the minimum. Meanwhile, exceeding 10 µg·mL−1, there was a slight increase, indicating
that the glucocorticoid receptor was saturated. Therefore, 10 µg·mL−1 was chosen as the
appropriate concentration for the receptor.
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From Figure 2B, from 5 to 30 min, the binding amount of the receptor with fluticasone
propionate increased. At the same time, the peak current of DPV decreased quickly. At
30 min, DPV curve tended to reach its lowest point, then increased, meaning that the
binding amount of receptor and fluticasone propionate reached saturation at 30 min.
Therefore, 30 min was chosen as the optimal time.

2.4. DPV Detection of Glucocorticoids

Eight kinds of glucocorticoids, including hydrocortisone, triamcinolone, prednisolone,
fluticasone propionate, triamcinolone acetonide, dexamethasone, clobetasol 17-propionate,
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and cortisone were detected by the nano-Au/fluticasone propionate immunosensor. Figure 3
describes the superposition curves of DPV. From Figure 3, when the immunosensor was
inserted into the incubation solution containing the glucocorticoid and receptor, the value of
the DPV peak current constantly decreased, the reason being that the complex was formed
between the glucocorticoid in solution and receptor. The more complex is generated, the
more significant the hindrance effect is, and the lower the peak current of DPV. According to
the same concentration, the DPV response sequence for the detection of glucocorticoids was
clobetasol 17-propionate > triamcinolone acetonide > prednisolone > fluticasone propionate
> cortisone > hydrocortisone > triamcinolone > dexamethasone. The higher concentration
of glucocorticoids, the larger peak current value of DPV.
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Figure 3. DPV of (a) hydrocortisone, (b) triamcinolone, (c) prednisolone, (d) fluticasone propionate,
(e) triamcinolone acetonide, (f) dexamethasone, (g) clobetasol 17-propionate, and (h) cortisone
detection by nano−Au/fluticasone propionate electrochemical immunosensor: from top to bottom,
1500, 1300, 950, 700, 550, 200, 90, 50, 10, 1 and 0 ng·mL−1.

Table 1 represents the comparison of detection results of eight glucocorticoids. As
demonstrated in Table 1, the dexamethasone and cobetasol 17-propionate exhibit the maxi-
mum and minimum slopes, respectively. The correlation coefficients are all higher than
0.9938. The detection limit and linear range for the glucocorticoids are 0.057~0.357 ng·mL−1

and 0.1~1500 ng·mL−1, respectively, compared with the previous glucocorticoids detec-
tion by different methods, for example, immunochromatographic assay (detection limit
10 ng·mL−1) [33], UHPLC-Q-Orbitrap HRMS (detection limit 1.0 ng·mL−1) [34], and SFOD-
LPME (detection limit 0.39~0.46 ng·mL−1) [18], verifying that the nano-Au/fluticasone
propionate electrochemical immunosensor displays wonderful detection performance
(wider linear range, lower detection limit), ascribing to the nanoscale effect and attractive
conductivity of nano-Au. Additionally, it facilitates the immobilization of fluticasone propi-
onate by Au−S chemical bonds and improves a large number of receptors to firmly adsorb
on the surface of the modified electrode through strong immunization between receptor
and fluticasone propionate.

Table 1. Detection results of eight glucocorticoids.

Detection Object Linear Relationship Correlation
Coefficient

Linear Range
(ng·mL−1)

Detection Limit
(ng·mL−1)

Fluticasone propionate Y = 0.0161X + 11.2106 R = 0.9938

0.1~1500

0.221
Hydrocortisone Y = 0.0157X + 18.3992 R = 0.9955 0.072

Triamcinolone acetonide Y = 0.0160X + 17.9102 R = 0.9946 0.296
Cobetasol 17-propionate Y = 0.0155X + 15.5987 R = 0.9957 0.156

Prednisolone Y = 0.0164X + 14.2092 R = 0.9954 0.357
Cortisone Y = 0.0171X + 13.3632 R = 0.9967 0.091

Dexamethasone Y = 0.0173X + 12.2203 R = 0.9963 0.057
Triamcinolone Y = 0.0167X + 16.5602 R = 0.9952 0.278

2.5. Stability and Repeatability

The prepared electrochemical immunosensors were placed in a constant temperature
drying oven at 37 ◦C for 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days,
9 days and 10 days, respectively, and then performed multi-residue detection of gluco-
corticoids. It was found that among the detection results of 10 different electrodes for
clobetasol 17-propionate, for the linear relationship’ slope, the standard deviation was
3.6%, indicating that the stability for the electrochemical immunosensor was superior to
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detect the glucocorticoids. In order to verify the repeatability of the nano-Au/fluticasone
propionate immunosensor, three different concentrations of clobetasol 17-propionate were
detected by seven different electrodes. The standard deviation of the measured values
was 2.8%~6.5%, which indicates that the electrochemical immunosensor can be reused,
remarkably increasing the practical application of the immunosensor.

2.6. Detection of Actual Samples

Three samples 1 or 2 were chosen (45 ± 0.005 g each) and placed in three beakers. The
hydrocortisone/triamcinolone standard solution and extraction solution were added suc-
cessively to the beakers, which was concentrated to 2 mL, then dried, and an 8 mL ethanol
solution (v/v = 1:1) was added. For investigating the multi-residue detection performance
of the nano-Au/fluticasone propionate immunosensor in actual samples, by standard
addition recovery experiments, two glucocorticoids (hydrocortisone, triamcinolone) were
opted for the detection targets with high, medium and low concentrations. As shown in
Tables 2 and 3, RSD (relative standard deviation) was within 6%. Furthermore, the aver-
age recovery was between 92.77%~104.52%, achieving the recovery standard, suggesting
that glucocorticoids can be effectively detected by the nano-Au/fluticasone propionate
electrochemical immunosensor.

Table 2. Detection of hydrocortisone in skincare sample 1.

Amount Added
(ng·mL−1)

Actual Concentration
(ng·mL−1) Recovery (%) Average Recovery (%) RSD (%)

100
95.78 95.78

92.77 3.3289.63 89.63
92.91 92.91

400
409.66 102.42

102.00 2.56417.53 104.38
396.78 99.20

1000
936.82 93.68

94.20 3.66978.71 97.87
910.40 91.04

Table 3. Detection of triamcinolone in skincare sample 2.

Amount Added
(ng·mL−1)

Actual Concentration
(ng·mL−1) Recovery (%) Average Recovery (%) RSD (%)

100
110.39 110.39

103.88 5.70102.45 102.45
98.80 98.80

400
407.12 101.78

104.52 2.31425.43 106.36
421.67 105.42

1000
950.32 95.03

93.08 2.13931.50 93.15
910.70 91.07

3. Experimental Section
3.1. Materials and Instruments

Cortisone, hydrocortisone, dexamethasone, triamcinolone, prednisolone, triamci-
nolone, fluticasone propionate and clobetasol 17-propionate were purchased from Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China). Potassium ferricyanide, potassium
dihydrogen phosphate and mercaptohexanol were obtained from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Glucocorticoid receptor and two skincare products
were bought from Shandong Yishuang Technology Development Co., Ltd. (Jinan, China).
and a local supermarket, respectively. The immunosensor’s electrochemical performance
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was measured by a CHI600E electrochemical workstation, which was purchased from
Chenhua Apparatus Co., Ltd. (Shanghai, China).

3.2. Preparation of Nano-Au/Fluticasone Propionate Immunosensor

A glass carbon electrode (GCE) with a diameter of 3 mm was used for the preparation
of the immunosensor. The GCE was cleaned before each experiment. The pretreated GCE
was inserted into a 100 mg·mL−1 chloroauric acid solution. The nano-Au was covered on
the GCE by the electrochemical precipitation method (voltage: −0.2 V, deposition time:
60 s). This modified electrode was washed and dried at 20 ◦C. Next, 15 µL 0.1 M fluticasone
propionate was dropped onto the surface of the modified electrode, which was incubated at
37 ◦C for 2 h. The modified electrode was incubated in 100 mg·mL−1 of mercaptohexanol
for 40 min in order to block the active sites. Eventually, the nano-Au/fluticasone propionate
immunosensor was constructed by washing the electrode with a PBS solution.

3.3. Characterization

The electrochemical properties were characterized through CV and EIS, including GCE,
GCE/nano-Au, GCE/nano-Au/fluticasone propionate, GCE/nano-Au/fluticasone propionate/
mercaptohexanol, GCE/nano-Au/fluticasone propionate/mercaptohexanol/glucocorticoid
receptor. The CV diagram was evaluated with a potential scanning range (between
−0.2 and 0.8 V) and scanning rate (100 mv·s−1). The EIS curve was measured with the
scanning frequency (between 0.1 and 105 Hz) and pulse amplitude (5 mV) in a 0.1 M KCl
and 5 mM K3[Fe(CN)6] solution.

3.4. Optimization of Condition

The glucocorticoid receptor concentration and incubation time were explored to detect
glucocorticoids by a nano-Au/fluticasone propionate electrochemical immunosensor under
optimal conditions at 37 ◦C.

Optimizing the glucocorticoid receptor concentration in incubation solution: Different
concentrations of glucocorticoid receptor in PBS incubation solution were prepared and
coated on nano-Au/fluticasone propionate electrochemical immunosensors. After incu-
bation at 37 ◦C for 40 min, the nano-Au/fluticasone propionate-modified electrode was
washed three times and analyzed by DPV (differential pulse voltammetry), which was
determined by a three-electrode system on an electrochemical workstation.

Optimizing the incubation time: A 15 µL mixed incubation solution (glucocorticoid
receptor and PBS) was coated on the nano-Au/fluticasone propionate electrochemical
immunosensor. The DPV was monitored every 5 min.

3.5. Glucocorticoids Detection

To investigate multi-residue detection properties, the nano-Au/fluticasone propionate
electrochemical immunosensors were applied to the quantitative DPV detection of eight
glucocorticoids standard solutions. Based on the optimal glucocorticoid receptor concen-
tration and incubation time, different concentrations of glucocorticoid solutions (15 µL, the
ratio of glucocorticoid receptor to PBS is 4:1) were dropped onto the nano-Au/fluticasone
propionate immunosensors. After incubation, the nano-Au/fluticasone propionate electro-
chemical immunosensor was washed by PBS and put it into a PBS buffer solution (0.1 M,
pH 7.4) of 2 mM K3[Fe(CN)6]/K2[Fe(CN)6]. The DPV diagram was evaluated with the
potential scanning range (between -0.2 and 0.5 V) and pulse amplitude (50 mV).

4. Conclusions

In this work, the rapid multi-residue detection of eight kinds of glucocorticoids with
an indirect competitive immunoassay was achieved by the prepared nano-Au/fluticasone
propionate electrochemical immunosensor on the basis of the nanoscale effect, superior
conductivity of nano-Au, strong Au−S bond and specific immune effects between the
glucocorticoid and receptor. During the incubation process, the optimal glucocorticoid
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receptor concentration and incubation time are 10 µg·mL−1 and 30 min, respectively. The
peak current of DPV decreases with the decrease in the concentration of glucocorticoids.
This is because that the complex is formed between glucocorticoid and receptor, hindering
the transfer of electrons on the modified electrode surface. The nano-Au/fluticasone propi-
onate immunosensor shows favorable performance (wider linear range: 0.1~1500 ng·mL−1;
lower detection limit: 0.057~0.357 ng·mL−1; fine correlation coefficient: 0.9938~0.9967) as
well as preferable stability and repeatability, which can be attributed to the novel design
concept. The average recovery and RSD of hydrocortisone/triamcinolone detection in ac-
tual skincare samples were carried out, suggesting considerable potential in multi-residue
detection of environmental and cosmetic safety.
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