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Abstract: In this paper, a series of porous hierarchical Mg/Al layered double hydroxides (named as
LDH, TTAC-MgAl-LDH, CTAC-MgAl-LDH, and OTAC-MgAl-LDH) was synthesized by a simple
green hydrothermal method using wormlike micelles formed by salicylic acid and surfactants with
different carbon chain lengths (0, 14, 16, and 18) as soft templates. BET, XRD, FTIR, TG, and SEM
characterizations were carried out in order to investigate the structure and properties of the prepared
materials. The results showed that the porous hierarchical CTAC-MgAl-LDH had a large specific
surface area and multiple pore size distributions which could effectively increase the reaction area
and allow better absorption capability. Benefiting from the unique architecture, CTAC-MgAl-LDH
exhibited a large adsorption capacity for sulfonated lignite (231.70 mg/g) at 25 ◦C and a pH of 7, which
outperformed the traditional LDH (86.05 mg/g), TTAC-MgAl-LDH (108.15 mg/g), and OTAC-MgAl-
LDH (110.51 mg/g). The adsorption process of sulfonated lignite followed the pseudo-second-order
kinetics model and conformed the Freundlich isotherm model with spontaneous heat absorption,
which revealed that electrostatic adsorption and ion exchange were the main mechanisms of action
for the adsorption. In addition, CTAC-MgAl-LDH showed a satisfactory long-time stability and its
adsorption capacities were still as high as 198.64 mg/g after two adsorption cycles.

Keywords: porous LDH; sulfonated lignite; adsorption reaction

1. Introduction

Sulfonated lignite (SL) is produced by introducing sulfonic acid group SO3H into
condensed aromatic rings and aliphatic side chains of coal following sulfonation with
concentrated sulfuric acid [1,2]. As its low viscosity and great dispersibility, SL is employed
in petroleum exploration as a filtrate reduction, viscosity reducer, and pressure-reducing
agent [3–5]. During the oil recovery process of deep shale, however, a large amount
of highly concentrated and difficult-to-degrade drilling fluid wastewater containing sul-
fonated lignite macromolecules will be generated, causing deterioration of ecosystems as
well as water quality and easily reacting with chlorine used in water treatment to produce
carcinogens [6–11]. There are many methods to treat drilling wastewater, such as Fenton
oxidation, the gravity separation method, the membrane separation method, the floccu-
lation method, the salting-out method, the activated sludge method, the biological filter
method, and peroxydisulfate oxidation [12–20]. However, most of them have shortcomings
such as non-renewable raw materials, high operating costs, and incomplete treatment of
pollutants. Therefore, finding an effective method to treat SL in drilling fluid wastewater is
crucial to the protection of water resources.
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Layered double hydroxides (LDHs) are anionic clay minerals with thermal stability,
ion exchange properties, memory effects, and acid–base dual properties [21–23]. Yao et al.
used G-LDH prepared by the hydrothermal method to achieve efficient removal of MO
from wastewater by ion exchange [24]. Despite showing satisfactory results in the field
of water treatment, traditional LDHs are prone to agglomeration after calcination under
high temperatures, leading to their poor dispersion and consequently poor performance in
removing pollutions in oilfield wastewater. To solve the above problems, the preparation of
LDHs with porous structures is highly desirable. Different chemical and physicochemical
methods have been employed to prepare diversified porous adsorption materials. The tem-
plate synthesis, which uses either hard templates or soft templates, is the most commonly
used method [25–27]. However, hard template requires a multistep synthetic process and
gives low-product yield [28]. Utilizing soft template is promising due to its simple and
effective control of the morphology and size of the synthesized material by the choice of
template agent [29]. Studies have shown that surfactants and organic counterions (such
as salicylic acid) usually self-assemble into a series of wormlike micelles, which built a
delicate large porous structure so as to give great potential to prepare ordered porous
materials [30,31].

In this work, porous MgAl-LDH was prepared under a hydrothermal condition by
employing worm-like micelles derived from trimethyl ammonium chloride with different
carbon chain lengths (tetradecyl trimethyl ammonium chloride, cetyl trimethyl ammonium
chloride, and octadecyl trimethyl ammonium chloride). Highly efficient adsorption perfor-
mance was expected over this porous material and adsorbent conditions, parameters that
may affect the adsorption, including pH, and the adsorbent dosage were evaluated. Both
kinetic and equilibrium isotherm models were applied to establish the rate of adsorption
and the adsorption capacity. Furthermore, the comparative characterizations of CTAC-
MgAl-LDH before and after adsorption were well conducted to explore the corresponding
adsorption mechanism towards SL.

2. Results and Discussion
2.1. Structural Characterization of Porous MgAl-LDH

Figure 1 shows XRD patterns of the sample synthesized by a 3:1 mole ratio of Mg/Al
at 160 ◦C for 6 h. The 2θ peaks located at 11.60◦, 23.50◦, 34.90◦, 39.50◦, 47.00◦, 60.90◦, and
62.10◦ are ascribed to the diffractions of basal planes of (003), (006), (012), (015), (110), (018),
and (113) of LDH materials [32]. It can be indicated that the surfactants with different
carbon chain lengths can all induce the orderly deposition of metal salt solutions, resulting
in the preparation of LDH materials with good and layered structures. In addition, CTAC-
MgAl-LDH, with a carbon chain length of 16, showed the lowest diffraction peak at (006),
(012), (015), and (118) compared to other MgAl-LDHs, indicating that the micelle-templated
hydrotalcite prepared with CTAC as surfactant had the best dispersion, which was favorable
to enhance the adsorption activity of CTAC-MgAl-LDH to SL. This observation is consistent
with the superior adsorption performance exhibited by CTAC-MgAl-LDH with a carbon
chain length of 16, as mentioned later in the text.

The surface properties (such as specific surface area and pore-size distribution) are
important factors of adsorbent; N2-adsorption/desorption measurements (Figure 2a) are
performed over traditional hydrotalcite (LDH) and templated hydrotalcite. All samples
displayed a type IV isotherm with H4 hysteresis loops and a type IV isotherm with H3
hysteresis loops, indicating the presence of mesopores. In addition, CTAC-MgAl-LDH had
a large hysteresis loop and showed a significant adsorption slope at higher adsorption
pressures (p > 0.8), which was attributed to the improved adsorption–desorption capacity
of the material due to the macroporous structure. This is further verified by the pore size
distribution curve (Figure 2b). As can be seen from the graph, CTAC-MgAl-LDH exhibited
a wide size distribution (5–80 nm) and was mainly concentrated between 5 and 20 nm,
indicating that the sample was composed of hierarchical porous materials with mesopores
and macropores [33].
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The BET surface area, pore volume, and pore diameter of the relative samples deter-
mined via N2-adsorption/desorption measurements are listed in Table 1. Compared to
LDH, the introduction of a micelle template significantly increased the specific surface area.
The enhancement was particularly prominent in CTAB-MgAl-LDH, with an increase from
19.21 to 174.24 m2/g. An increase in pore size was observed for CTAC-MgAl-LDH from
2.42 to 4.72 nm. In addition, the macropore volume of CTAC-MgAl-LDH was found to be
increased to 0.20 cm3/g which indicates that the macropores structure after adding micelle
template provided a high adsorption potential for SL.
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Table 1. BET surface area, pore volume, and pore diameter of LDH.

Sample The Specific
Area/m2·g−1

Pore Volume/
cm3·g−1 Pore Diameter/nm

LDH 19.21 0.12 2.42
TTAC-MgAl-LDH 134.55 0.19 2.16
CTAC-MgAl-LDH 174.24 0.20 4.72
OTAC-MgAl-LDH 112.81 0.19 1.63

FTIR spectra of samples were performed to analyze the chemical structure. Figure 3
presents the FTIR spectra of LDH and CTAC-MgAl-LDH. The broad and strong absorption
peak observed at 3452 cm−1 was assigned to the stretching vibration of the O-H groups
in the hydroxide layer and the water molecules. The absorption bands at 1355 cm−1 were
attributed to the asymmetric stretching vibration of C-O, indicating the existence of the
carbonate anion in the MgAl-LDH [34]. And the absorption peaks at 500 cm−1 to 900 cm−1

are related to metal–oxygen and metal–hydroxyl vibrations in the hydrotalcite lattice.
Compared with LDH spectra, CTAC-MgAl-LDH showed two small and narrow peaks
at 2920 and 2851 cm−1, which were attributed to CH3 asymmetric and CH2-symmetric
stretching vibrations carried by the surfactant, indicating a good interaction between
micelles and hydrotalcite [35].
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Figure 3. FTIR spectra of MgAl-LDH prepared by different methods.

Thermal analysis experiments were employed to characterize the thermal stability of
the as-prepared LDH and CTAC-MgAl-LDH. It can be observed from the Figure 4 that
two weight loss steps both exist in LDH and CTAC-MgAl-LDH. The first step from room
temperature to approximately 240 ◦C corresponded to the removal of physisorbed water,
interlayer water, and the dehydroxylation of the LDH layers. The second weight loss
step in the temperature range from 240 to 600 ◦C was due to the dehydroxylation of the
hydrotalcite layers accompanied by the decomposition of interlayer carbonate anions [36].
The micellar template weakens the interaction of interlayer anions with the laminate,
making it easier to achieve the mutual exchange of anions. This is illustrated by the higher
weight loss of the CTAC-MgAl-LDH carbonate anion (47.15%) compared to LDH (43.67%)
at 600 ◦C.
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2.2. Adsorption Performance

Sulfonated lignite was chosen as the target contaminant to study the adsorption behav-
ior of as-prepared samples. Under the conditions of 25 ◦C, an initial pH of 7, an adsorbent
dosage of 0.40 g/L, and a sulfonated lignite initial concentration of 100 mg/L, the adsorp-
tion performance of adsorbent prepared by surfactants with different carbon chain lengths
is shown in Figure 5. From the result, it can be seen that the prepared hydrotalcite derived
from the micellar template had a significantly better removal efficiency of sulfonated lignite
with increasing the carbon chain length from 0 to 16. The best removal efficiency was found
over 16 carbon chain lengths with the adsorption capacities of 231.70 mg/g. However,
when the carbon chain length of surfactant with 18 was introduced, the adsorption capacity
and removal rate decreased to 110.51 mg/g and 44%, respectively. It should be due to
the increasing viscosity of the surfactant with increasing carbon chain length, causing the
agglomeration of OTAC-MgAl-LDH and poor dispersion of samples suggested as the result
of XRD [37].
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The adsorbent dosage is of great significance to the adsorption process of sulfonated
lignite. In the research, the effect of adsorbent dosage was analyzed by performing the
adsorption tests with varying amounts (0.20 to 1.00 g/L) of adsorbent at an initial SL
concentration of 100 mg/L, a reaction temperature of 25 ◦C, and an initial pH of 7 of
the solution. It can be seen from Figure 6 that as the amount of adsorbent increased, the
equilibrium adsorption capacity obviously decreased with removal efficiency and reached
a maximum value of 88.4% when the adsorbent dosage was 0.40 g/L. This trend was
expected because higher dosages of adsorbent might cause greater availability of surface
area and exchangeable binding sites. However, it was found that the removal rate was
basically unchanged, even after increasing the amount of adsorbent due to the saturation
adsorption of CTAC-MgAl-LDH [38].

Molecules 2023, 28, x FOR PEER REVIEW 6 of 19 
 

 

 

Figure 5. Effect of carbon chain length on sulfonated lignite adsorption. 

The adsorbent dosage is of great significance to the adsorption process of sulfonated 

lignite. In the research, the effect of adsorbent dosage was analyzed by performing the 

adsorption tests with varying amounts (0.20 to 1.00 g/L) of adsorbent at an initial SL 

concentration of 100 mg/L, a reaction temperature of 25 °C, and an initial pH of 7 of the 

solution. It can be seen from Figure 6 that as the amount of adsorbent increased, the 

equilibrium adsorption capacity obviously decreased with removal efficiency and 

reached a maximum value of 88.4% when the adsorbent dosage was 0.40 g/L. This trend 

was expected because higher dosages of adsorbent might cause greater availability of 

surface area and exchangeable binding sites. However, it was found that the removal rate 

was basically unchanged, even after increasing the amount of adsorbent due to the 

saturation adsorption of CTAC-MgAl-LDH [38]. 

 

Figure 6. The effect of adsorbent dosage on SL adsorption for CTAC-MgAl-LDH. 

The pH of the solution is acknowledged as one of the important factors that affect 

the adsorption performance of the adsorbent. It may considerably affect the degree of 

ionization, surface charge, and protonation of the functional groups of the adsorbent [39]. 

Figure 6. The effect of adsorbent dosage on SL adsorption for CTAC-MgAl-LDH.

The pH of the solution is acknowledged as one of the important factors that affect
the adsorption performance of the adsorbent. It may considerably affect the degree of
ionization, surface charge, and protonation of the functional groups of the adsorbent [39].
Therefore, the effect of solution pH on SL adsorption performance over CTAC-MgAl-LDH
was evaluated with an initial pH ranging from 3 to 11 at an initial SL concentration of
100 mg/L, an adsorbent dosage of 0.40 g/L, and a temperature of 25 ◦C. It is evident
from Figure 7 that the adsorption of SL by CTAC-MgAl-LDH occurs more easily under
acidic conditions because a large amount of H+ is attached to the surface of hydrotalcite
under acidic conditions and it is easy to generate electrostatic gravitational force with the
negatively charged sulfonic acid ions to promote the adsorption. Furthermore, the decrease
in removal cannot be avoided when the pH of solution increased up to 11 due to a large
amount of negatively charged OH− and sulfonic acid ions giving a competitive adsorption
effect [40].



Molecules 2023, 28, 6638 7 of 18

Molecules 2023, 28, x FOR PEER REVIEW 7 of 19 
 

 

Therefore, the effect of solution pH on SL adsorption performance over 

CTAC-MgAl-LDH was evaluated with an initial pH ranging from 3 to 11 at an initial SL 

concentration of 100 mg/L, an adsorbent dosage of 0.40 g/L, and a temperature of 25 °C. It 

is evident from Figure 7 that the adsorption of SL by CTAC-MgAl-LDH occurs more 

easily under acidic conditions because a large amount of H+ is attached to the surface of 

hydrotalcite under acidic conditions and it is easy to generate electrostatic gravitational 

force with the negatively charged sulfonic acid ions to promote the adsorption. 

Furthermore, the decrease in removal cannot be avoided when the pH of solution 

increased up to 11 due to a large amount of negatively charged OH− and sulfonic acid 

ions giving a competitive adsorption effect [40]. 

 

Figure 7. Effect of initial solution pH on SL adsorption using CTAC-MgAl-LDH. 

2.3. Adsorption Kinetics Study 

The adsorption kinetics illustrates the pollutants adsorption rate and eventually 

explores the mechanism of adsorption and the rate limiting steps involved. The effects of 

contact time of CTAC-MgAl-LDH and SL on the adsorption property were investigated 

by performing experiments at different SL concentrations (100 and 200 mg/L) and 

varying contact times at 25 °C and pH 7. As shown in Figure 8, at low initial 

concentration (100 mg/L), the adsorption capacity can reach up to 350 mg/L during the 

first 90 min due to the abundance of adsorption sites on the adsorbent surface. After a 

period of time, the remaining empty adsorption sites are difficult to be occupied due to 

the repulsive forces between the sulfonated lignite molecules and the bulk phase [41], 

resulting in a low adsorption rate until equilibrium is reached. Different adsorption time 

was required to reach equilibrium at different initial SL concentrations. The equilibrium 

times of 120 and 350 min corresponded to the initial concentrations of 100 and 200 mg/L, 

which indicates that the higher SL concentration, the longer time needed to reach 

equilibrium [42]. 

Figure 7. Effect of initial solution pH on SL adsorption using CTAC-MgAl-LDH.

2.3. Adsorption Kinetics Study

The adsorption kinetics illustrates the pollutants adsorption rate and eventually ex-
plores the mechanism of adsorption and the rate limiting steps involved. The effects of
contact time of CTAC-MgAl-LDH and SL on the adsorption property were investigated
by performing experiments at different SL concentrations (100 and 200 mg/L) and vary-
ing contact times at 25 ◦C and pH 7. As shown in Figure 8, at low initial concentration
(100 mg/L), the adsorption capacity can reach up to 350 mg/L during the first 90 min
due to the abundance of adsorption sites on the adsorbent surface. After a period of time,
the remaining empty adsorption sites are difficult to be occupied due to the repulsive
forces between the sulfonated lignite molecules and the bulk phase [41], resulting in a low
adsorption rate until equilibrium is reached. Different adsorption time was required to
reach equilibrium at different initial SL concentrations. The equilibrium times of 120 and
350 min corresponded to the initial concentrations of 100 and 200 mg/L, which indicates
that the higher SL concentration, the longer time needed to reach equilibrium [42].
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To investigate the adsorption process of SL on CTAC-MgAl-LDH, the pseudo-first-
order, pseudo-second-order, intraparticle diffusion, and liquid film diffusion models were
used to fit the experimental results and the corresponding equations are specified as follows:

ln(qe − qt) = ln qe − k1t (1)

t
qt

=
1

k2qe2 +
1
qe

t (2)

qt = kpt1/2 + C (3)

ln
(

1 − qt

qe

)
= −K f dt (4)

In the given equations, k1 and k2 represent the rate constants (min−1 and g/(mg·min),
respectively) for the respective kinetic models. The constant kp corresponds to the rate of
ion diffusion (mg/(g·min0.5)) while C is a constant related to the thickness of the boundary
layer (mg/g). Additionally, Kfd denotes the rate constant for liquid film diffusion (h−1).

The fitting isotherm and kinetic parameters obtained by the linear regression are
shown in Figure 9 and Table 2, respectively. From the results, it can be seen that the
correlation coefficient (R2) obtained from the pseudo-second-order kinetic model (R2 was in
the range of 0.996–0.998) was higher than that obtained from the pseudo-first-order kinetic
model (R2 was in the range of 0.906–0.917). Furthermore, the equilibrium adsorption values
calculated by the second order model (qe,cal) matched well with experimental adsorption
results (qe,exp), which further confirmed that the kinetics of adsorption by CTAC-MgAl-LDH
for the SL was best described by the pseudo-second-order model, which indicated that
the rate controlling mechanism for adsorption was chemisorption caused by the electron
exchange or sharing between the adsorbate and adsorbent [43]. In addition, it was found
that the linear fitting correlation coefficient of the intra-particle diffusion model could reach
up to 0.998 while the linear fitting correlation coefficient of the liquid diffusion model was
between 0.901 and 0.906, thus indicating that the intra-particle diffusion model was the
main rate control step of adsorption.

Table 2. Parameters of the four dynamics models.

Kinetic Model Parameter
Concentration/mg·L−1

100 200

Pseudo-first-order
qe,cal/mg/g model 98.87 618.19

k1 h−1 0.02 0.02
R2 0.906 0.917

Pseudo-second-order

qe,cal/mg/g model 240.38 473.93
qe,exp/mg/g experimol/Lent 222.46 438.77

k2/g/m·gh 0.000022 0.00007
R2 0.996 0.998

Intra particle
diffusion

ki1/mg/gh1/2 21.02 9.92
R1

2 0.998 0.906
ki2/mg/gh1/2 0.42 3.53

R2
2 0.860 0.917

Liquid film diffusion Kfd/h−1 0.021 0.02
R2 0.906 0.901
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2.4. Adsorption Isotherm

Adsorption isotherm studies usually describe the equilibrium adsorption behavior at
constant temperatures [44]. This study analyzes the experimental data by employing the
Langmuir, Freundlich, and Dubinin–Redushckevich models. The fitting relationships of
these models can be observed in Equations (5)–(7), respectively.

ce

qe
=

ce

qm
+

1
b

qm (5)

lgqe = lgK f +
1
n

lgce (6)

ln qe = ln qmax − βε2

ε = RT ln
(

1 + 1
ce

)
E =

(
1

2β

)1/2
(7)

where b is a constant, Kf is associated with the relationship between water hydrotalcite and
sulfonated lignite, n is a constant related to the adsorption strength, and when n > 1, the
adsorption reaction is more favorable. β is the activity constant (mol2/kJ2), ε represents the
Polanyi potential, and E corresponds to the average free energy (kJ/mol).

The aforementioned isothermal models fitted based on experimental data are shown
in Figure 10 and the corresponding adsorption isothermal parameters are shown in Table 3.
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R2, obtained by the Freundlich isotherm model, is greater than 0.998 and that by the
Langmuir adsorption isotherm model is between 0.879–0.952. These values indicate that the
adsorption process of the adsorbent conforms to the Freundlich isotherm model. Therefore,
the adsorption process was dominated by reversible adsorption with a different affinity and
belonged to multilayer adsorption [45]. The values of n (1.08 and 1.14 at 298.15 and 303.15 K)
for the best-fit Freundlich model were greater than 1, indicating that the adsorption process
of sulfonated lignite proceeded easily. The values of activation energy calculated in the
D–R model were 170.20 and 219.00 J/mol at 298.15 K and 303.15 K, which are both less
than 8 kJ/mol, indicating that electrostatic gravity is the main force in the adsorption
process [46].
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Table 3. Isothermal model parameters of SL adsorption by CTAC-MgAl-LDH.

Models Parameter
Temperature

298.15 K 303.15 K

Langmuir
qm/mg/g 3839.51 2368.04
b/mg/L 47,209.02 34,439.21

R2 0.879 0.952

Freundlich
Kf/mg/g 14.18 18.30

n 1.08 1.14
R2 0.998 0.998

D-R

qm/mg/g 403.97 396.47
β/mol2/kJ2 17.26 10.42

R2 0.870 0.879
E/J/mol 170.20 219.00

2.5. Thermodynamic Study of Adsorption

To confirm the nature of the adsorption process, experimental data for SL adsorption
under equilibrium at different temperatures were used to evaluate the thermodynamic
parameters. The fitting isotherms are shown in Figure 11 and the calculated parameters
are summarized in Table 4. It can be found that the standard Gibbs free energy change
value (∆G) at different temperatures is negative, indicating that the adsorption process
can be carried out spontaneously. The positive value of standard enthalpy change (∆H)
can demonstrate that the adsorption process is an endothermic process. Therefore, an
appropriate temperature increase is beneficial for promoting the adsorption of SL by CTAC-
MgAl-LDH, which was consistent with the experimental results of temperature effects.
Simultaneously, the positive value of standard entropy change (∆S) of adsorption reflects
that the process of adsorption is an entropy-increasing process [47].
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2.6. Regeneration of Adsorbent

To be an economical and effective adsorbent in the oilfield wastewater treatment
process, an adsorbent that could be easily regenerated and reused is crucially important
and extremely welcome [48]. Adsorbent regeneration is the process of reproducing the
adsorbent that has been used in the adsorption process. In the experiment, a NaOH solution
was used to study the regeneration of the CTAC-MgAl-LDH. At room temperature, the
CTAC-MgAl-LDH with saturated adsorption was immersed in an aqueous solution with a
pH of 13 and stirred for 12 h to achieve the desorption process, which was the adsorbent
for primary regeneration after repeated washing. The regeneration performance of the
CTAC-MgAl-LDH was investigated when the initial concentration of the sulfonated lignite
was 200 mg/L at 25 ◦C and a pH of 7. It can be seen from the result of Figure 12 that
after two cycles of regeneration, the adsorption capacity of the hierarchical MgAl-LDH on
SL slightly decreased from 226.27 to 198.64 mg/g, reflecting the potential for practicality
of prepared CTAC-MgAl-LDH. The decrease in adsorption affinity can be attributed to
the loss of adsorbent during the adsorption cycle and the incomplete desorption of some
adsorption sites of SL on the CTAC-MgAl-LDH surface.
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2.7. Characterization of CTAC-MgAl-LDH before and after Adsorption

Figure 13 shows the XRD plots of CTAC-MgAl-LDH before and after adsorption, from
which it can be seen that the adsorbent still has the characteristic crystalline of MgAl-LDH
after the adsorption of organic pollutants. Furthermore, since the regeneration of the
adsorbent required desorption under alkaline conditions, the diffraction peaks at 32.20◦

and 43.40◦ were assigned to the (200) and (220) crystal planes of NaCl generated by the
combination of Na+ in NaOH and Cl− in CTAC. It can be inferred that the adsorption
process is mainly the anion exchange between the hydrotalcite layers. It can also be seen
that the adsorption of organic matter between the hydrotalcite layers during the adsorption
process destroys its ordered lamellar structure to a certain extent, which leads to a decrease
in the intensity of the hydrotalcite characteristic diffraction peaks.
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Figure 13. The XRD patterns of CTAC-MgAl-LDH before and after adsorption.

CTAC-MgAl-LDH after adsorption of SL was characterized by FTIR (Figure 14) mea-
surements. It can be seen that the similarity of frequency bands before and after adsorption
indicated that the functional groups such as CH3 asymmetry, CH2-symmetric stretching
vibration, and metal–oxygen and metal–hydroxy vibration of the adsorbed material were
well maintained. Compared with CTAC-MgAl-LDH, after interaction with water contain-
ing SL, the sample showed an asymmetric stretching vibration of O=S=O at 1118 cm−1

and a C=C stretching vibration from a benzene ring skeleton in aromatic conditions at
1577 cm−1, indicating that the SL was adsorbed on the surface of CTAC-MgAl-LDH. In
addition, the stretching vibration band of O-H shifts from 3446 cm−1 to 3452 cm−1, which
is associated with the coordination bond formed by hydroxyl and carboxyl groups in
sulfonated lignite and hydroxyl groups in CTAC-MgAl-LDH [49]. Since regeneration of
the adsorbent required desorption under alkaline conditions, the diffraction peaks at 32.2◦

and 43.4◦ were assigned to the (200) and (220) crystal planes of NaCl generated by the
combination of Na+ in NaOH and Cl− in CTAC.
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Figure 15 shows scanning electron micrographs of porous hydrotalcite (CTAC-MgAl-
LDH) prepared under hydrothermal conditions before and after adsorption. As can be
seen from Figure 15a, the CTAC-MgAl-LDH before adsorption not only has the hexagonal
lamellar structure of conventional hydrotalcite but also has a three-dimensional flower-like
structure formed in the presence of surfactants. The hexagonal morphology of LDH still
remained after adsorption (Figure 15b) and indeed even agglomeration occurred to some
extent, which indicates that the layered structure is destroyed.
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2.8. Adsorption Mechanism of Hierarchical MgAl-LDH

Based on experimental and characterization results, both physisorption and chemisorp-
tion existed in the SL adsorption of CTAC-MgAl-LDH. The initial stage of adsorption is
dominated by physical adsorption while chemisorption plays a dominant role in the middle
and late stages of adsorption. The sulfonated lignite molecules decompose into sulfonate
ions (R-SO3

−) after dissolving in the solution, as shown in Figure 16. Then, R-SO3
− were

attracted by cations (Mg2+, Al3+) in the interlayer CTAC-MgAl-LDH due to the electrostatic
force. Subsequently, ion exchange occurs between R-SO3

− adsorbed on the surface of
CTAC-MgAl-LDH and CO3

2− in LDH layers, which effectively reduces the remaining
concentration of sulfonated lignite in the water column. This is consistent with the results
of adsorption kinetic studies and adsorption isotherm studies [50].
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3. Materials and Methods
3.1. Materials

All chemicals including trimethyl tetradecyl ammonium chloride (TTAC), cetyl trimethyl
ammonium chloride (CTAC), octadecyl trimethyl ammonium chloride (OTAC), salicylic
acid (SA), Mg (NO3)2·6H2O, Al (NO3)3·9H2O, urea, sodium hydroxide (NaOH), hydrochlo-
ric acid (HCl), and absolute ethanol were of analytical grade without any further purifica-
tion and supplied from Xi’an Chemical Reagent Factory (Xi’an, China). Sulfonated lignite
was purchased from Tarim, Xinjiang, China. In addition, deionized water was used to
formulate the solution.

3.2. Preparation of Porous MgAl-LDH

Hierarchical porous MgAl-LDH was prepared by hydrothermal method using micelles
as soft templates. Firstly, 0.69 g of salicylic acid and 3.64 g of CTAC were dispersed into
100 mL of distilled water and stirred at 60 ◦C for 60 min to obtain a micelle solution.
Then, Mg (NO3)2·6H2O and Al (NO3)3·9H2O with a molar ratio of 3:1:10 were dissolved
in 100 mL of distilled water to obtain a metal salt solution. Subsequently, the metal salt
solution was slowly added into the micelle under stirring to ensure they were fully mixed.
Next, the formed suspension was transferred to an autoclave and the sealed container was
then placed in the roller heating furnace at 160 ◦C for 6 h. Finally, the obtained precipitate
was washed with deionized water and ethanol by centrifugation until the solution reached
a pH of 7 and subsequently dried at 80 ◦C overnight. The obtained sample was labeled as
CTAC-MgAl-LDH and the porous hydrotalcites with surfactants TTAC and OTAC were
prepared by the same method as TTAC-MgAl-LDH and OTAC-MgAl-LDH, respectively.
For comparison, the traditional MgAl-LDH in the absence of surfactant solution was
prepared and designated as LDH.

3.3. Characterization of Materials

The phase structures of samples were characterized by an X-ray diffractometer (JDX-
3530, Tokyo, Japan) with Cu Kα radiation and a scanning speed of 2 ◦ min−1 at a 40 kV
voltage and a 40 mA current. All IR measurements were performed on a Nicolet 5700 FTIR
spectrometer (Thermo Electron Co., Waltham, MA, USA) at room temperature in the region
of 4000–500 cm−1. The surface area and pore structure were calculated using the BET
method and the Barrett–Joyner–Halenda (BJH) model, respectively. Thermogravimetric
(TG) analysis was investigated using a TGA/SDTA 851 thermal analyzer from 25 ◦C to
800 ◦C under an inert nitrogen atmosphere at a heating ratio of 10 ◦C·min−1. Scanning
electron microscopy (SEM) images were captured using a field-emission scanning electron
microscope (JSM-6390A).

3.4. Adsorption Experiments

In this typical adsorption experiment process, 0.04 g of adsorbent was added to 100 mL
of a sulfonated lignite solution with an initial concentration of 100 mg/L. The mixtures were
placed in a magnetic stirrer at room temperature and the sulfonated lignite concentration
was determined by UV–vis spectrophotometry at the wavelength maximum absorbance of
300 nm. In the adsorption kinetics study, 0.04 g of adsorbent was added to a 250 mL beaker
containing 100 mL sulfonated lignite solutions with 100 and 200 mg/L concentrations,
respectively. In the adsorption isotherm experiment, 0.08 g of adsorbent was added to 50 mL
of sulfonated lignite solutions with concentrations of 100, 200, 300, 400, and 500 mg/L,
respectively. Adsorption thermodynamic analysis was carried out by adding 0.08 g of
adsorbent to 50 mL of a sulfonated lignite solution (200 mg/L) at 298.15 and 303.15 K. The
adsorption capacity (qt) at any given time and at equilibrium was calculated according to
the following equation:

qt =
(C0 − Ct)× V

m
(8)
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where C0 (mg/L) and Ct (mg/L) are the initial and equilibrium concentrations (mg/L) of
sulfonated lignite, respectively; V (L) is the volume of solution; and m (g) is the mass of
the adsorbent.

4. Conclusions

In summary, LDH, TTAC-MgAl-LDH, CTAC-MgAl-LDH, and OTAC-MgAl-LDH were
synthesized through a hydrothermal method using micelles as templates. The samples
showed the best removal efficiency of SL at a carbon chain length of 16 (CTAC-MgAl-LDH)
with adsorption capacities of 231.70 mg/g. The lower removal rate for samples with a
carbon chain length less than 16 (LDH, TTAC-MgAl-LDH) was due to the inability of
the micellar template and the salt solution to form an optimal three-dimensional network
structure. For carbon chain lengths greater than 16 (OTAC-MgAl-LDH), excessive mi-
celle viscosity makes the prepared samples poorly dispersed, which in turn affects their
adsorption performance. The as-obtained CTAC-MgAl-LDH gives a very high surface
area, porous hierarchical structure, and excellent dispersity, resulting in promoting the
efficient exchange of interlayer anions of CTAC-MgAl-LDH with R-SO3

− of SL. Research on
adsorption kinetics and isotherms indicated that the adsorption process followed pseudo-
second-order kinetics and Fredich isotherm models, respectively, and therefore belongs to
multi-layer chemisorption. Consequently, CTAC-MgAl-LDH exhibits superior adsorba-
bility and excellent reusability in the adsorption of SL macromolecules. It is expected that
the porous hierarchical CTAC-MgAl-LDH synthesized in this work is promising in the
treatment of oilfield pollutants.
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