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Abstract: In fungi, the methylcitrate cycle converts cytotoxic propionyl-coenzyme A (CoA) to pyru-
vate, which enters gluconeogenesis. The glyoxylate cycle converts acetyl-CoA to succinate, which
enters gluconeogenesis. The tricarboxylic acid cycle is a central carbon metabolic pathway that
connects the methylcitrate cycle, the glyoxylate cycle, and other metabolisms for lipids, carbohy-
drates, and amino acids. Fungal citrate synthase and 2-methylcitrate synthase as well as isocitrate
lyase and 2-methylisocitrate lyase, each evolved from a common ancestral protein. Impairment
of the methylcitrate cycle leads to the accumulation of toxic intermediates such as propionyl-CoA,
2-methylcitrate, and 2-methylisocitrate in fungal cells, which in turn inhibits the activity of many
enzymes such as dehydrogenases and remodels cellular carbon metabolic processes. The methylci-
trate cycle and the glyoxylate cycle synergistically regulate carbon source utilization as well as fungal
growth, development, and pathogenic process in pathogenic fungi.

Keywords: acetyl-CoA; citrate synthase; growth; isocitrate lyase; 2-methylcitrate synthase; 2-methylisocitrate
lyase; propionyl-CoA; virulence

1. Introduction

Propionyl-CoA is an intermediate metabolite produced by organisms during metabolism,
which is toxic to cells [1]. Propionate, amino acids (isoleucine, methionine, threonine, and
valine), thymine, and odd chain fatty acids are catabolized to yield propionyl-CoA [2,3].
Propionate is the second most abundant organic acid naturally occurring in soil. Propionate
inhibits the growth of microorganisms and is used as a common food preservative [4].
Four amino acids (isoleucine, methionine, threonine, and valine) account for about 15% of
amino acid abundance in proteins of various environmental microorganisms [5]. Propionyl-
CoA is also produced by cholesterol via side chain oxidation. After propionyl-CoA is
produced, organisms have three pathways to catabolize propionyl-CoA. In animals and
some bacteria, the methylmalonyl-CoA pathway is a pathway that metabolizes propionyl-
CoA [3]. Propionyl-CoA is sequentially converted to methylmalonyl-CoA, succinyl-CoA,
and malate, which is then metabolized to acetyl-CoA and glyoxylate [6]. Another propionyl-
CoA metabolic pathway is the methylcitrate cycle present in fungi and some bacteria [7,8].
In the pathogenic fungus Candida albicans, Otzen et al. proposed a third propionyl-CoA
metabolic pathway that propionyl-CoA is metabolized via a modified β-oxidation path-
way [9]. In this β-oxidation pathway, propionyl-CoA is sequentially converted to acrylyl-
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CoA, 3-hydroxypropionyl-CoA, 3-hydroxypropionate, and malonate semialdehyde, which
is then metabolized to acetyl-CoA or acetate [9].

Fungi metabolize acetyl-CoA through the methylcitrate cycle. The methylcitrate cycle
shares several metabolic steps with the tricarboxylic acid (TCA) cycle and the glyoxy-
late pathway (Figure 1). The TCA cycle is the central pathway of carbon metabolism
in all organisms. The glyoxylate cycle is the link between lipid and ketogenic amino
acid catabolism and gluconeogenesis pathways in fungi and plants. In the methylcitrate
cycle, 2-methylcitrate synthase (Mcs) catalyzes propionyl-CoA and oxaloacetate to pro-
duce 2-methylcitrate. Then, 2-methylcitrate is converted to 2-methyl-cis-aconitate and
2-methylisocitrate sequentially by 2-methylcitrate dehydratase (Mcd) and aconitase (Acn).
Next, 2-methylisocitrate lyase (Mcl) catalyzes 2-methylisocitrate to cleave into pyruvate
and succinate [7]. Pyruvate and succinate then enter the TCA cycle, gluconeogenesis and
other metabolic pathways [10]. In some bacteria, propionyl-CoA is also metabolized by the
methylcitrate cycle [11].
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metabolites such as propionyl-CoA in 2-methylcitrate synthase-deficient mutants, 2-
methylcitrate in 2-methylcitrate dehydratase-deficient mutants, and 2-methylisocitrate in 
2-methylisocitrate lyase-deficient mutants, which are cytotoxic to cells. Excessive 
accumulation of these products will inhibit the activity of various dehydrogenases in cells, 
thereby inhibiting cell growth [1,12]. The growth of the methylcitrate cycle-deficient 
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Figure 1. The methylcitrate cycle and its linkage with the TCA and glyoxylate cycles in fungi. Acl,
ATP citrate lyase; Acn, aconitase; Aco, aconitase; Agt, alanine, glyoxylate aminotransferase; Cit, citrate
synthase; CoaT, CoA-transferase; Fum, fumarase; Icl, isocitrate lyase; Idh, isocitrate dehydrogenase;
Kgd, α-ketoglutarate dehydrogenase; Mcd, 2-methylcitrate dehydratase; Mcl, 2-methylisocitrate lyase;
Mcs, 2-methylcitrate synthase; Mls, malate synthase; Mdh, malate dehydrogenase; Pcl, propionate-
CoA ligase; Pdh, pyruvate dehydrogenase; Pyc, Pyruvate carboxylase; Sdh, succinate dehydrogenase;
Sucl, Succinyl-CoA ligase (succinyl-CoA synthetase).

2. Function of Methylcitrate Cycle in Pathogenic Fungi
2.1. Carbon and Nitrogen Source Utilization and Mycelial Growth

The methylcitrate cycle is an important pathway of carbon metabolism in organisms.
Interruption of the methylcitrate cycle leads to the accumulation of intermediate metabolites
such as propionyl-CoA in 2-methylcitrate synthase-deficient mutants, 2-methylcitrate in
2-methylcitrate dehydratase-deficient mutants, and 2-methylisocitrate in 2-methylisocitrate
lyase-deficient mutants, which are cytotoxic to cells. Excessive accumulation of these
products will inhibit the activity of various dehydrogenases in cells, thereby inhibiting
cell growth [1,12]. The growth of the methylcitrate cycle-deficient mutants is severely
inhibited in carbon and nitrogen sources that are metabolized to produce propionyl-CoA di-
rectly. Knock-out mutants of the gene encoding 2-methylcitrate synthase, such as ∆Momcs1



Molecules 2023, 28, 6667 3 of 13

of Magnaporthe oryzae [13], ∆AfmcsA of Aspergillus fumigatus [14], and ∆AnmcsA of As-
pergillus nidulans [10], failed to grow on media with propionate as the sole carbon source.
A 2-methylcitrate dehydratase encoding gene deletion mutant, ∆Tmmcd of Talaromyces
marneffei [15], and knock-out mutants of 2-methylisocitrate lyase encoding genes, including
∆Momcl1 of M. oryzae [13], ∆Gzmcl1 of Gibberella zeae [16], ∆AnmclA of A. nidulans [17],
and ∆Tamcl of Trichoderma atroviride (a biocontrol fungus) [18], were also unable to grow
on media with propionate as the sole carbon source. Valerate, isoleucine, threonine, va-
line, methionine, or cholesterol are metabolized to produce propionyl-CoA. ∆Tmmcd grew
slowly on media using valerate, valine, methionine, isoleucine, or cholesterol as the carbon
source [15]. ∆AfmcsA colony growth was inhibited when valine, isoleucine, or methionine
was used as the nitrogen source [14]. ∆Momcl1 did not grow or grew very slowly on media
using threonine, isoleucine, valine or methionine as the sole amino acids [13]. Growth of
∆Momcs1 was also slowed on media using isoleucine, valine, or methionine as the sole
nitrogen source [13]. In glycerol, glucose, or acetate media, the addition of propionate
inhibited the growth of ∆AnmcsA, ∆AnmclA, and ∆AfmcsA more severely than the wild
type [10,14,17].

Growth of most methylcitrate cycle-deficient mutants is also inhibited in media us-
ing carbon and nitrogen sources that did not directly produce propionyl-CoA. Mutants
∆Momcs1, ∆Momcl1, ∆Tamcl, and ∆Gzmcl1 grew slowly when glucose was used as the
carbon source [13,16,18]. ∆Momcl1 grew slowly on media using glutamic acid (not pro-
ducing propionyl-CoA) or inorganic nitrogen NaNO3 as a nitrogen source [13]. ∆Tamcl
also grew slowly on PDA medium or media with acetate and ethanol (C2), pyruvate
(C3), butyrate (C4), citrate (C6), Tween 20 (C58), N-acetylglucosamine (NAG), or chitin
as the sole carbon source [18]. However, ∆Gzmcl1 grew normally in acetate, Tween 60,
and linoleic acid media [16]. ∆Momcl1 also grew normally when olive oil was the sole
carbon source [13]. This is because the glucose metabolism, lipid metabolism, amino
acid metabolism and nucleotide metabolism in cells will normally produce endogenous
propionyl-CoA. However, the phenotypes of the methylcitrate cycle-deficient mutants in
different fungal strains are diverse, which is related to the different types and amounts of
intracellular accumulated intermediates.

Within the same fungal strain, the phenotypes caused by the deletion of different
genes of the methylcitrate cycle are diverse, which is also related to the type and quan-
tity of the intermediate compounds accumulated in the mutants. The functions of two
methylcitrate cycle genes (MoMCS1 and MoMCL1) had been studied in M. oryzae [13]. The
growth of ∆Momcs1 on the media using propionyl-CoA-producing amino acids (isoleucine,
valine, and methionine) as the sole amino acids was reduced, but to a lesser extent than
∆Momcl1 [13]. When culturing on the medium with glutamic acid or inorganic nitrogen
NaNO3 as a sole nitrogen source (not to produce propionyl-CoA directly), the growth of
∆Momcs1 was normal, while the growth of ∆Momcl1 was blocked [13]. ∆Momcs1 grew
normally in minimal medium (MM) with glucose as the carbon and energy source, but
grew slower in complete medium (CM) containing glucose and peptone. The growth of
∆Momcl1 was slowed in both MM and CM media. The addition of 0.002% propionate to
the MM medium further inhibited the growth of ∆Momcl1 but not ∆Momcs1. The growth
of ∆Momcs1∆Momcl1 in the MM medium and MM medium supplemented with 0.002%
propionate was similar to ∆Momcs1 but different from ∆Momcl1. This difference in the
growth phenotype of ∆Momcs1 and ∆Momcl1 in different carbon and nitrogen sources is re-
lated to the different intermediate metabolites accumulated in fungal cells: propionyl-CoA
was accumulated in ∆Momcs1 and ∆Momcs1∆Momcl1 cells, while 2-methylisocitrate was
accumulated in ∆Momcl1 [13].

2.2. Pathogenicity

In animal and plant pathogenic fungi, the methylcitrate cycle is required for pathogenic
fungal virulence. However, knockout mutants of different genes in the pathway have dif-
ferent phenotypes, which are related to the type of intermediate compounds accumulated
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in the mutants. In M. oryzae, knocking out MoMCL1 resulted in a significant reduction
in the virulence on plants, while the virulence of ∆Momcs1 was normal [13]. In G. zeae,
the virulence of ∆Gzmcl1 to barley was weakened, while its virulence to wheat was nor-
mal [16]. In T. marneffei, a pathogen of fatal systemic fungal diseases, ∆mcd (deletion of
MCD, a gene encoding a 2-methylcitrate dehydratase) showed an attenuated virulence
in mice [15]. A. fumigatus, which causes Aspergillosis in animals and humans, utilizes
amino acids from the host as a source of nutrition. The 2-methylcitrate synthase (McsA)
is essential for the invasive Aspergillosis, and ∆AfmcsA have reduced virulence [14,19].
Moreover, the addition of sodium propionate to the culture medium killed the ∆AfmcsA
mutant [19]. In a pathogenic fungus Paracoccidioides lutzii, which causes Paracoccidioomy-
cosis (PCM), a chemical compound (ZINC08964784) inhibits fungal growth by binding to
the 2-methylcitrate synthase [20]. Trichoderma atroviride, a kind of biological control fungi,
can control the harm of Botrytis cinerea and other pathogenic fungi. The inhibitory effect of
∆Taicl2 (=∆Tamcl1) on the growth of B. cinerea was decreased [18].

2.3. Asexual and Sexual Reproduction

The methylcitrate cycle affects the asexual reproduction process of fungi. In M. oryzae,
the ability of ∆Momcs1 and ∆Momcl1 to produce spores was significantly reduced [13]. In
A. nidulan, the addition of 20 mM propionate almost made ∆AnmclA unable to produce
spores [17]. With regard to fungal sexual reproduction, the ability of ∆Gzmcl1 to form
perithecia is not affected in G. zeae [16].

2.4. Toxins and Melanin Synthesis

In A. nidulans and A. fumigatus, ∆AnmcsA and ∆AfmcsA produce fewer polyketide toxin
(such as carcinogens, mycotoxins, and sterigmatocystin) and conidiospore pigment [14,21].
Propionyl-CoA-producing carbon or nitrogen sources such as propionate, heptadecanoic
acid, isoleucine, and methionine inhibits polyketide and conidiospore pigment synthesis
of A. nidulans [22]. The spore pigment synthesis of ∆AnmcsA was blocked, and the color
of the mutant’s conidia changed from green or yellow to white [10]. Adding exogenous
propionate in the medium aggravated this mutant phenotype. In ∆AnmcsA, excessive
accumulation of acetyl-CoA inhibits the activity of polyketide synthase [21]. Knockout of
PCSA—a gene encoding a putative propionyl-CoA synthase—in ∆AnmcsA reduced the
amount of intracellular propionyl-CoA and allowed the mutant to regain the ability to
synthesize polyketides [21].

2.5. Other Physiological Processes

In M. oryzae, the ratio of NAD+/NADH in the ∆Momcs1 aerial mycelium decreased,
and the content of nitric oxide (NO) also decreased, meaning that the methylcitrate cycle
is involved in the cellular redox state and NO signaling [13]. The altered NAD+/NADH
ratio may be related to the inhibition by propionyl-CoA of enzymatic activities of metabolic
pathways such as the TCA cycle [23]. In yeast S. cerevisiae, propionic acid promotes
endocytosis, and disrupts cell cycle and cellular respiration [24].

3. Relationship between Citrate Synthase of the TCA Cycle and 2-Methylcitrate
Synthase in the Methylcitrate Cycle

The TCA cycle is a ubiquitous metabolic pathway in aerobic organisms. It is the
final metabolic pathway for the three nutrients (carbohydrates, lipids, and amino acids),
and is the hub of the metabolic linkage of carbohydrates, lipids, and amino acids. In
eukaryotes, The TCA cycle acts in the mitochondria and is closely related to the respiratory
chain. Nutrients are catabolized in cells to produce acetyl-CoA, which is condensed with
oxaloacetate to produce citric acid by citrate synthase (Cit or Cs), and then repeatedly
dehydrogenated and decarboxylated to produce H2O, CO2, and reduction equivalents by
complete oxidation and decomposition, and to finally re-produce oxaloacetate to enter the
next cycle (Figure 1).
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The 2-methylcitrate synthase in the methylcitrate cycle shares a common origin with
the citrate synthase in the TCA cycle [25] (Figure 2). S. cerevisiae has three homologous
citrate synthases. Among them, Cit1 is a mitochondrial-specific citrate synthase, Cit2 is
a peroxisomal citrate synthase and 2-methylcitrate synthase, and Cit3 is a mitochondrial
citrate synthase and 2-methylcitrate synthase [26,27]. In peroxisomes, yeast Cit2 participates
in the glyoxylate cycle while condensing propionyl-CoA and oxaloacetate to produce 2-
methylcitrate [26]. In yeast Yarrowia lipolytica, Cit1 is a bifunctional enzyme: citrate synthase
and 2-methylcitrate synthase, while Cit2 is a specific citrate synthase [28]. In bacteria (such
as Escherichia coli, Eubacterium DS2-3R, Thermoplasma acidophilum, and Pyrococcus furiosus),
in addition to GltA (a citrate synthase), PrpC (a 2-methylcitrate synthase) also has partial
citrate synthase activity [29].
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Figure 2. Proposed scheme of the evolution of fungal 2-methylcitrate synthases. The sequences of
the fungal 2-methylcitrate synthases (Mcs) are much more homologous to the fungal and bacterial
citrate synthases (Cs or Cit) than to the bacterial 2-methylcitrate synthase (PrpC).

Schlachter et al. reported the protein crystal structures of an A. fumigatus 2-methylcitrate
synthase (McsA) and a human citrate synthase (hCS) [25]. The two enzymes have similar
structural features and significant sequence homology, but McsA and hCS show signif-
icant differences in substrate specificity and cooperativity. hCS and McsA both form a
homodimer containing two active sites. The active sites of McsA and hCS are similar. In
an active site, McsA contains two histidines (His269 and His351 from chain A) and three
arginines (Arg360 and Arg434 from chain A, and Arg454 from chain B), whereas hCS also
has two histidines (His265 and His347 from chain A) and three arginines (Arg356 and
Arg428 from chain A, and Arg448 from chain B); these amino acid residues are bound to
oxaloacetate. The binding of CoA to hCS and McsA appears to be similar except for the
difference in an amino acid residue of chain B: in hCS, Arg73 of chain A binds to P2 of
CoA and Arg191 of the B chain binds to ribose of CoA; in McsA, however, Arg74 chain A
binds to P2 of CoA, and Lys192 of chain B forms a single salt bridge with the ribose sugar
of CoA. The only difference observed near the CoA binding site is the presence of Ala348
for hCS and Gly352 for McsA. The G352A mutation in McsA does not have a significant
effect on substrate binding and conformational changes, but the A348G mutation in hCS is
much more obvious. Considering that the active sites of both enzymes are almost identical,
differences in the amino acid residues near the active sites cause differences in the reactions
catalyzed by the enzymes [25]. In addition, hCS has no 2-methylcitrate synthase activity,
whereas McsA has a citrate synthase activity [19].

4. Relationship between Isocitrate Lyase of the Glyoxylate Cycle and
2-Methylisocitrate Lyase of the Methylcitrate Cycle

Within peroxisomes, the glyoxylate cycle converts 2-carbon acetyl-CoA into 4-carbon
succinate, which can be utilized for de novo gluconeogenesis. The two key enzymes in this
cycle are malate synthase (Mls) and isocitrate lyase (Icl). Malate synthase condenses the
first acetyl-CoA with glyoxylate to form malate, which is oxidized to oxaloacetate. Then,
citrate synthase (Cit) condenses the second acetyl-CoA with oxaloacetate to form citrate;
citrate is then converted to isocitrate. Finally, isocitrate lyase cleaves isocitrate to regenerate
glyoxalate as well as 4-carbon succinate. Except for malate synthase and isocitrate lyase,
the rest of the enzymes of the glyoxylate cycle are the same as the TCA cycle (Figure 1). The
glyoxylate cycle allows pathogenic fungi to utilize lipid, ethanol, and acetate as the sole
carbon sources and is necessary for fungal growth, development, and virulence [30,31].
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The 2-methylisocitrate lyase of the methylcitrate cycle and isocitrate lyase of the
glyoxylate cycle share a common origin [32] (Figure 3). Bacteria have isocitrate lyase (Icl)
and 2-methylisocitrate lyase (PrpB). However, bacterial 2-methylisocitrate lyase is very
distantly related to fungal 2-methylisocitrate lyase. The wild-type isocitrate lyase of E. coli
and A. fumigatus has both isocitrate lyase and 2-methylisocitrate lyase activities. Due to
its very high Km value to bind 2-methylisocitrate (Km = 213 mM), A. fumigatus wild-type
isocitrate lyase did not have obvious 2-methylisocitrate lyase activity in vivo [32]. Based
on phylogenetic analysis and experimental validation, Müller et al. proposed that the
fungal 2-methylisocitrate lyase evolved from fungal isocitrate lyase by gene duplication,
and fungal isocitrate lyase was acquired from earlier eukaryotes from prokaryotes via
horizontal gene transfer [32].

Molecules 2023, 28, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 3. Proposed scheme of the evolution of fungal 2-methylisocitrate lyases. Fungal 2-
methylisocitrate lyases (Mcl) show much higher homology to the fungal and bacterial isocitrate 
lyases (Icl) than to the bacterial 2-methylisocitrate lyase (PrpB). 

5. Compartmentalization of the TCA Cycle, the Methylcitrate Cycle, and the 
Glyoxylate Cycle In Vivo 

There are overlapping metabolic steps and enzymes between the methylcitrate cycle, 
the glyoxylate cycle, and the TCA cycle (Figure 1), and despite differences in substrate 
and catalytic characteristics, some enzymes originate from the same ancestral proteins 
[25,32]. Enzymes acting in different metabolic cycles correlate with temporal and spatial 
expression, subcellular localization, and substrate specificity. Compartmentalization of 
metabolic activities allows individual physiological activities within a cell to be 
segregated from each other and performed sequentially in an orderly manner, increasing 
the efficiency of the activities. The TCA cycle occurs within the mitochondria of 
eukaryotes, but it has recently been found that the TCA cycle is also present in the nuclei 
of mammalian and plant cells [36–39]. The methylcitrate cycle is split between 
mitochondria and cytoplasm [40]. The glyoxylate cycle is segregated in peroxisomes and 
cytoplasm [41]. These three cycles occur in distinct and overlapping organelles, adding to 
the complexity of cellular carbon metabolism processes. 

The enzymes of the methylcitrate cycle are located in the mitochondria and 
cytoplasm (Figure 4). 2-methylisocitrate lyase (Icl2) and citrate synthase 3 (Cit3) in S. 
cerevisiae [42,43], 2-methylisocitrate lyase (Mcl1) in M. oryzae [13], 2-methylcitrate synthase 
in A. fumigatus [14], three enzymes (2-methylcitrate synthase, 2-methylcitrate dehydratase, 
and 2-methylisocitrate dehydratase) in Y. lipolytica [8], and 2-methylcitrate synthase in 
Toxoplasma gondii (a one-celled eukaryotic parasite) [40] are localized in the mitochondria. 
However, 2-methylcitrate dehydratase is in the cytoplasm, and 2-methylisocitrate lyase is 
in the cytoplasm surrounding the mitochondria in T. gondii [40]. 2-methylisocitrate lyase 
in Y. lipolytica is located in both the mitochondria and cytoplasm [8]. Interestingly, yeast 
Cit2 is a peroxisomal citrate synthase, but can act as a 2-methylcitrate synthase condensing 
propionyl-CoA and oxaloacetate within peroxisomes to produce 2-methylcitrate [26]. 

 
Figure 4. Localization of fungal proteins involved in the methylcitrate cycle and glyoxylate cycle in 
mitochondria, peroxisomes, and cytoplasm in fungi. Acn, aconitase or 2-methylisocitrate 
dehydratase; Aco, aconitase; Cit, citrate synthase; Icl, isocitrate lyase; Mcd, 2-methylcitrate 
dehydratase; Mcl, 2-methylisocitrate lyase; Mcs, 2-methylcitrate synthase; Mls, malate synthase; 
Mdh, malate dehydrogenase. 

Figure 3. Proposed scheme of the evolution of fungal 2-methylisocitrate lyases. Fungal 2-methylisocitrate
lyases (Mcl) show much higher homology to the fungal and bacterial isocitrate lyases (Icl) than to the
bacterial 2-methylisocitrate lyase (PrpB).

Comparison of A. fumigatus isocitrate lyase and 2-methylisocitrate lyase showed a 45%
sequence identity. The conserved phenylalanine 455 and threonine 457 in isocitrate lyase
were mutated to the conserved leucine (F455L) and serine (T457S) in 2-methylisocitrate
lyase, respectively [32]. Single mutations or double mutations in both amino acids of the
isocitrate lyase strongly increased the 2-methylisocitrate lyase activity and decreased the
isocitrate lyase activity. Among them, the F455L mutation had a stronger effect on isocitrate
lyase activity than the T457S mutation. Meanwhile, the E. coli isocitrate lyase double
mutant (F349L/T351P) had a catalytic efficiency and characteristics of 2-methylisocitrate
lyase very similar to that of the A. fumigatus isocitrate lyase double mutant (F455L/T457S).
This suggests that F455L represents the key mutation for loss of isocitrate lyase function,
whereas T457S is the key mutation for gaining 2-methylisocitrate lyase function. Mutations
in both active-site residues convert an isocitrate lyase, whether it is of bacterial or fungal
origin, into a 2-methylisocitrate lyase [32].

However, after the conserved leucine and serine residues in A. fumigatus 2-methylisocitrate
lyase were mutated to the conserved phenylalanine and threonine residues in isocitrate lyase
(L521F and S523T), the mutant enzyme displays the catalytic properties of 2-methylisocitrate
lyase that are highly similar to those of the wild-type enzyme [33]. The mutant enzyme has
increased its affinity for isocitrate binding, but only shows slight isocitrate lyase activity.
Further mutations at additional sites of the 2-methylisocitrate lyase seem to prevent the
turnover of the bound substrate [32].

In S. cerevisiae, Icl2 is a specialized 2-methylisocitrate lyase, whereas Icl1 is an isocitrate
lyase with partial 2-methylisocitrate lyase activity. In G. zeae, a single knockout of GzICL1
caused a growth defect on the sodium acetate medium, whereas a knockout of GzMCL1
caused a defect in the utilization of sodium propionate. In M. oryzae, knockout of MoMCL1
caused defective utilization of sodium propionate [13], whereas knockout of MoICL1 caused
defective utilization of lipid and sodium acetate [31]. Because of the high degree of protein
sequence identity between 2-methylisocitrate lyase and isocitrate lyase, an isocitrate lyase is
named as Icl1, whereas a 2-methylisocitrate lyase is referred to Icl2 in some fungal species.
This nomenclature caused confusion in correctly and conveniently distinguishing these
two enzymes, such as in M. oryzae, where Icl1 and Icl2 are sometimes misinterpreted to
isocitrate lyases [34,35]. Therefore, it is suggested that Mcl1 but not Icl2 is used to refer to a
2-methylisocitrate lyase and Icl1 to a citrate lyase.
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5. Compartmentalization of the TCA Cycle, the Methylcitrate Cycle, and the
Glyoxylate Cycle In Vivo

There are overlapping metabolic steps and enzymes between the methylcitrate cycle,
the glyoxylate cycle, and the TCA cycle (Figure 1), and despite differences in substrate and
catalytic characteristics, some enzymes originate from the same ancestral proteins [25,32].
Enzymes acting in different metabolic cycles correlate with temporal and spatial expression,
subcellular localization, and substrate specificity. Compartmentalization of metabolic
activities allows individual physiological activities within a cell to be segregated from
each other and performed sequentially in an orderly manner, increasing the efficiency of
the activities. The TCA cycle occurs within the mitochondria of eukaryotes, but it has
recently been found that the TCA cycle is also present in the nuclei of mammalian and plant
cells [36–39]. The methylcitrate cycle is split between mitochondria and cytoplasm [40].
The glyoxylate cycle is segregated in peroxisomes and cytoplasm [41]. These three cycles
occur in distinct and overlapping organelles, adding to the complexity of cellular carbon
metabolism processes.

The enzymes of the methylcitrate cycle are located in the mitochondria and cyto-
plasm (Figure 4). 2-methylisocitrate lyase (Icl2) and citrate synthase 3 (Cit3) in S. cere-
visiae [42,43], 2-methylisocitrate lyase (Mcl1) in M. oryzae [13], 2-methylcitrate synthase in
A. fumigatus [14], three enzymes (2-methylcitrate synthase, 2-methylcitrate dehydratase,
and 2-methylisocitrate dehydratase) in Y. lipolytica [8], and 2-methylcitrate synthase in
Toxoplasma gondii (a one-celled eukaryotic parasite) [40] are localized in the mitochondria.
However, 2-methylcitrate dehydratase is in the cytoplasm, and 2-methylisocitrate lyase is
in the cytoplasm surrounding the mitochondria in T. gondii [40]. 2-methylisocitrate lyase
in Y. lipolytica is located in both the mitochondria and cytoplasm [8]. Interestingly, yeast
Cit2 is a peroxisomal citrate synthase, but can act as a 2-methylcitrate synthase condensing
propionyl-CoA and oxaloacetate within peroxisomes to produce 2-methylcitrate [26].
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Figure 4. Localization of fungal proteins involved in the methylcitrate cycle and glyoxylate cy-
cle in mitochondria, peroxisomes, and cytoplasm in fungi. Acn, aconitase or 2-methylisocitrate
dehydratase; Aco, aconitase; Cit, citrate synthase; Icl, isocitrate lyase; Mcd, 2-methylcitrate dehy-
dratase; Mcl, 2-methylisocitrate lyase; Mcs, 2-methylcitrate synthase; Mls, malate synthase; Mdh,
malate dehydrogenase.

The glyoxylate cycle is split into two parts, one in the peroxisome and another in
the cytoplasm (Figure 4). The enzymes of the glyoxylate cycle are located in the mito-
chondria and cytoplasm. Kunze et al. reviewed the relationship between the function of
the glyoxylate cycle and the distribution of the individual enzymes in the peroxisomes
and the cytoplasm [41]. In the human fungal pathogen C. albicans, isocitrate lyase (Icl1)
and malate synthase (Mls1) are localized to peroxisomes. This peroxisomal localization is
dependent on the PTS1 receptor Pex5p [44]. In the ∆Capex5 mutant, Icl1 and Mls1 were
localized to the cytosol but could grow normally in acetate and ethanol media. The ∆Cafox2
mutant that completely lacked fatty acid β-oxidation but had no peroxisomal protein input
defects showed significantly reduced growth on nonfermentable carbon sources such as
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acetate and ethanol. When Icl1 and Mls1 were relocated to the cytoplasm by deletion of the
PEX5 gene, ∆Cafox2∆Capex5 restored the growth of the ∆Cafox2 mutant on these carbon
compounds [44]. In the mycorrhizal ascomycete fungus Tuber borchii, immunofluorescence
co-localization showed that isocitrate lyase (TbIcl) co-localized with the peroxisomal marker
protein Fox2, and was distributed in the peroxisome [45]. S. cerevisiae Cit2 is involved in the
glyoxylate cycle of the peroxisome, whereas Cit1 and Cit3 are involved in the mitochondrial
TCA cycle and the methylcitrate cycle [26,27]. S. cerevisiae has three malate dehydrogenases:
Mdh1 is localized in the mitochondria and participates in the TCA cycle, whereas Mdh3
is localized in the peroxisome and participates in the glyoxylate cycle [30,46]. Mdh2 is
located in the cytoplasm and participates in gluconeogenesis [47]. However, Mdh2 is
also piggybacked into the peroxisome via association with Mdh3 and a Pex5-dependent
piggybacking mechanism and participates in the glyoxylate cycle [48].

6. Interplay between the TCA Cycle, the Methylcitrate Cycle, and the Glyoxylate Cycle

Propionate inhibited the growth of the fungus A. nidulans on the glucose medium, but
not on the acetate medium [23]. ∆AnmcsA is more sensitive to sodium propionate than the
wild type and accumulates 10-fold more propionyl coenzyme A in vivo [23]. Inhibition
of fungal growth by propionate is associated with its high accumulation of intermediate
metabolites in the methylcitrate cycle, such as propionyl coenzyme A, 2-methylcitrate,
and 2-methylioscitrate [13] (Figure 5). In A. nidulans, propionyl-CoA inhibits the activity
of CoA-dependent enzymes such as pyruvate dehydrogenase, succinyl-CoA synthetase,
and ATP citrate lyase [23]. Accumulation of 2-methylcitrate in the ∆mcd mutant and 2-
methylioscitrate in the ∆mcl mutant also severely inhibits enzyme activity and carbon
metabolism. For example, 2-methylisocitrate inhibits NADP-dependent isocitrate dehy-
drogenase in A. nidulans [17], and 2-methylcitrate affects the TCA cycle by competitively
inhibiting citrate synthase, aconitase, nicotinamide adenine dinucleotide+ (NAD+)- and
NADP+-linked isocitrate dehydrogenase, phosphofructokinase, and the tricarboxylase
carrier in human [12].
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the methylcitrate cycle inhibit the activity of enzymes of the TCA cycle. Acl, ATP citrate lyase; Acn,
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dehydratase; Mcl, 2-methylisocitrate lyase; Mcs, 2-methylcitrate synthase; Pdh, pyruvate dehydroge-
nase; Sucl, Succinyl-CoA ligase (succinyl-CoA synthetase).
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Addition of acetate eliminated the inhibitory effect of propionate on fungal growth of
the wild-type as well as the growth and developmental defects of the methylcitrate cycle-
deficient mutants, which was associated with an increase in the amounts of accumulated
intermediates of the methylcitrate cycle in cells [13,23,49]. In A. nidulans, the addition of
acetate, but not ethanol, to glucose/propionate medium reduced intracellular levels of
propionyl-CoA [23,49]. This result is related to the function of a class III CoA-transferase
CoaT (Figure 1). CoaT is localized in the mitochondria. CoaT uses only acetyl-CoA,
propionyl-CoA, succinyl-CoA, and their corresponding free acids as donors and acceptors,
respectively. The substrate couple succinyl-CoA and acetate had the highest specific activity,
followed by succinyl-CoA and propionate, and propionyl-CoA and acetate. The ∆AncoaT
mutant grew normally under conditions in which glucose, acetate, glycerol, or ethanol was
the sole carbon source. However, ∆AncoaT was more sensitive to the addition of propionate,
especially when glycerol was used as a second carbon source. The wild-type, ∆AncoaT, and
∆AnmcaA could sporulate in media supplemented with acetate and propionate, whereas
∆AncoaT∆AnmcaA could not sporulate in media supplemented with acetate and propionate.
Therefore, it is believed that CoaT detoxifies the cells by transferring the CoASH moiety
from propionyl-CoA to acetate, reducing propionyl-CoA as well as other intermediate
metabolites in the cells [49]. A class III CoA-transferase CoaT gene (MGG_06609) is also
present in the M. oryzae genome. The addition of acetate restored spore production of
∆Momcs1 and ∆momcl1 of M. oryzae in the complete medium [13]. Addition of acetate
eliminated the growth inhibition of propionate on the wild-type and ∆momcs1, but the
effect on ∆momcl1 was relatively poor, which was related to the accumulation of not only
propionyl-CoA but also 2-methylcitrate and 2-methylisocitrate in ∆momcl1 [13].

In M. oryzae, the virulence of both ∆momcl1 and ∆moicl1 was reduced, while the
decrease in virulence of ∆momcl1∆moicl1 (in which both the methylcitrate cycle and the
glyoxylate cycle were disrupted) was even more significant [13]. In G. zeae, both ∆Gzmcl1
and ∆gzicl1 had normal virulence on wheat, but ∆Gzmcl1∆gzicl1 displayed significantly
reduced virulence [16]. The growth of ∆momcl1∆moicl1 and ∆momcl1 was slowed in the
glucose medium, whereas the growth of ∆Momcl1∆Moicl1 and ∆Moicl1 were slowed in the
olive oil medium [13]. These facts suggest a synergistic relationship between the methylci-
trate cycle and the glyoxylate cycle in carbon metabolism and virulence. In M. oryzae, the
expression of MoMCL1 and MoMCS1 was increased not only in propionyl-CoA-producing
carbon sources, but also in acetyl-CoA-producing carbon sources, further suggesting that
the methylcitrate cycle is closely metabolically linked to lipolysis, the glyoxylate cycle, and
the TCA cycle [13]. In propionic aciduria patients (human), accumulation of propionyl-CoA
and 2-methylcitrate leads to abnormal mitochondrial function [1,12]. Abnormal mito-
chondrial function leads to abnormalities in other carbon metabolic processes such as the
TCA cycle and β-oxidation. In the pathogenic fungus Paracoccidioides spp., propionyl-CoA
inhibits the expression of SUCLA (encoding a succinyl-CoA ligase) and PDH (encoding
a pyruvate dehydrogenase) of the TCA cycle, and remodels the fungal metabolic path-
ways [50]. The addition of 2-methylcitrate synthase inhibitors also altered the carbon
metabolic pathways of Paracoccidioides brasiliensis [51]. In Y. lipolytica, the ∆Ylphd1 mutant
(inactivation of the 2-methylcitrate dehydratase) has an increased utilization of glycerol [52].
In the nitrogen-limited medium with glycerol as substrate, ∆Ylphd1 altered intracellular
carbon metabolism pathways to promote glycerol utilization and increase greater acetate
production and lipid accumulation [52]. These data suggest that altering the methylcitrate
cycle also affects both the glyoxylate cycle and the TCA cycle.

7. The Methylcitrate Cycle as a Potential Target for Antifungal Compounds

Because blocking the methylcitrate cycle disrupts the function of the TCA cycle and
mitochondria, thereby interfering with the metabolic activity and growth of pathogenic
fungi, methylcitrate cycle enzymes can be used as targets for antifungal drugs. For example,
Lima et al. screened six compounds from 89,415 compounds that were able to inhibit
the enzymatic activity of recombinant PiMcs in vitro. Among them, only one compound,
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ZINC08964784, inhibited the biological activity of Paracoccidioides spp. cells [20]. Fur-
ther analysis revealed that the fungal cells undergo a metabolic shift when exposed to
ZINC08964784: glycolysis and TCA cycle were down-regulated, while β-oxidation was
upregulated, proteolytic enzyme expression was increased, amino acids were degraded for
energy production, and reactive oxygen species levels were increased [51]. ZINC08964784
is non-cytotoxic to mammalian cells and has a very high selectivity index. Therefore,
ZINC08964784 has therapeutic potential for the treatment of Paracoccidioomycosis [20,51].

8. Regulation of the Methylcitrate Cycle and the Glyoxylate Cycle

The fungal methylcitrate cycle and glyoxylate cycle are regulated by carbon catabo-
lite repression and derepression (CCR and CCDR). Propionate promotes the expression
of genes involved in the methylcitrate cycle [13,16,50]. In S. cerevisiae, the expression of
ICL2 (encoding 2-methylisocitrate lyase) and ICL1 (encoding isocitrate lyase with a low
2-methylisocitrate lyase activity) is repressed by glucose and induced by ethanol or threo-
nine [41,53]. In M. oryzae, the expression of MoICL1 and MoMCL1 was repressed by glucose
and induced by lipid [54]. When glucose is used as the carbon source, the phosphatase
Smek1 activates the carbon catabolite repressor CreA and inhibits the expression of MoICL1
and MoMCL1; while lipid is used as the carbon source, Smek1 activates the transcription
activator Crf1 and promotes the expression of MoICL1 and MoMCL1 [34,54].

9. Future Perspectives

The methylcitrate cycle, glyoxylate cycle, and the TCA cycle have been extensively
studied and well understood over the past 100 years. However, there are still many
unanswered questions about the evolutionary relationship among the three carbon cycles,
the spatial separation of the three carbon cycles, the transport of intermediary metabolites
between different organelles, and the differentiation of the functions of related enzymes
between the three carbon cycles. Propionyl-CoA is produced by metabolic processes such
as lipid metabolism, amino acid metabolism, and nucleic acid metabolism. These metabolic
processes occur in different organelles, and the resulting propionyl-CoA is distributed in
various organelles such as mitochondria and peroxisomes. The enzymes involved in the
methylcitrate cycle that degrade propionyl-CoA are mainly located in the mitochondria,
with some also located in the cytoplasm. However, the temporal and spatial mechanisms
of the mitochondrial and cytoplasmic distribution of individual enzymes in a given fungal
species have not been investigated in detail, as well as the significance of the cleavage of
the methylcitrate cycle between different organelles. The 2-methylisocitrate dehydratase
of Y. lipolytica catalyzes the conversion of 2-methyl-cis-aconitate to 2-methylisocitrate [8],
but its homologue in pathogenic fungi such as M. oryzae is 2-methylcitrate-dehydratase.
The sequence of 2-methylisocitrate dehydratase is also homologous to aconitases. Bacterial
aconitases catalyze the conversion of 2-methyl-cis-aconitate to 2-methylisocitrate. In the
TCA cycle, aconitases also catalyze the conversion of citrate to isocitrate (Figure 1). There
are several aconitases in pathogenic fungi (such as three aconitases in M. oryzae [13]) and
their functions were still unrevealed. The roles of each aconitase in the pathogenic fungi
in both the methylcitrate cycle and the TCA cycle need to be identified in the future. In
addition, fungal isocitrate lyase and 2-methylisocitrate lyase share a common origin, but
their protein crystal structures have not been resolved. Further resolution of the crystal
structures of fungal isocitrate lyase and 2-methylisocitrate lyase will be instrumental in
understanding the mechanisms of protein evolution, as well as enzyme-substrate binding
and catalytic mechanisms.

The methylcitrate cycle is critical in the development and infection of pathogenic fungi
and is potentially important in biomedical, agricultural, and biotechnological research.
A further study to understand the initiation and control mechanism of the methylcitrate
cycle and its relationship with the tricarboxylic acid cycle, the glyoxylate cycle, and other
metabolisms for lipids, carbohydrates, and amino acids could lead to antifungal products
of the devastating fungal diseases worldwide.
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