Controllable Synthesis, Photocatalytic Property, and Mechanism of a Novel POM-Based Direct Z-Scheme Nano-Heterojunction α-Fe2O3/P2Mo18
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis and Physical Properties
2.2. Photocatalytic Activity
2.3. Mechanism
3. Materials and Methods
3.1. Experimental Reagents
3.2. Preparation of P2Mo18
3.3. Preparation of Fe2O3 Nanosheets
3.4. Preparation of Fe2O3/P2Mo18
3.5. Material Characterizations
3.6. Photocatalytic Activity Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wu, J.; Wang, Y.; Zhang, S.; Liu, Y.; Wang, F. Poly(Dibenzothiophene-S, S-Dioxide)-Fe2O3 Heterojunction for Photocatalytic Hydrogen Production Coupled with Selective Oxidation of Benzyl Alcohol. Appl. Catal. B Environ. 2023, 332, 122741. [Google Scholar] [CrossRef]
- Liapun, V.; Hanif, M.B.; Sihor, M.; Vislocka, X.; Pandiaraj, S.; Unnikrishnan, V.K.; Thirunavukkarasu, G.K.; Edelmannová, M.F.; Reli, M.; Monfort, O.; et al. Versatile Application of BiVO4/TiO2 S-Scheme Photocatalyst: Photocatalytic CO2 and Cr(VI) Reduction. Chemosphere 2023, 337, 139397. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; An, H.; Dong, G.; Feng, J.; Zhang, M.; Ren, Y.; Ma, J. Hexagonal Boron Nitride with Functional Groups for Efficient Photocatalytic Reduction of Nitrate without Additional Hole Scavengers. Chem. Eng. J. 2022, 428, 131054. [Google Scholar] [CrossRef]
- Yu, X.; Qiu, P.; Wang, Y.; He, B.; Xu, X.; Zhu, H.; Ding, J.; Liu, X.; Li, Z.; Wang, Y. Defect-Induced Charge Redistribution of MoO3-X Nanometric Wires for Photocatalytic Ammonia Synthesis. J. Colloid Interface Sci. 2023, 640, 775–782. [Google Scholar] [CrossRef]
- Zhan, H.; Zhou, Q.; Li, M.; Zhou, R.; Mao, Y.; Wang, P. Photocatalytic O2 Activation and Reactive Oxygen Species Evolution by Surface B-N Bond for Organic Pollutants Degradation. Appl. Catal. B Environ. 2022, 310, 121329. [Google Scholar] [CrossRef]
- Galloni, M.G.; Cerrato, G.; Giordana, A.; Falletta, E.; Bianchi, C.L. Sustainable Solar Light Photodegradation of Diclofenac by Nano-and Micro-Sized SrTiO3. Catalysts 2022, 12, 804. [Google Scholar] [CrossRef]
- Mergbi, M.; Galloni, M.G.; Aboagye, D.; Elimian, E.; Su, P.; Ikram, B.M.; Nabgan, W.; Bedia, J.; Amor, H.B.; Contreras, S. Valorization of lignocellulosic biomass into sustainable materials for adsorption and photocatalytic applications in water and air remediation. Environ. Sci. Pollut. Res. 2023, 1–31. [Google Scholar] [CrossRef]
- Djellabi, R.; Giannantonio, R.; Falletta, E.; Bianchi, C.L. SWOT analysis of photocatalytic materials towards large scale environmental remediation. Curr. Opin. Chem. Eng. 2021, 33, 100696. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, G.; Xie, L.; Wu, P.; Liu, H.; Wang, J.; Xie, Y.; Chen, J.; Lu, C.-Z. Promoting Photocatalytic H2 Evolution through Interfacial Charge Separation on the Direct Z-Scheme ZnIn2S4/ZrO2 Heterojunction. Int. J. Hydrog. Energy 2023. [Google Scholar] [CrossRef]
- Yaseen, M.; Jiang, H.; Li, J.; Yu, X.; Ahmad, M.A.; Ali, R.N.; Wang, L.; Yang, J.; Liu, Q. Synergistic Effect of Z-Scheme and Oxygen Vacancy of CeO2/WO3 Heterojunction for Enhanced CO2 Reduction Activity. Appl. Surf. Sci. 2023, 631, 157360. [Google Scholar] [CrossRef]
- Xing, C.; Ma, M.; Chang, J.; Ji, Z.; Wang, P.; Sun, L.; Li, S.; Li, M. Polyoxometalate Anchored Zinc Oxide Nanocomposite as a Highly Effective Photocatalyst and Bactericide for Wastewater Decontamination. Chem. Eng. J. 2023, 464, 142632. [Google Scholar] [CrossRef]
- Li, W.; Li, T.; Li, G.; An, L.; Li, F.; Zhang, Z. Electrospun H4SiW12O40/Cellulose Acetate Composite Nanofibrous Membrane for Photocatalytic Degradation of Tetracycline and Methyl Orange with Different Mechanism. Carbohydr. Polym. 2017, 168, 153–162. [Google Scholar] [CrossRef]
- Fang, Y.; Xing, C.; Liu, J.; Zhang, Y.; Li, M.; Han, Q. Supermolecular Film Crosslinked by Polyoxometalate and Chitosan with Superior Antimicrobial Effect. Int. J. Biol. Macromol. 2020, 154, 732–738. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, Y.; Li, R.; Zhu, W.; Li, H.; Zhang, Q.; Wang, M.; Chen, X.; Li, H. Magnetic POM-Based Mesoporous Silica for Fast Oxidation of Aromatic Sulfur Compounds. Fuel 2017, 209, 545–551. [Google Scholar] [CrossRef]
- Dolbecq, A.; Dumas, E.; Mayer, C.R.; Mialane, P. Hybrid Organic− Inorganic Polyoxometalate Compounds: From Structural Diversity to Applications. Chem. Rev. 2010, 110, 6009–6048. [Google Scholar] [CrossRef] [PubMed]
- Yamase, T. Photo-and Electrochromism of Polyoxometalates and Related Materials. Chem. Rev. 1998, 98, 307–325. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, D.; Xie, J.; Liu, Y.; Guo, Z.; Wang, Q.; Lyu, Y.; Zhou, Y.; Wang, J. Pyrazinium Polyoxometalate Tetrakaidecahedron-Like Crystals Esterify Oleic Acid with Equimolar Methanol at Room Temperature. J. Catal. 2016, 339, 123–134. [Google Scholar] [CrossRef]
- Ueda, T. Electrochemistry of Polyoxometalates: From Fundamental Aspects to Applications. ChemElectroChem 2018, 5, 823–838. [Google Scholar] [CrossRef]
- Sahoo, R.K.; Manna, A.K.; Das, A.; Mitra, A.; Mohapatra, M.; Sarangi, S.N.; Garg, P.; Deshpande, U.; Varma, S. Facile Synthesis of Super-Paramagnetic Au @α-Fe2O3 Hybrid Nanoparticle and Its Assembly on Graphene Substrate for Visible Light Photo-Catalysis. Appl. Surf. Sci. 2022, 577, 151954. [Google Scholar] [CrossRef]
- Fragoso, J.; Barreca, D.; Bigiani, L.; Gasparotto, A.; Sada, C.; Lebedev, O.I.; Modin, E.; Pavlovic, I.; Sanchez, L.; Maccato, C. Enhanced Photocatalytic Removal of NOx Gases by β-Fe2O3/CuO and β-Fe2O3/WO3 Nanoheterostructures. Chem. Eng. J. 2022, 430, 132757. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Z.; Wang, X.; Wang, B. Enhanced Visible Light Assisted Peroxymonosulfate Process by Biochar in-Situ Enriched with γ-Fe2O3 for P-Chlorophenol Degradation: Performance, Mechanism and Dft Calculation. J. Hazard. Mater. 2023, 445, 130593. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, B.; Zhu, Y.-L.; Wang, Y.-J.; Tang, Y.-L.; Liu, N.; Liu, J.-Q.; Ma, X.-L. Self-Assembled Three-Dimensional Framework of PbTiO3: ε-Fe2O3 Nanostructures with Room Temperature Multiferroism. Appl. Surf. Sci. 2021, 544, 148945. [Google Scholar] [CrossRef]
- Guan, Y.; Du, Q.; Wang, S.; Gu, X.; Li, Z.; Yan, S. Thin-Layer Metal Bismuth Inserted into Bi2S3/C, N co-doped α-Fe2O3 Achieving Efficient Photoelectrochemical Water Oxidation. Appl. Surf. Sci. 2023, 622, 156956. [Google Scholar] [CrossRef]
- Song, J.; Lu, Y.; Lin, Y.; Liu, Q.; Wang, X.; Su, W. A Direct Z-Scheme α-Fe2O3/LaTiO2N Visible-Light Photocatalyst for Enhanced CO2 Reduction Activity. Appl. Catal. B Environ. 2021, 292, 120185. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Zeng, Y.; Li, P.; Xie, T.; Zhang, Y. Bacteria-Assisted Preparation of Nano α-Fe2O3 Red Pigment Powders from Waste Ferrous Sulfate. J. Hazard. Mater. 2016, 317, 563–569. [Google Scholar] [CrossRef]
- Mousavi, S.E.; Younesi, H.; Bahramifar, N.; Tamunaidu, P.; Karimi-Maleh, H. A Novel Route to the Synthesis of α-Fe2O3@C@SiO2/TiO2 Nanocomposite from the Metal-Organic Framework as a Photocatalyst for Water Treatment. Chemosphere 2022, 297, 133992. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.R.; Kavita, S.; Palanisamy, A.; Vasundhara, M. Structural, Optical and Magnetic Properties of Chitosan Mediated α-Fe2O3 Nanoparticles. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Lei, Z.; Cheng, P.; Wang, Y.; Xu, L.; Lv, L.; Li, X.; Sun, S.; Hao, X.; Zhang, Y.; Zhang, Y.; et al. Pt-doped α-Fe2O3 Mesoporous Microspheres with Low-Temperature Ultra-Sensitive Properties for Gas Sensors in Diabetes Detection. Appl. Surf. Sci. 2023, 607, 154558. [Google Scholar] [CrossRef]
- Guo, J.; Wang, S.; Sun, X.; Guo, R.; Xiong, K.; Ling, R.; Shen, K.; Cui, J.; Ma, H.; Zhou, J.; et al. Uniform α-Fe2O3 Nanoparticles with Narrow Gap Immobilized on Cnts through N-doped Carbon as High-Performance Lithium-Ion Batteries Anode. Ceram. Int. 2021, 47, 15743–15749. [Google Scholar] [CrossRef]
- Galloni, M.G.; Ferrara, E.; Falletta, E.; Bianchi, C.L. Olive Mill Wastewater Remediation: From Conventional Approaches to Photocatalytic Processes by Easily Recoverable Materials. Catalysts 2022, 12, 923. [Google Scholar] [CrossRef]
- Babaei, E.; Bazyari, A. Effects of Drying Conditions on Physicochemical Properties of Epoxide Sol−Gel Derived α-Fe2O3 and NiO: A Comparison between Xerogels and Aerogels. Ceram. Int. 2022, 48, 33340–33349. [Google Scholar] [CrossRef]
- Wang, T.; Ge, T.; Zhang, Y. Effects of Precursors on the Phase, Magnetic and Photocatalytic Properties of Nano Fe2O3 Synthesized by Low Temperature Calcination. Colloid Interface Sci. Commun. 2021, 44, 100504. [Google Scholar] [CrossRef]
- Kumar, E.A.; Wang, T.-J.; Chi, H.-A.; Chang, Y.-H. Hydrothermal and Photoreduction Synthesis of Nanostructured α-Fe2O3/Ag Urchins for Sensitive Sers Detection of Environmental Samples. Appl. Surf. Sci. 2022, 604, 154448. [Google Scholar] [CrossRef]
- Li, R.; Jia, Y.; Bu, N.; Wu, J.; Zhen, Q. Photocatalytic Degradation of Methyl Blue Using Fe2O3/TiO2 Composite Ceramics. J. Alloys Compd. 2015, 643, 88–93. [Google Scholar] [CrossRef]
- Liu, X.; Gu, S.; Zhang, X.; Li, X.; Zhao, Y.; Li, W. The Production Discipline and Mechanism of Hydroxyl Radical by Investigating the Ln2O3-Bi2MoO6 Heterojunction Photocatalysts. J. Alloys Compd. 2021, 864, 158894. [Google Scholar] [CrossRef]
- Yan, M.; An, B.; Li, X.; Zai, Z.; Wu, S.; Ma, J.; Zhang, L. Effect of Different Electronegative Oxygen Atoms of Cellulose Nanofibrils on the Formation and Photocatalytic Property of ZnO/Cellulose Composite. Appl. Surf. Sci. 2023, 637, 157974. [Google Scholar] [CrossRef]
- Ouyang, Y.-S.; Yang, Q.-Y. High-Performance Visible-Light Photocatalysts for H2 Production: Rod-Shaped Co3O4/CoO/Co2P Heterojunction Derived from Co-MOF-74. J. Colloid Interface Sci. 2023, 644, 346–357. [Google Scholar] [CrossRef]
- Yu, J.; Wang, T.; Rtimi, S. Magnetically Separable TiO2/FeOx/POM Accelerating the Photocatalytic Removal of the Emerging Endocrine Disruptor: 2,4-Dichlorophenol. Appl. Catal. B Environ. 2019, 254, 66–75. [Google Scholar] [CrossRef]
- Bai, L.; Pan, X.; Guo, R.; Linghu, X.; Shu, Y.; Wu, Y.; Zhao, M.; Zhang, J.; Shan, D.; Chen, Z.; et al. Sunlight-Driven Photocatalytic Degradation of Organic Dyes in Wastewater by Chemically Fabricated ZnO/Cs4SiW12O40 Nanoheterojunction. Appl. Surf. Sci. 2022, 599, 153912. [Google Scholar] [CrossRef]
- Guo, X.; Xu, Y.; Zha, F.; Tang, X.; Tian, H. α-Fe2O3/Cu2O (SO4) Composite as a Novel and Efficient Heterogeneous Catalyst for Photo-Fenton Removal of Orange II. Appl. Surf. Sci. 2020, 530, 147144. [Google Scholar] [CrossRef]
- Pérez-Álvarez, L.; Ruiz-Rubio, L.; Artetxe, B.; Vivanco, M.D.; Gutiérrez-Zorrilla, J.M.; Vilas-Vilela, J.L. Chitosan Nanogels as Nanocarriers of Polyoxometalates for Breast Cancer Therapies. Carbohydr. Polym. 2019, 213, 159–167. [Google Scholar] [CrossRef]
- Dai, W.L.; Zou, M.L.; Zhao, C.; Zhang, J.; Wang, L.; Wang, X.S.; Yang, L.X.; Zhou, L.; Zou, J.P.; Luo, X.B.; et al. Deep extractive desulfurization of gasoline with x Et3NHCl· FeCl3 ionic liquids. Energy Fuels 2010, 24, 4285–4289. [Google Scholar]
- Hu, J.; Diao, H.; Luo, W.; Song, Y.F. Dawson-Type Polyoxomolybdate Anions (P2Mo18O626−) Captured by Ionic Liquid on Graphene Oxide as High-Capacity Anode Material for Lithium-Ion Batteries. Chem. A Eur. J. 2017, 23, 8729–8735. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liu, X.; Tang, J.; Lin, Y.; Liu, Y.; Chen, L.; Liu, Y.; Fang, D.; Wang, J. Design and Construction of an Immobilized Z-Scheme Fe2O3/CuFe2O4|Cu Photocatalyst Film for Organic Pollutant Degradation with Simultaneous Hydrogen Production. Appl. Surf. Sci. 2022, 602, 154276. [Google Scholar] [CrossRef]
- Gao, M.; Feng, J.; He, F.; Zeng, W.; Wang, X.; Ren, Y.; Wei, T. Carbon microspheres work as an electron bridge for degrading high concentration MB in CoFe2O4@ carbon microsphere/g-C3N4 with a hierarchical sandwich-structure. Appl. Surf. Sci. 2020, 507, 145167. [Google Scholar] [CrossRef]
- Cui, H.; Dong, S.; Wang, K.; Luan, M.; Huang, T. Synthesis of a Novel Type-II In2S3/Bi2MoO6 Heterojunction Photocatalyst: Excellent Photocatalytic Performance and Degradation Mechanism for Rhodamine B. Sep. Purif. Technol. 2021, 255, 117758. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, P.; Cheng, X.; Li, H.; Huo, X.; Zhang, Y. Simultaneous Removal of Methylene Blue and Total Dissolved Copper in Zero-Valent Iron/H2O2 Fenton System: Kinetics, Mechanism and Degradation Pathway. J. Colloid Interface Sci. 2019, 555, 383–393. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, M.; Huang, J.; Zhao, N.; Yu, H. Controllable Synthesis, Photocatalytic Property, and Mechanism of a Novel POM-Based Direct Z-Scheme Nano-Heterojunction α-Fe2O3/P2Mo18. Molecules 2023, 28, 6671. https://doi.org/10.3390/molecules28186671
Zhang Y, Zhao M, Huang J, Zhao N, Yu H. Controllable Synthesis, Photocatalytic Property, and Mechanism of a Novel POM-Based Direct Z-Scheme Nano-Heterojunction α-Fe2O3/P2Mo18. Molecules. 2023; 28(18):6671. https://doi.org/10.3390/molecules28186671
Chicago/Turabian StyleZhang, Yanlin, Mingyu Zhao, Jubo Huang, Nan Zhao, and Haihui Yu. 2023. "Controllable Synthesis, Photocatalytic Property, and Mechanism of a Novel POM-Based Direct Z-Scheme Nano-Heterojunction α-Fe2O3/P2Mo18" Molecules 28, no. 18: 6671. https://doi.org/10.3390/molecules28186671
APA StyleZhang, Y., Zhao, M., Huang, J., Zhao, N., & Yu, H. (2023). Controllable Synthesis, Photocatalytic Property, and Mechanism of a Novel POM-Based Direct Z-Scheme Nano-Heterojunction α-Fe2O3/P2Mo18. Molecules, 28(18), 6671. https://doi.org/10.3390/molecules28186671