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Abstract: Pharmaceutical, food, and cosmetic formulations often contain binary or ternary surfactant
mixtures with synergistic interactions amongst micellar building blocks. Here, a ternary mixture
of the surfactants hexadecyltrimethylammonium bromide, dodecyltrimethylammonium bromide,
and sodium deoxycholate is examined to see if the molar fractions of the surfactants in the ternary
mixed micellar pseudophase are determined by the interaction coefficients between various pairs of
the surfactants or by their propensity to self-associate. Critical micelle concentrations (CMC) of the
analyzed ternary mixtures are determined experimentally (spectrofluorimetrically using pyrene as the
probe molecule). Thermodynamic parameters of ternary mixtures are calculated from CMC values
using the Regular Solution protocol. The tendency for monocomponent surfactants to self-associate
(lower value of CMC) determines the molar fractions of surfactant in the mixed micelle if there
is no issue with the packing of the micelle building units of the ternary mixed micelle. If a more
hydrophobic surfactant is incorporated into the mixed micelle, the system (an aqueous solution of
surfactants) is then the most thermodynamically stabilized.

Keywords: critical micelle concentration; surfactants; thermodynamic stabilization; conformations;
mixed micelles; regular solution theory; bile salts

1. Introduction

Surfactants are molecules or ions that contain both hydrophilic and hydrophobic
regions in their structure. In an aqueous solution, surfactants are embedded in the aqueous
solution–air interface and the hydrophobic molecular segment of the surfactant is oriented
toward the air; while the hydrophilic polar head is orientated toward the aqueous phase, the
Gibbs free energy of the water–surfactant system decreases. On a particular total surfactant
concentration, known as the critical micelle concentration (CMC), the air and water phase’s
boundary surfaces are completely saturated with surfactant particles. In order for the
Gibbs free energy to further decrease in the water–surfactant system, surfactants form
micelles, molecular aggregates in which the hydrophobic part of the surfactant forms the
hydrophobic core of the micelle, while the polar groups of the surfactants form the polar
outer shell of the micelle [1–5]. It has been demonstrated that below the CMC, surfactants
form aggregates of a few (2–4) surfactants called premicellar aggregations, which can exhibit
catalytic capabilities in certain chemical processes [6–8]. Both monocomponent surfactants
and a precisely calculated mixture of surfactants can generate micelles, which are known as
mixed micelles. Surfactant mixes that are either binary or ternary are typically utilized, and
critical micellar concentrations for these mixtures have also been identified (i.e., determined
experimentally) [9–13]. According to the phase separation model (applicable for micelles
with large aggregation numbers, i.e., the number of surfactant particles in one micelle),
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mixed micelles (as micellar pseudophases) are formally created by mixing monocomponent
micellar pseudophases [14–18]. The molar Gibbs free energy of the formation of a ternary
mixed micellar pseudophase from a ternary mixture of surfactants dissolved in the aqueous
phase (solution) is (∆ f g0

mM):

∆ f g0
mM = x1∆ f g0

M1 + x2∆ f g0
M2 + x3∆ f g0

M3 + ∆gid
mix + gE

mix (1)

In Equation (1), ∆ f g0
Mi = RTln CMCi (i = 1, 2, 3) represents the molar Gibbs free

energy of the formation of monocomponent micellar pseudophases from which a ternary
mixed micellar pseudophase is formally obtained (1 mol); if the critical micelle concentra-
tion of the monocomponent (pure) surfactant is CMCi, xi (i = 1, 2, 3) represents the molar
fractions of surfactants in the ternary mixed micelle, i.e., micellar pseudophase; ∆gid

mix
corresponds to the change in molar Gibbs free energy when obtaining a mixed micellar
pseudophase as an ideal mixture of monocomponent micellar pseudophases under the con-
ditions of constant pressure and temperature (i.e., ideal Gibbs free energy of mixing) [14–16].
The last term in Equation (1) presents the excess molar Gibbs free energy and contains ener-
getic (entalpic) and entropic effects (interactions) not present in monocomponent micellar
pseudophases [19]:

∆ f g0
mM − x1∆ f g0

M1 + x2∆ f g0
M2 + x3∆ f g0

M3 =

{
∆gid

mix + gE
mix = ∆grel

mix
∆gid

mix
(2)

The sum ∆gid
mix + gE

mix presents the real molar Gibbs free energy of mixing (∆grel
mix).

Generally for ideal mixtures, gE
mix = 0. In accordance, gE

mix describes the thermodynamic
stabilization of real mixed micellar pseudophases, related to the ideal mixed micellar
pseudophases [16]. According the to Regular Solution Theory (RST), the excess molar Gibbs
free energy originates from energetic interactions between the first neighbors of structurally
different surfactants, while surfactant conformations in mixed micellar pseudophases are
identical to conformations of the same surfactants in monocomponent pseudophases [20,21].
Different types of particles are randomly distributed across the crystal lattice. This means
that there is no excess molar entropy in RST (compared to an ideal mixture) [21,22]. The
excess molar Gibbs free energy for the binary micellar pseudophase based on RST is
expressed by the following symmetric Margules function of the first order:

gE
mix = hE

mix = RTβ12x1x2; sE
mix = 0

}
RST (3)

where R is the universe gass constant, T presents the thermodynamic temperature of the
system, while β12 is the interaction coefficient (interaction parameter) between surfactants 1
and 2 in the binary mixed micellar pseudophase [14–16,20–22]. The coefficient of the interac-
tion depends on the geometry of binary mixed micellar pseudophase which is represented
as a quasi-crystalline structure whose parameter is the coordination number [20–22]. If
β12 < 0, then there are synergistic interactions between surfactants 1 and 2 (∆grel

mix < ∆gid
mix),

i.e., the real binary mixed micellar pseudophase is thermodynamically more stable than the
ideal binary mixed micellar pseudophase. On the contrary, if β12 > 0, there are antagonistic
interactions between surfactants 1 and 2, and real mixed micelle is thermodynamically
less stable than the ideal mixed micelle (∆grel

mix > ∆gid
mix) [16,23–25]. According to Porter-u

and van Laar, the Margules function of the first order (3) when sE
mix 6= 0 can also de-

scribe the excess Gibbs free energy of mixing [26–28]. This is the case if the phenomenon
of enthalpy–entropy compensation applies to the thermodynamic process of mixed mi-
celle formation. Then, the excess molar Gibbs free energy is a symmetric function of the
mole fraction of surfactants from the binary mixed micellar pseudophase [21,22,29–31]. In
the case of the ternary micellar pseudophase, the excess molar Gibbs energy of mixing
is the function of interaction parameters between structurally different surfactant parti-
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cles: gE
mix = f (β12, β13,β23) ∧ βij = β ji, Therefore, it is necessary to know the interaction

parameters in binary mixed micellar pseudophases [11,32,33].
Monocomponent, binary, and ternary mixtures of surfactants are usually applied

in pharmaceutical, food, and cosmetic formulations; in petro chemistry in the micellar
catalysis of chemical reactions/synergistic interactions between surfactants, in addition to
the thermodynamic parameters of micellization, they can also occur in different properties
of surfactants, such as the solubilization capacity of hydrophobic molecules. If there are
synergistic interactions between surfactants, and if βij is negative enough, then the critical
micelle concentration of the binary mixture of surfactants can have a lower value than the
critical micelle concentration of the more hydrophobic surfactant in the mixture.

This means that to achieve the same (surface) effect from a binary mixture of surfac-
tants, a smaller amount of surfactants is used than from a more hydrophobic surfactant—the
ecological footprint of the binary mixture is reduced compared to monocomponent surfac-
tants [4–12,16,34–37].

The aim is to determine whether the interaction coefficients between binary pairs of
surfactants (βij) or the tendency towards the self-association of monomeric surfactants
determines the molar fractions of surfactants in the ternary mixed micellar pseudophase
of hexadecyltrimethylammonium bromide (1)—dodecyltrimethylammonium bromide
(2)—sodium deoxycholate (3) (Figure 1, Appendix A). Building units of the examined
ternary micelle are cationic and anionic surfactants, so it is expected that there are syner-
gistic interactions between cationic and anionic surfactants due to Columb’s electrostatic
attractive interactions. The different geometry of the hydrophobic segment of cationic
(1) (2) on one side and anionic (3) surfactants on the other side results in the excess of
molar (conformational) entropy [38]. The different lengths of the hydrocarbon chains
between the examined cationic surfactants (1) and (2) means that surfactants (1) and (2)
have different tendencies towards self-association, i.e., the cationic surfactant with the
longer hydrocarbon chain has the lower value of critical micelle concentration (i.e., greater
tendency towards self-association). In the ternary mixture of surfactants, the molar frac-
tion of sodium-deoxycholate is constant (α3 = 0.6), whereas the cationic surfactant ratio
changes: α1 + α2 + 0.6 = 1 (the molar fraction of surfactants in the starting ternary mixture
of surfactants—which dissolves in the aqueous phase—differs from the molar fraction
of the same surfactants in the formed ternary mixed micelles xi 6= αi). The mole frac-
tion of sodium deoxycholate (3) was chosen based on our earlier investigations into the
solubilization capacity of binary mixtures, i.e., for α3 = 0.6 in a binary mixed micelle, it ap-
proximately corresponds to x3 ≈ 0.5, which is desirable for the solubilization of flavonoids,
isoflavonoids, and polyphenols (bile acid anions form hydrogen bonds with flavonoids
and, thus, are incorporated into the hydrophobic core of the mixed micelle) [39].
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Figure 1. Surfactants: hexadecyltrimethylammonium bromide (1), dodecyltrimethylammonium
bromide (2), and sodium deoxycholate (3).
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2. Results and Discussion

At some values of α1 + α2 + 0.6 = 1, a reaction of ternary mixed micelle formation is
observed (as a summary process of successive and parallel association processes [40], since
the tested micelle does not bind counterions, the charge of the micelle was not taken into
consideration):

ni1(aq) + n22(aq) + n33(aq) � mM
{

x1 =
n1

n1 + n2 + n3
, x2 =

n2

n1 + n2 + n3
, x1 + x2 + x3 = 1

}
(aq)

(4)

where the micelle’s composition and the micelle’s aggregation number correspond to the
mean values over the reaction system. The chemical potentials of surfactants, i.e., ternary
mixed micelles as separate particles, can be expressed by Henry’s law, where the standard
state refers to an infinitely (ideally) diluted solution. Thus, in the equilibrium state for the
process (4), the following holds:(

∂G
∂ξ

)
p,T

= 0 =
(

µ0
mM − n1µ0

1 − n2µ0
2 − n3µ0

3

)
+ RT

(
ln xb

mM − n1ln xb
1 − n2ln xb

2 − n3ln xb
3

)
(5)

In the above equation, µ0
mM is the standard chemical potential of the ternary mixed

micelles in an aqueous solution. At the same equation, µ0
i (i = 1, 2, 3) represents the

standard chemical potential of a surfactant (monomer) in an aqueous solution; xb
mM and xb

i
(i = 1, 2, 3) correspond to the molar fractions of the mixed micelles and surfactants in an
aqueous solution. Multiplying Equation (5) by the reciprocal of the aggregation number of
the ternary mixed micelle (1/(n1 + n2 + n3) and n = n1 + n2 + n3), we obtain the equation:

−
(
µ0

mM − n1µ0
1 − n2µ0

2 − n3µ0
3
)

n
= +RT

(
ln
(

xb
mM

) 1
n − n1

n
ln xb

1 −
n2

n
ln xb

2 −
n3

n
ln xb

3

)
(6)

If the aggregation number of the ternary micelle tends to infinity, then the following
limit value applies:

lim
n→∞

ln
(

xb
mM

) 1
n
= 0 (7)

Therefore, Equation (6) is:

−
(
µ0

mM − n1µ0
1 − n2µ0

2 − n3µ0
3
)

n
= −RT

(
x1ln xb

1 + x2ln xb
2 + x3ln xb

3

)
(8)

∆ f g0
mM = RT

(
x1ln xb

1 + x2ln xb
2 + x3ln xb

3

)
(9)

In Equation (9), xb
i (i = 1, 2, 3) can be expressed as products: critical micellar concen-

trations of the ternary mixture of the surfactant (CMC123) and the molar fraction of the
corresponding surfactant from the binary mixture of surfactants (αi):

∆ f g0
mM = RT(x1ln α1CMC123 + x2ln α2CMC123 + x3ln α3CMC123) (10)

If the limiting value (7) is valid, formation of the ternary mixed micelle can equally
be described using the law of mass action (i.e., association reaction (4)) and the phase
separation method. In the state of equilibrium, the chemical potential of the surfactant
from the ternary mixed micellar pseudophase is equal to the chemical potential of the same
surfactant from the aqueous phase [14–16]:

mixed micellar pseudophase︷ ︸︸ ︷
µ0
(aq) + RTlnCMCi︸ ︷︷ ︸

µ0
mm

+ RTlnxi fi =

water phase︷ ︸︸ ︷
µ0
(aq) + RTlnαiCMC123, (i = 1, 2, 3) (11)
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From the equality of chemical potentials follows the expression (11):

CMCixi fi = αiCMC123, (i = 1, 2, 3) (12)

where fi represents the coefficient of the activity of surfactants in ternary mixed micelle
pseudophases (if the activity coefficient of a particle in a real mixture has a lower value than
1, then the observed particle is thermodynamically more stable than in a hypothetical ideal
mixture under the same conditions [27]). By introducing expression (12) into Equation (10):

∆ f g0
mM

RT
=

x1∆ f g0
M1+x2∆ f g0

M2
+x3∆ f g0

M3︷ ︸︸ ︷
x1ln CMC1 + x2ln CMC2 + x3ln CMC3 + x1 lnx1 + x2ln x2 + x3ln x3︸ ︷︷ ︸

∆gid
mix

+ x1 ln f1 + x2ln f2 + x3ln f3︸ ︷︷ ︸
gE

mix

(13)

we get Equation (13) that is equivalent to expression (1); of course, if the limit value (7)
holds. Rearranging Equation (10) gives:

∆ f g0
mM = RT(x1ln CMC123 + x2ln CMC123 + x3ln CMC123 + x1ln α1 + x2ln α2 + x3ln α3) (14)

and if the limiting value exists:

lim
n→∞

ln α
1
n
i = 0, (i = 1, 2, 3) (15)

then Equation (14) is:

∆ f g0
mM = RT

(x1 + x2 + x3)︸ ︷︷ ︸
1

ln CMC123 + n1ln α
1
n
1 + n2ln α

1
n
2 + n3ln α

1
n
3︸ ︷︷ ︸

0

 (16)

∆ f g0
mM = RTln CMC123 (17)

Thus, if the aggregation number of the ternary mixed micelle is relatively high, then
the same expression (17) is obtained for ∆ f g0

mM, starting from the association reaction (4)
or from expression (1) in the phase separation theory (Figure 2). If classic surfactants with
hydrocarbon chains form mixed micelles with bile acid anions, then molecular dynamic
simulations show that the applicability of limit values (7) and (15) is justified [41]. In
Equation (17), CMC123 is expressed in mol·dm−3 or in the surfactant mole fraction. For
surfactants with low CMC123 values (<10 mM), the values of ∆ f g0

mM would only differ by
the constant term ≈ ln 55.5 = 4.02 when using one or the other unit [42].

In deriving Equation (17) from the associated reaction (4), the micelle charge and the
binding of counterions to the micelle were not taken into account, i.e., partial neutralization
of the micellar charge. The function of the dependence of the specific conductivity of the
aqueous solution of the ternary mixture of the investigated surfactants on the concentration
of the ternary mixture (Figure 3) ( CMC123) was determined spectrofluorimetrically, with
pyrene as the probe molecule (Table 1). This means that the examined ternary mixed micelle
does not bind counterions to its outer shell, which is a consequence of the presence of bile
acid anions (3), which, with their steroid skeleton on the surface of the micelle, disturb the
continuous electrostatic potential of spheroidal symmetry and which exists on the surface
of cationic monocomponent micelles. This then makes it difficult to form a Helmholtz layer
in the Stern double layer—micellar building elements behave like individual surfactant
particles in terms of charge, i.e., they are in a completely dissociated state [21,41].
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monomers from aqueous solution (A) form monocomponent micelles as separated monocompo-
nent micellar pseudophases (B) from which ternary mixed micellar pseudophase (C) is formed
by mixing; process between states (A) and (B) corresponds to the direct association of surfac-
tant monomers (x1∆ f g0

M1 + x2∆ f g0
M2 + x3∆ f g0

M3 = ∆g(A− B ); ∆gid
mix + gE

mix = ∆g(B−C) and
∆ f g0

mM = ∆g(A−C)).
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In the examined ternary mixed micellar pseudophase, each surfactant on each temper-
ature has the negative value of the logarithm of the coefficient of activity; also, the excess
molar Gibbs energy is negative, which means that the real ternary mixed micellar pseu-
dophase is thermodynamically more stable than the ideal micellar pseudophase (Table 1).
By applying Nagarajan’s molecular theory of the micellar state, the following expression
can be written for the excess molar Gibbs free energy [19]:

gE
mix = x1

(
∆hord − RTln ΩmM

ΩM

)
1
+ x2

(
∆hord − RTln ΩmM

ΩM

)
2
+

0︷ ︸︸ ︷
x3

(
∆hord − RTln

ΩmM
ΩM

)
3

+γ(a− x1a1 − x2a2 − x3a3) + x1∆gdipol + x2∆gdipol + ∆gColumb

(18)
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Table 1. Critical micelle concentrations, composition, coefficients of activity, and thermo-
dynamic parameters of ternary mixed micelle hexadecyltrimethylammonium bromide
(1)—dodecyltrimethylammonium bromide (2)—sodium deoxycholate (3).

T
/K

CMC123
/mmolkg−1 x1 x2 x3 lnf 1 lnf 2 lnf 3

gE
mix

/kJmol−1
∆fg0

mM
(17)/kJmol−1

gE
mix

∆fg0
mM

α1 = 0.05; α2 = 0.35; α3 = 0.6
278.1 0.5128 0.33 0.28 0.39 −2.64 −2.56 −2.85 −6.25 −17.52 0.35
283.1 0.5362 0.32 0.29 0.39 −2.53 −2.53 −2.81 −6.22 −17.73 0.35
288.1 0.5471 0.31 0.29 0.39 −2.55 −2.56 −2.76 −6.31 −17.99 0.35
293.1 0.5362 0.31 0.29 0.40 −2.64 −2.66 −2.73 −6.54 −18.35 0.36
298.1 0.5595 0.30 0.31 0.39 −2.58 −2.74 −2.81 −6.74 −18.56 0.36
303.1 0.5704 0.30 0.31 0.39 −2.78 −2.72 −2.81 −6.99 −18.82 0.37
308.1 0.6156 0.31 0.29 0.39 −2.78 −2.85 −2.82 −7.22 −18.94 0.38
313.1 0.7307 0.32 0.31 0.38 −2.62 −2.86 −3.03 −7.41 −18.80 0.39

α1 = 0.1; α2 = 0.3; α3 = 0.6
278.1 0.2251 0.33 0.15 0.52 −2.93 −3.08 −1.72 −5.36 −19.42 0.27
283.1 0.2392 0.30 0.17 0.53 −2.73 −3.06 −1.51 −5.02 −19.63 0.26
288.1 0.2607 0.29 0.18 0.53 −2.63 −3.06 −1.49 −5.03 −19.76 0.25
293.1 0.2885 0.20 0.25 0.56 −1.90 −3.30 −1.31 −4.69 −19.86 0.23
298.1 0.3856 0.21 0.27 0.52 −1.80 −3.10 −1.56 −5.02 −19.48 0.26
303.1 0.4296 0.22 0.27 0.51 −1.95 −2.99 −1.59 −5.16 −19.54 0.26
308.1 0.5107 0.22 0.29 0.49 −1.72 −3.10 −1.93 −5.68 −19.42 0.29
313.1 0.5881 0.23 0.29 0.48 −1.68 −3.06 −2.00 −5.82 −19.36 0.30

α1 = 0.2; α2 = 0.2; α3 = 0.6
278.1 0.1811 0.58 0.11 0.31 −1.71 −1.57 −4.58 −5.96 −19.92 0.30
283.1 0.1425 0.57 0.14 0.29 −1.59 −1.45 −4.75 −5.84 −20.84 0.25
288.1 0.1858 0.57 0.11 0.33 −1.83 −1.66 −4.32 −6.28 −20.58 0.31
293.1 0.2129 0.51 0.02 0.46 −2.82 −2.65 −2.86 −6.91 −20.60 0.34
298.1 0.2455 0.49 0.01 0.50 −3.24 −3.06 −2.51 −7.14 −20.60 0.35
303.1 0.2843 0.46 0.05 0.49 −3.26 −2.99 −2.49 −7.22 −20.57 0.35
308.1 0.3225 0.39 0.12 0.48 −2.66 −3.13 −2.24 −6.44 −20.59 0.31
313.1 0.3772 0.35 0.14 0.51 −2.23 −3.15 −1.83 −5.61 −20.52 0.27

α1 = 0.3; α2 = 0.1; α3 = 0.6
278.1 0.2208 0.35 0.16 0.48 −3.33 −2.35 −2.92 −6.88 −19.46 0.35
283.1 0.2312 0.35 0.16 0.49 −3.53 −2.32 −2.95 −7.18 −19.71 0.36
288.1 0.2444 0.32 0.19 0.48 −3.42 −2.30 −2.88 −7.04 −19.92 0.35
293.1 0.2607 n.d. n.d. n.d. n.d. n.d. n.d. n.d. −20.11 n.d.
298.1 0.2739 0.39 0.11 0.50 −3.34 −2.49 −2.87 −7.47 −20.33 0.37
303.1 0.2587 0.39 0.12 0.49 −3.15 −2.60 −2.68 −7.19 −20.81 0.35
308.1 0.4113 n.d. n.d. n.d. n.d. n.d. n.d. n.d. −19.97 n.d.
313.1 0.4757 0.31 0.23 0.46 −2.31 −2.22 −2.97 −6.75 −19.92 0.34

α1 = 0.35; α2 = 0.05; α3 = 0.6
278.1 0.2272 0.55 0.09 0.35 −3.45 −3.10 −4.76 −8.98 −19.39 0.46
283.1 0.1991 0.55 0.03 0.42 −2.95 −2.55 −3.93 −7.88 −20.06 0.39
288.1 0.2149 0.60 0.02 0.38 −3.14 −2.80 −4.63 −8.86 −20.23 0.44
293.1 0.2557 0.61 0.02 0.37 −2.99 −2.72 −4.67 −8.79 −20.15 0.44
298.1 0.2594 0.59 0.03 0.38 −2.80 −2.63 −4.24 −8.30 −20.46 0.41
303.1 0.2865 0.50 0.11 0.39 −3.36 −3.07 −3.73 −8.75 −20.56 0.43
308.1 0.2737 0.54 0.03 0.43 −2.99 −3.01 −3.28 −7.98 −21.01 0.38
313.1 0.3805 0.54 0.01 0.45 −3.03 −2.57 −3.08 −7.93 −20.49 0.39

Molar Gibbs energy of formation of ternary micellar pseudophase (∆ f g0
mM) is calculated from Equation (17); αi

presents molar fraction of surfactants in starting mixtures of surfactants dissolved in aqueous solution; the relative
standard uncertainty of the critical micelle concentrations 4%.

The first three terms present the change in enthalpy (∆hord) and entropy (expressed
over the number of microstates in the mixed micelle (ΩmM) and in monocomponent micelle
(ΩM)) for each surfactant due to the change in the conformational states of the hydrocarbon
chain in the mixed micelle compared to the conformations in monocomponent micelles [38].
As the anion of deoxycholic acid (3) contains a conformationally rigid steroid skeleton in its
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structure, the conformation of the anion of deoxycholic acid is independent of the micellar
packing, i.e., the structure of the neighboring surfactant and the coordination number of
the micellar pseudophase. The fourth term of the expression (18) originates from the fact
that the effective surface area of the hydrophobic core of the ternary mixed micelle (a) is not
a linear combination of the product of the mole fractions of the surfactants and the effective
surface area of the hydrophobic cores of monocomponent micelles (xiai, (i = 1, 2, 3)) [19].
The fifth term (x1∆gdipol + x2∆gdipol) relates to the cation– dipole interaction between
cationic surfactants and the C3 pseudoaxial and C12 axial OH groups of the deoxycholic
acid anion (3) [22]. The last term takes into account the reduction in repulsive electrostatic
interactions between identical charges in monocomponent micelles during the formation
of ternary mixed micelles with attractive electrostatic interactions between anionic and
cationic surfactants.

In the system of three structurally different surfactants in the aqueous solution, surfac-
tant (1) is the most hydrophobic (has the lowest critical micellar concentration, Figure 1
and Appendix B); thus, surfactant (1) probably first forms a monocomponent micelle in
which there are particles (1) with elongated hydrocarbon chains and more or less globular
conformations [43] (in order to evenly fill the micellar core). The deoxycholic acid anion
incorporates in the micelle by substituting surfactant (1) in globular conformation—the
steroid skeleton of surfactant (3) is localized in the micellar groove, i.e., between elongated
conformations of surfactant (1) as the convex surface (β side of the steroid skeleton with
angular methyl groups) particles (3) are oriented towards the interior of the micelle, while
the axial OH groups and the C17 side chain with carboxylate group towards the aqueous
solution orientation of the deoxycholic acid anion is confirmed by cross peaks in a 2D
ROESY [44,45] experiment (Figures 4 and 5). Surfactant (2), the least hydrophobic surfac-
tant in the examined mixture, probably incorporates with the elongated conformations in
the micelle of surfactants (1) and (3).
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 Figure 4. 2D ROESY spectrum of binary mixed micelles (1)–(3) in 1: 1 molar ratio in aqueous solution
above critical micellar concentration; T = 293.1 K: there are cross-peaks between the proton group
from surfactant (1) (protons from the C4-C11 hydrocarbon segment methylene groups) and the proton
group from (3) surfactant from the C21 steroid skeleton side chain methyl group and protons from
C18 and C19 angular methyl groups of the steroid ring system—region A; in region B, there are cross
peaks between C21 protons from (3) and protons from methyl groups bound to the (1) surfactant
quaternary nitrogen atom.
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Therefore, in ternary micelles of cationic surfactants, (1) and (2) decrease the number
of conformational microstates related to the monocomponent micelles; so, in the expres-
sion (18), the first and the second term are:

x1

(
∆hord − RTln

ΩmM
ΩM

)
1
+ x2

(
∆hord − RTln

ΩmM
ΩM

)
2
> 0 (19)

i.e., the effect of reducing the number of conformational microstates in ternary mixed
micelles thermodynamically destabilizes the real mixed micelle in relation to the state of
the ideal mixed micelles. In monocomponent micelles of surfactants (1) and (2), when
the hydrocarbon chain of cationic surfactant is in globular conformation, the hydrophobic
molecular surface is exposed to hydration [43]. The substitution of globular conformations
of cationic surfactants with deoxycholic acid anions results in a decrease in the degree of
hydrophobic hydration since the effective hydrophobic surface of the ternary mixed micelle
decreases compared to monocomponent micelles (Figure 5). Thus, the fourth term in the
expression (18) is:

γ(a− x1a1 − x2a2 − x3a3) < 0 (20)

and thermodynamically stabilizes real mixed micelles towards the ideal mixed micelles.
Since the intermolecular interactions between the dipole OH surfactant (3) and cationic
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surfactants (1) and (2) do not exist in monocomponent micelles (1) and (2), the last terms of
expression (18) have a stabilizing contribution to the ternary mixed micelle compared to
the ideal ternary mixed micelle (Figure 6):

x1∆gdipol + x2∆gdipol + ∆gColumb < 0 (21)
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The ternary mixed micelle’s excess molar Gibbs free energy is gE
mix < 0 (Table 1), hence,

it must be:

|x1(∆gord)1 + x2(∆gord)2| <
∣∣∣γ(a− x1a1 − x2a2 − x3a3) + x1∆gdipol + x2∆gdipol + ∆gColumb

∣∣∣ (22)

where ∆gord = ∆hord − RTln(ΩmM/ΩM), ord = ordering.
In the case of a ternary mixture of surfactants with the following composition: α1 = 0.05;

α2 = 0.35; α3 = 0.6 (Table 1), in the formed ternary mixed micellar pseudophase, the molar
fractions of cationic surfactants are approximately equal to each other; although, in the
initial mixture, the amount of cationic surfactants with a shorter hydrocarbon chain (2) is
seven times greater than the amount of cationic surfactants with a longer hydrocarbon
chain (1).

In binary micellar pseudophases, both cationic surfactants have synergistic interac-
tions of similar strengths with the deoxycholic acid anion (Appendix B). This means that in
the formation of the ternary mixed micellar pseudophase system (i.e., surfactant aqueous
solution), the more hydrophobic surfactant (1) that is incorporated into the mixed micelle,
the micelle is more stabilized. In this way, a larger amount of water molecules from the hy-
dration layer above the hydrophobic molecular surface of the monomeric surfactant (water
molecules that have a lower entropy compared to water molecules from the interior of the
aqueous solution [46]) move into the interior of the aqueous solution; thus, the entropy of
the system increases (especially at lower temperatures [47–52]). The relation gE

mix/∆ f g0
mM

grows with the temperature rise (Table 1), since with increasing temperatures the difference
in entropy between water molecules in the hydration layer above the hydrophobic molecu-
lar surface and water molecules inside the aqueous solution decreases [46], i.e., in Equation
(1), the absolute value of first three terms decreases (x1∆ f g0

M1 + x2∆ f g0
M2 + x3∆ f g0

M3), in
which, according to Nagarajan and Tanford, the entropy change due to the transfer of the
hydrophobic molecular segment from the aqueous phase to the hydrophobic environment
is incorporated (along with the dehydration of the hydrophobic surface) [19]. However,
since gE

mix contains electrostatic attractive interactions between cationic and anionic surfac-
tants that do not change with the temperature, the relation gE

mix/∆ f g0
mM slightly decreases

(gE
mix according to Equation (1) is incorporated in ∆ f g0

mM; both Gibbs energies slighly
increase with temperature (Table 1) due to the increase in hydrophobic interactions (i.e.,
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van der Waals interactions [46]) that do not exist in monocomponent micelles as they are
not linear functions of hydrophobic interactions from monocomponent micelles). Simi-
larly, gE

mix/∆ f g0
mM changes in the case of the ternary mixtures of the aqueous solutions

of surfactants of the composition α1 = 0.1; α2 = 0.3; α3 = 0.6 (Table 1). However, in this
case with a temperature rise, it decreases the molar fraction of surfactant (1), while the
molar fraction of surfactant (2) grows in the micellar pseudophase. At higher temperatures,
surfactant (1) probably takes some globular conformations as well, so the surface below
globular surfactant (1) easily (without steric repulsive interactions) fills with surfactants
with shorter hydrocarbon chains. For other examined mixtures, the relation gE

mix/∆ f g0
mM

does not change with the temperature, but remains more or less constant (with some
fluctuation). Namely, with the increase in α1 in the ternary mixed micellar pseudophase,
the probability increases, especially at higher temperatures, so that a certain fraction of
surfactant (1) receives a more or less globular conformation, whereby in the hydrocarbon
chains of surfactant (1), partial synclinal and synperiplanar conformations are formed
(i.e., conformations with repulsive interactions). [38]. Thus, the part of the electrostatic
attractive interaction (energy) is used for achieving certain conformation states (especially
at higher temperatures) [21], which results in a more or less constant value of the relation
gE

mix/∆ f g0
mM in the temperature dependence.

3. Materials and Methods

All chemicals were used from the original manufacturer’s packaging (Table 2).

Table 2. The origin and information of used chemicals.

Compound Origin CAS Number Purity

Hexadecyltrimethylammonium
bromide Alfa Aesar 57-09-0 >0.980

Dodecyltrimethylammonium
bromide Alfa Aesar 1119-94-4 >0.980

Sodium Deoxycholate Alfa Aesar 302-95-4 >0.980
Pyrene Aldrich 129-00-0 >0.980

3.1. Determinations of Critical Micellar Concentration

Stock solutions of surfactants (hexadecyltrimethylammonium bromide (1), dode-
cyltrimethylammonium bromide (2), sodium deoxycholate (3)) prepared in deionized water
were mixed in the ternary mixtures with different molar ratios of surfactants (0.5:3.5:0.6,
1:3:6, 2:2:6, 3:1:6, 0.35:0.05:0.6). In the ternary mixture of the ratio 0.5:3.5:0.6, the ratio
between surfactants 1:2 is 0.125:0.875; 1:3 is 0.077:0.923, and 2:3 is 0.368:0.632; these binary
mixtures of surfactants were also measured in order to calculate the interaction factors
of surfactants in the binary mixtures that were used for calculations in the ternary mix-
ture. Accordingly, in Table 3, all the measured ternary and binary mixtures of surfactants
are presented.

Table 3. Molar ratios of measured mixtures of surfactants hexadecyltrimethylammonium bromide
(1)—dodecyltrimethylammonium bromide (2)—sodium deoxycholate (3); ternary mixtures and
corresponding secondary mixtures.

Ternary Mixture
1:2:3

Corresponding Binary Mixtures

1:2 1:3 2:3

0.5:3.5:0.6 0.125:0.875 0.077:0.923 0.368:0.632
1:3:6 0.25:0.75 0.143:0.857 0.33:0.67
2:2:6 0.5:0.5 0.25:0.75 0.25:0.75
3:1:6 0.75:0.25 0.33:0.67 0.25:0.75

3.5:0.5:6 0.875:0.125 0.368:0.632 0.125:0.875
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Critical micellar concentrations of monocomponent surfactants and their secondary
and ternary mixtures were measured spectrofluorimetrically on Cary Eclipse fluorescence
spectrophotometer (Agilent, Waldbronn, Germany) using pyrene as the probe molecule.
The ratio of the pyrene fluorescence intensities of the first and the third vibronic peaks (a
measure of the environmental polarity) was measured in the function of total concentration
of surfactant on temperatures (278.1–313.1 K, in intervals of 5 K; the temperature variation
is 0.1 K) and critical micelle concentrations were determined by curve fitting with the
Boltzmann equation (OriginaLab 9 software) (Appendix C). Physico-chemical parameters
of examined surfactant mixtures were calculated using Mathlab.

Thermodynamic parameters of ternary mixed micelle (Table 1) are calculated accord-
ing to RST protocol [11,32,33] from data (coefficients of interaction) of binary systems
(Appendix B).

3.2. Conductivity Measurements

The goal of the conductometry measurement was to determine the fraction of counter
ion binding to the mixed micelle. Conductivity was measured by gradual dilution of
surfactant mixture solutions with deionized water. The data were acquired using a Consort
C 860 conductometer. Equipment was calibrated with KCl solution ranging from 0.01
to 1.0 mol·dm−3 of known κ (specific conductivity). The cell containing solutions was
immersed in a water bath, controlling the temperature variation at 0.1 K. The temperature
was kept constant at 293.1 K.

3.3. Conductivity Measurements

For the NMR experiments, samples were prepared as D2O solution and 0.7 mL of
solution were used for the measurement. Spectra were recorded on a Bruker AVANCE
III HD 400 MHz spectrometer, equipped with Prodigy cooled probe head. For ROESY
experiments, standard Bruker pulse program with water suppression (roesyphpr.2) was
used with the spin-lock pulse length of 350 ms.

4. Conclusions

The examined ternary mixed micelle is thermodynamically more stable than a hypo-
thetical ideal mixed micelle (gE

mix < 0). Thermodynamic stabilization is most likely a result
of electrostatic attractive interactions between cationic surfactants and anions of deoxy-
cholic acid (3), as well as ion–dipole interactions involving the OH groups of the surfactant
(3). If a ternary mixture has an α1 lower than 0.2, then the gE

mix/∆fg0
mM grows with the

temperature; if α1 is higher than 0.2, then the ratio of Gibbs free energies gE
mix/∆fg0

mM is
more or less constant.
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Appendix A

Bile salts are biosurfactants, with significant physiological roles. Due to their capacity
to alter different physiological barriers (membranes or cell contacts in the body), they are
used as drug carriers in pharmaceutical formulations and have a positive influence on the
transport process of some drugs as well as on their pharmacodynamics. This increases the
transport of some drugs to specific tissues (modulation of blood–brain barrier) or into the
interior of cells. Bile salt anions create relatively tiny micelles with up to 20 structural units.
Additionally, when combined with other surfactants, they can create mixed micelles with a
significant hydrophobic domain, increasing their ability for solubilization [53–55].

Quaternary ammonium salts hexadecyltrimethylammonium bromide (1) and dode-
cyltrimethylammonium bromide (2) are surfactants that have diverse, important appli-
cations: (1) is used as a tumoricidal irritant in colorectal cancer surgery and in hydatid
cyst operations, has shown anticancer cytotoxicity with various cancer cell lines and in
pharmaceutical industry, and it is used as an antimicrobial agent. (2) acts as a foaming
agent, stabilizer, paint stripper dispersing agent, and bactericidal lotions, plays an impor-
tant function in dying process of fabrics and in textile industry and waste water treatment
and it is used in the extraction process of DNA by using meat products [56–58].

Appendix B

Critical micelle concentrations, composition and interaction parameter of binary mix-
tures hexadecyltrimethylammonium bromide (1)—dodecyltrimethylammonium bromide
(2)—sodium deoxycholate (3): (A) 1 + 2, (B) 1 + 3 and (C) 1 + 2.

Table A1. (A).

278.1 K 283.1 K 288.1 K

α1 CMC x1 β CMC x1 β CMC x1 β
0 11.541 11.336 11.968

0.125 1.1347 0.54 −5.83 1.2236 0.53 −5.59 1.2373 0.53 −5.82
0.25 1.292 0.62 −3.94 1.3209 0.61 −3.93 1.3995 0.61 −3.98
0.5 1.3505 0.8 −1.98 1.3937 0.79 −1.97 1.4857 0.78 −2.03
0.75 1.1186 0.92 −1.44 1.1532 0.91 −1.53 1.231 0.9 −1.67

0.875 0.6595 0.79 −5.39 0.9829 0.91 −2.53 0.9342 0.85 −3.75
1 0.9218 0.9627 1.043

293.1 K 298.1 K 303.1 K

α1 CMC x1 β CMC x1 β CMC x1 β
0 13.431 14.195 14.154

0.125 1.2769 0.54 −5.98 1.29 0.53 −6.36 1.3318 0.51 −6.69
0.25 1.5974 0.62 −3.69 1.7761 0.62 −3.73 1.8451 0.59 −4.12
0.5 1.454 0.77 −2.46 1.4785 0.73 −3.04 1.5562 0.69 −3.56
0.75 1.4066 0.98 0.11 1.548 0.93 −1.05 1.7702 0.87 −1.81

0.875 1.0048 0.87 −3.53 1.2032 0.88 −3.13 1.0255 0.77 −5.47
1 1.0795 1.2513 1.5614

308.1 K 313.1 K

α1 CMC x1 β CMC x1 β
0 18.59 21.161

0.125 1.4271 0.53 −6.78 1.5269 0.53 −6.7
0.25 1.964 0.62 −4.12 2.0639 0.62 −4.25
0.5 1.6482 0.73 −3.41 2.028 0.77 −2.68
0.75 1.6398 0.88 −2.24 1.9487 0.96 −0.65

0.875 1.379 0.88 −3.39 1.4815 0.89 −3.27
1 1.4525 1.526

The relative standard uncertainty of the critical micelle concentrations 4%.
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Table A2. (B).

278.1 K 283.1 K 288.1 K

α1 CMC x1 β CMC x1 β CMC x1 β
0 62.565 59.484 59.773

0.077 0.4622 0.47 −9.08 0.4849 0.47 −8.86 0.5181 0.47 −8.76
0.142 0.4421 0.51 −8.21 0.5314 0.50 −7.46 0.5862 0.50 −7.23
0.25 0.2247 0.53 −10.00 0.2371 0.53 −9.89 0.2359 0.53 −9.98
0.33 0.1204 0.54 −12.11 0.1115 0.54 −12.53 0.1249 0.54 −12.15

0.368 0.1084 0.55 −12.41 0.1208 0.55 −11.98 0.1200 0.54 −12.19
1 0.9218 0.9627 1.043

293.1 K 298.1 K 303.1 K

α1 CMC x1 β CMC x1 β CMC x1 β
0 63.919 65.737 66.675

0.077 0.5305 0.47 −8.87 0.5945 0.46 −8.75 0.6029 0.45 −9.13
0.142 0.9253 0.50 −5.61 0.9521 0.49 −5.85 10.113 0.48 −6.06
0.25 0.2461 0.53 −10.01 0.2656 0.52 −10.07 0.3052 0.51 −10.00
0.33 0.1319 0.54 −12.13 0.1464 0.53 −12.08 0.2129 0.53 −11.08

0.368 0.1333 0.54 −11.96 0.1708 0.54 −11.33 0.2051 0.53 −11.10
1 10.795 12.513 15.614

308.1 K 313.1 K

α1 CMC x1 β CMC x1 β
0 79.129 75.430

0.077 0.6499 0.46 −9.07 0.6559 0.46 −9.02
0.142 10.336 0.49 −6.19 10.376 0.49 −6.17
0.25 0.4474 0.53 −8.64 0.6196 0.53 −7.35
0.33 0.2058 0.54 −11.38 0.2682 0.54 −10.33

0.368 0.2510 0.55 −10.45 0.2682 0.54 −10.20
1 14.525 1.526

The relative standard uncertainty of the critical micelle concentrations 4%.

According to Guggenheim’s original work [20], the interaction coefficient is constant
over the entire range of the molar fraction of the binary mixture. However, the geometry
of the quasi-crystalline lattice, i.e., the coordination number, does not change either. For
surfactants, due to packing problems [22,59], the coordination number of the micellar
pseudophase can change, and thus the interaction coefficient also changes. The nega-
tive values of the interaction coefficient for the binary cationic mixed micelle (1)–(2) are
probably the result of the different length of the hydrocarbon chains between the cationic
surfactants, which then facilitates their packing [43]. The literature CMC value of sodium
deoxycholate (3) at room temperature measured by fluorescence method with pyrene as
the probe molecule is 5.3 mM [60] which is lower than our experimentally determined
value. However, Subuddhi and Mishra declared CMC values of sodium deoxycholate to be
5 mM at 288 K, 6 mM at 298 K, and 8 mM at 308 K, when measured by fluorescence lifetime
measurement, which trend is in consistent with our results [61]. Hexadecyltrimethylammo-
nium bromide’s (1) CMC value was measured by conductometry and is 0.94 mM at 298 K
(we measured 1.24 mM) [62], while dodecyltrimethylammonium bromide’s (2) CMC value
is 15.9 at 293 K (our measurement is 13.43 mM) [63].
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Table A3. (C).

278.1 K 283.1 K 288.1 K

α1 CMC x1 β CMC x1 β CMC x1 β
0 62.565 59.484 59.773

0.077 10.071 0.37 −10.26 10.482 0.37 −10.00 10.510 0.37 −10.02
0.142 0.9878 0.40 −9.54 0.9926 0.39 −9.37 10.065 0.39 −9.41
0.25 0.9773 0.42 −8.96 0.9811 0.42 −8.79 0.9774 0.42 −8.91
0.33 0.9533 0.44 −8.89 0.9928 0.44 −8.59 10.072 0.43 −8.64

0.368 0.8739 0.45 −9.12 0.8248 0.45 −9.21 0.8578 0.44 −9.16
1 11.541 11.336 11.968

293.1 K 298.1 K 303.1 K

α1 CMC x1 β CMC x1 β CMC x1 β
0 63.919 65.737 66.675

0.077 11.182 0.37 −10.12 11.360 0.37 −10.21 12.982 0.36 −9.67
0.142 10.112 0.39 −9.75 10.745 0.39 −9.66 11.088 0.39 −9.56
0.25 0.9737 0.42 −9.29 0.9962 0.42 −9.36 10.693 0.42 −9.09
0.33 0.9777 0.44 −9.10 0.9749 0.43 −9.28 10.397 0.43 −9.05

0.368 0.8993 0.44 v 0.8621 0.44 −9.66 0.9062 0.44 v
1 13.431 14.195 14.154

308.1 K 313.1 K

α1 CMC x1 β CMC x1 β
0 79.129 75.430

0.077 13.316 0.37 −10.46 23.629 0.33 −7.99
0.142 11.430 0.39 −10.32 12.114 0.38 −10.16
0.25 10.285 0.42 −10.13 11.103 0.41 −9.92
0.33 10.085 0.44 −10.02 10.266 0.43 −10.07

0.368 10.693 0.44 −9.69 10.047 0.43 −10.07
1 18.59 21.161

The relative standard uncertainty of the critical micelle concentrations 4%.

Critical micelle concentrations of ionic surfactants, as bile acid anions (bile salts),
sodium dodecylsulfate, cetyltrimethylammonium bromide, etc., show temperature depen-
dence whose function is U-shaped. On the certain temperature, TH micelle formation is
exclusively entropic in nature- entropy driven T = (293.1–298.1) K, i.e., the change in the
enthalpy of micellization is zero, so on this temperature is the highest hydrophobic effect
(the passage of water molecules from the hydration layer above the hydrophobic surface of
the monomeric surfactant into the interior of the aqueous solution). As the temperature
increases, the entropy difference between water molecules from the bulk of the aqueous
solution and water molecules from the hydration layer above the hydrophobic molecular
surface decreases, which means that with an increase in temperature, the change (increase)
in entropy of micellization decreases (the entropic effect of micellization decreases), i.e.,
the tendency towards self-association decreases, which manifests itself with an increase in
the critical micellar concentration with temperature (this is in agreement with the results
from Table 1 and Appendix B). There is also a temperature (T > 350.1 K) TS, on which
the change in the entropy of micellization is zero, the smallest hydrophobic effect, and
micellization is the result of the enthalpic effect—enthalphy becomes the major driving
force for aggregation (hydrophobic interaction). Hydrophobic interaction is the result of
the induced dipol interactions between hydrophobic surfaces of the micelle building units
in the micelle core. Deviations are possible if the aqueous solution of surfactant contains
certain additives that disturb the structure of the bulk water [46–52,64].
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Appendix C

Each tested aqueous solution of the ternary mixture of surfactants was transparent,
without sedimentation or cloudiness.
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