
Citation: Son, E.; Lee, Y.M.; Kim,

S.-H.; Kim, D.-S. Photoprotective

Effects of Processed Ginseng Leaf

Administration against UVB-Induced

Skin Damage in Hairless Mice.

Molecules 2023, 28, 6734.

https://doi.org/10.3390/

molecules28186734

Academic Editor: Claudio Ferrante

Received: 2 August 2023

Revised: 20 September 2023

Accepted: 20 September 2023

Published: 21 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Photoprotective Effects of Processed Ginseng Leaf
Administration against UVB-Induced Skin Damage in
Hairless Mice
Eunjung Son 1, Yun Mi Lee 1, Seung-Hyung Kim 2 and Dong-Seon Kim 1,*

1 KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
ejson@kiom.re.kr (E.S.); candykong@kiom.re.kr (Y.M.L.)

2 Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea;
sksh518@dju.kr

* Correspondence: dskim@kiom.re.kr; Tel.: +82-42-868-9676

Abstract: Although ginseng leaves contain a larger amount of ginsenosides than the roots, studies on
the protective effect of oral administration of ginseng leaves against photoaging are lacking. Processed
ginseng leaves (PGL) prepared by acid reaction to increase effective ginsenoside content showed
higher levels of Rg3 (29.35 mg/g) and Rk1 (35.16 mg/g) than ginseng leaves (Rg3 (2.14 mg/g) and
Rk1 (ND)), and ginsenosides Rg3 and Rk1 were evaluated as active ingredients that protected human
keratinocytes against UVB-induced cell damage by increasing cell proliferation and decreasing matrix
metalloproteinase (MMP)-2 and 9 secretion. Herein, the effect of oral PGL administration (50, 100,
or 200 mg/kg, daily) against photoaging in HR-1 hairless mice was assessed by measuring wrinkle
depth, epidermal thickness, and trans-epidermal water loss for 16 weeks. The PGL treatment group
showed reduced skin wrinkles, inhibited MMP-2 and MMP-9 expression, and decreased IL-6 and
cyclooxygenase-2 levels. These data suggest that oral PGL administration inhibits photoaging by
inhibiting the expression of MMPs, which degrade collagen, and inhibiting cytokines, which induce
inflammatory responses. These results reveal that ginseng leaves processed by acid reaction may
serve as potential functional materials with anti-photoaging activities.

Keywords: Panax ginseng C.A. Mayer; ginseng leaf; acid reaction; skin photoaging; ultraviolet irradiation

1. Introduction

The skin is directly exposed to air pollution, tobacco smoke, sunlight, and other
environmental factors [1–3]. Ultraviolet (UV) radiation is a prominent external factor
contributing to skin aging, commonly referred to as photoaging. This phenomenon occurs
concurrently with the normal aging process [2,4]. Photoaged skin is characterized by
roughness, pronounced wrinkles, and pigmentation [2,5,6].

Chronically sun-exposed skin is characterized by increased wrinkle formation, which
is thought to be the result of equilibrium disturbance of the accumulation and degradation
of extracellular matrix proteins, such as collagen [7]. The degradation of collagen is typically
tightly controlled by the activity of matrix metalloproteinases (MMPs) and their natural
inhibitors. MMP-1 produced by dermal fibroblasts and epidermal keratinocytes cleaves
type I collagen into specific fragments. These fragments are then further hydrolyzed by
MMP-2 and MMP-9, thereby inhibiting wrinkle production [8].

Currently, synthetic and mineral UV filters are widely recommended for the protection
of skin against UV. However, there has been a growing debate regarding the safety of these
molecules owing to their association with comedones, contact dermatitis, photosensitiv-
ity, and endocrine disorders [9,10]. Therefore, extensive research has been conducted to
examine the anti-inflammatory and antioxidant properties of naturally occurring botan-
ical compounds, such as flavonoids, polyphenols, and monoterpenes [5,11]. Modern
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approaches to the utilization of such herbal compounds include topical formulations and
dietary supplementation [12–14].

Oral photoprotectants do not directly protect the skin against damage caused by high-
energy photons. Therefore, they have no effect on erythema or other harmful effects of
sun exposure. However, their user-friendly nature renders them advantageous in multiple
ways. In addition, their efficiency is not affected by external conditions, and their half-life
can be determined through pharmacological methods. Furthermore, their effectiveness
remains consistent, regardless of the degree of absorption through the skin. The ideal
photoprotectant is a skin-friendly oral photoprotectant [15–17].

Ginseng (Panax ginseng Meyer) is a perennial plant belonging to the family Araliaceae
and has been used as a medicinal plant or as a natural tonic in many Asian countries for
more than 2000 years. Ginsenosides are responsible for the majority of pharmacological
efficacies of ginseng [18]. They are categorized into three types based on aglycone moieties:
protopanaxadiol (PPD)-type ginsenosides (Ra1, Ra2, Ra3, Rb1, Rb2, Rb3, Rc, Rd, Rg3, Rh2,
etc.), protopanaxatriol (PPT)-type ginsenosides (Re, Rg1, Rg2, Rf, Rh1, etc.), and oleanolic
acid-type ginsenosides (Ro, etc). Many studies have shown that oral ingestion of ginseng
roots yields notable beneficial effects in humans [19]. However, the pharmacological ad-
vantages of ginseng leaves have not been comprehensively investigated. In addition to
their cost-effectiveness, ginseng leaves contain many types of bioactive ingredients, such as
polysaccharides, phytosterols, flavonoids, polyacetylene alcohols, peptides, and a greater
amount of ginsenosides Rb1, Rb2, Rd, Rc, and Re than ginseng roots [20–22]. Deglyco-
sylated ginsenosides (Rg3, Rh2, etc.) are more easily absorbed into the body and exhibit
relatively high levels of pharmacological activity compared to major ginsenosides [23,24].
The deglycosylation of ginsenosides can be achieved using liquid-based catalysts, solid
acid catalysts, and fermentation methods using food-grade enzymes, food-compatible
microorganisms, and immobilized enzymes [25,26]. Nevertheless, enzymes are generally
expensive, and acid hydrolysis may be corrosive, unstable, and non-specific.

Research has shown that wrinkles can be improved by topical application of ginseng
root and its processed products [27]. However, there is currently no research on wrinkle
improvement through oral administration of standardized ginseng leaves with increased
amounts of minor ginsenosides through acid hydrolysis and ginseng leaf extract. In this
study, we tried to confirm that oral administration of processed ginseng leaf (PGL) with
increased minor ginsenoside content had a significant effect on UV-induced skin wrinkles
in hairless mice.

2. Results and Discussion
2.1. Examination of PGL and Ginsenoside Content

As shown in Table 1, a comparison of the HPLC chromatograms of unprocessed and
PGL extracts illustrated that this process transformed primary ginsenosides, such as Rg1,
Re, Rb1, Rc, Rb2, and Rd, into deglycosylation and/or dehydrated ginsenosides, such as
Rg3 and Rk1. The content of ginsenoside Rg3 in PGL increased by more than 10 times
that of ginseng leaf extract, and Rk1 was also newly produced (Supplement Figure S1).
The PGL produced by the acid reaction yielded higher amounts of ginsenosides Rg3 and
Rk1 than ginseng, red ginseng, and ginseng leaves [28–30]. Ginseng leaves are a valuable
source of ginsenosides. Moreover, hydrolysis is a useful processing method that increases
the content of Rg3 and Rk1 by 10-fold.
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Table 1. The quantity of ginsenosides of processed ginseng leaf extract and ginseng leaf extract.

Content (mg/g)
Processed Ginseng Leaf Extract Ginseng Leaf Extract

Rg1 10.5 ± 3.30 74.2 ± 2.79
Re 30.00 ± 0.85 167.7 ± 1.24

Rg2 39.3 ± 1.77 32.4 ± 0.98
Rb1 4.9 ± 0.06 15.6 ± 0.17
Rc 11.30 ± 0.01 37.2 ± 0.21

Rb2 23.5 ± 1.98 54.0 ± 2.07
Rb3 5.0 ± 0.11 12.6 ± 0.16
Rd 83.7 ± 2.31 125.1 ± 4.19
Rg3 29.4 ± 1.50 2.1 ± 0.00
Rk1 35.2 ± 1.76 -

2.2. Protective Effects of PGL against UVB-Induced Damage in HaCaT Cells

Before analyzing the protective effects of the ginsenosides Rg3 and Rk1 on UVB-
induced damage in HaCaT cells, we evaluated the cytotoxicity of ginsenosides Rg3 and
Rk1 at various concentrations (5, 10, 20, and 40 µg/mL). The results showed that the
ginsenosides Rg3 and Rk1 were not toxic at any concentration and that they promoted
cell proliferation at concentrations higher than 10 µg/mL (Figure 1A). The viability of
HaCaT cells was evaluated following UVB irradiation. We investigated the cytoprotective
effects of ginsenosides Rg3 and Rk1 at a concentration of 40 mJ/cm2, which causes cell
damage. UVB-induced damaged HaCaT cells were treated with the ginsenosides Rg3 and
Rk1. Consequently, the cell viability of untreated cells was reduced to 65.9% compared to
that of the control group. However, 20 and 40 µg/mL ginsenosides Rg3 and Rk1 led to
significant amelioration of UVB-induced damage (Figure 1B).

UV irradiation induces the expression of MMPs, such as MMP-2 and MMP-9, resulting
in the degradation of various extracellular matrix components and characteristic changes
associated with skin photoaging [31]. The expression of MMP-2 and MMP-9 was evaluated
using a Quantikine enzyme-linked immunosorbent assay (ELISA) Kit (Molecular Devices,
LLC, San Jose, CA, USA). When HaCat cells were exposed to UVB irradiation, the secretion
of MMP-2 and MMP-9 increased. With increasing concentrations of the ginsenosides
Rg3 and Rk1, the secretion of MMP-2 and MMP-9 was inhibited compared to that in the
UVB-irradiated cells. The concentrations of MMP-2 and MMP-9 were 5-fold higher in
the UVB irradiation group than in the control group. In contrast, the levels of MMP-2
(Figure 1C) and MMP-9 (Figure 1D) were significantly reduced in the ginsenosides Rg3
and Rk1 treatment groups, respectively (p < 0.005). Thus, these results suggest that the
ginsenosides Rg3 and Rk1 inhibit MMP expression and wrinkle formation due to aging.
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Figure 1. Cell viability of human keratinocytes after ultraviolet B (UVB) exposure and the effects
of the ginsenosides Rg3 and Rk1 on matrix metalloproteinase (MMP)-2 and MMP-9 secretion by
HaCaT cells exposed to UVB. Cells were treated with the ginsenosides Rg3 and Rk1 before UVB
irradiation. HaCaT cell viability after pretreatment with the ginsenosides Rg3 and Rk1 at various
concentrations (A). Cell viability of cells treated with the ginsenosides Rg3 and Rk1, followed by
UVB irradiation (B). The levels of secreted MMP-2 (C) and MMP-9 (D) were measured in the culture
medium of UVB-irradiated HaCaT cells. #### p < 0.001 vs. control group. ** p < 0.01 vs. control group.
*** p < 0.005 vs. control group. **** p < 0.001 vs. control group.

2.3. Body Weight Change

To investigate the effects of 50, 100, and 200 mg/kg PGL treatments and UVB irradia-
tion on the body weight of HR-1 mice, we measured and recorded body weight at weeks 8
and 16 during the treatment process. As shown in Figure 2, the vehicle group exhibited
slightly reduced body weight, but there was no significant difference. However, in the
normal and PGL administration groups, body weight increased significantly at week 16
(p < 0.005). It was confirmed that the vehicle group had a significant difference in body
weight compared with that in the normal group at week 16 (p < 0.01). Exposure to ar-
tificial UVB causes stress to animal skin and weight loss, validating that UVB served
as a stress-inducing agent in mice, but PGL administration was effective in maintaining
body weight.
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Figure 2. Body weight changes in HR-1 hairless mice exposed to UVB irradiation. ## p < 0.01 vs.
normal group. *** p < 0.005 vs. 8W test group. **** p < 0.001 vs. 8W test group (Figure 1B).

2.4. Effect of PGL on Wrinkle Formation Induced by UV Irradiation

UV, the main cause of DNA damage, has been reported to induce MMPs in skin tissue,
which can break down collagen proteins and the skin layer, resulting in the loss of elasticity
and wrinkle formation [32].

After 12 weeks of UVB irradiation, the depth of wrinkles in the vehicle group increased
compared to that in the normal group. However, in the PGL-treated group, the depth of the
wrinkles was lower than that in the vehicle control group. After 16 weeks of UVB exposure,
we validated that the mice in the vehicle group had developed many wrinkles on the dorsal
skin due to UV irradiation (Figure 3A). Moreover, we validated that PGL administration
decreased wrinkle formation in a dose-dependent manner (Figure 3B). These results suggest
that MMP expression induced by UV irradiation can be restored to normal levels by oral
administration of PGE.

2.5. Effect of PGL on Epidermal Thickness of the Dorsal Skin of Mice Exposed to UV

UV radiation can increase the thickness of the epidermis and cause the skin to become
thicker. UV-irradiated mice (vehicle) exhibited thicker epidermis than mice in the control
group, which were not exposed to UV irradiation. In the PGL-treated groups, epidermal
thickness was significantly reduced in a dose-dependent manner (p < 0.01) compared to
that in the vehicle group (Figure 4A). As shown in Figure 4B, hematoxylin and eosin (H&E)
staining revealed that PGL administration significantly decreased epidermal thickness.
Moreover, we observed histological changes in the dorsal skin.
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Figure 3. Effects of PGL on the mean depth of UVB-induced skin wrinkles (A). The analysis of skin
dermobella obtained from the dorsal skin of hairless mice exposed to UVB irradiation (B). Values are
mean ± S.E.M. for five mice. #### p < 0.001 vs. normal group. * p < 0.05 vs. vehicle group. ** p < 0.01
vs. vehicle group. **** p < 0.001 vs. vehicle group.
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Figure 4. Epidermal thickness of the dorsal skin of mice exposed to ultraviolet irradiation (A).
Analysis of epidermal thickness by hematoxylin and eosin staining. Scale bar = 100 µm (B). Values
are expressed as the mean ± S.E.M. for five mice. #### p < 0.001 vs. normal group. ** p < 0.01 vs.
vehicle group. *** p < 0.005 vs. control group. **** p < 0.001 vs. vehicle group.

2.6. Effect of PGL on Transepidermal Water Loss (TEWL) in the Dorsal Skin of Mice Exposed to UV

To evaluate the protective effect of PGL against water loss, we analyzed the UVB-
irradiated dorsal skin of mice (Figure 5). UVB irradiation led to increased TEWL of skin by
4.2-fold compared to that in the normal group. However, PGL administration decreased
TEWL compared to the vehicle group. These results indicate that PGL is safe and effective
in preventing photoaging.
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Figure 5. The effect of PGL on epidermal TEWL by TM 300 Tewameter. Values are mean ± S.E.M.
#### p < 0.001 vs. normal group. **** p < 0.001 vs. vehicle group.

2.7. Effect of PGL on UVB-Induced Expression of Wrinkle-Related Genes

MMP expression is increased by UV irradiation [33]. Accordingly, the mRNA expres-
sion of MMP-2 and -9 was examined to determine whether PGE oral administration can
reduce MMP expression after UVB irradiation (Figure 6). The expression of MMP-2 and
MMP-9 was significantly upregulated in the vehicle group compared to that in the normal
group (p < 0.01). However, PGL administration (100 and 200 mg/kg) significantly decreased
the expression levels of these genes (p < 0.05). These results suggest that MMP expression
induced by UV irradiation can be restored to normal levels by oral administration of PGE.

Molecules 2023, 28, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 5. The effect of PGL on epidermal TEWL by TM 300 Tewameter. Values are mean ± S.E.M. 
#### p < 0.001 vs. normal group. **** p < 0.001 vs. vehicle group. 

2.7. Effect of PGL on UVB-Induced Expression of Wrinkle-Related Genes 
MMP expression is increased by UV irradiation [33]. Accordingly, the mRNA expres-

sion of MMP-2 and -9 was examined to determine whether PGE oral administration can 
reduce MMP expression after UVB irradiation (Figure 6). The expression of MMP-2 and 
MMP-9 was significantly upregulated in the vehicle group compared to that in the normal 
group (p < 0.01). However, PGL administration (100 and 200 mg/kg) significantly de-
creased the expression levels of these genes (p < 0.05). These results suggest that MMP 
expression induced by UV irradiation can be restored to normal levels by oral administra-
tion of PGE. 

 
Figure 6. Effects of PGL on matrix metalloproteinase-2 (A) and -9 (B) mRNA expression in the skin 
of mice exposed to UVB. Values are expressed as the mean ± S.E.M. for five mice. ## p < 0.001 vs. 
normal group. * p < 0.05 vs. vehicle group. ** p < 0.01 vs. vehicle group. 

2.8. Effect of PGL on UVB-Induced Inflammation 
COX-2 is an inflammatory mediator, while IL-6 is a proinflammatory cytokine [34]. 

Such inflammatory mediators further induce collagen degradation by promoting apopto-
sis in dermal fibroblasts, enhancing the expression of MMP-2 and MMP-9, and inhibiting 
the expression of procollagen [35]. The production of the pro-inflammatory cytokines IL-
6 and COX-2 in the skin tissue of hairless mice was examined by real-time polymerase 

Figure 6. Effects of PGL on matrix metalloproteinase-2 (A) and -9 (B) mRNA expression in the skin
of mice exposed to UVB. Values are expressed as the mean ± S.E.M. for five mice. ## p < 0.001 vs.
normal group. * p < 0.05 vs. vehicle group. ** p < 0.01 vs. vehicle group.

2.8. Effect of PGL on UVB-Induced Inflammation

COX-2 is an inflammatory mediator, while IL-6 is a proinflammatory cytokine [34].
Such inflammatory mediators further induce collagen degradation by promoting apoptosis
in dermal fibroblasts, enhancing the expression of MMP-2 and MMP-9, and inhibiting the
expression of procollagen [35]. The production of the pro-inflammatory cytokines IL-6
and COX-2 in the skin tissue of hairless mice was examined by real-time polymerase chain
reaction (RT-PCR) (Figure 7). UVB exposure increased IL-6 and COX-2 expression. PGL
administration (100 and 200 mg/kg) significantly attenuated the expression of IL-6 and
resulted in a decline of COX-2 expression (p < 0.05). Thus, PGL administration can reduce
skin wrinkles caused by inflammation. These results signify that PGL administration
ameliorated UVB-induced skin inflammation.
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3. Materials and Methods
3.1. Materials

Ethanol, acetonitrile, methanol, and water were of HPLC grade (J. T. Baker, Phillips-
burg, NJ, USA). Acetic acid was purchased from Sigma-Aldrich (St. Louis, MO, USA).
The reference standards, ginsenosides Rg1, Re, Rg2, Rb1, Rc, Rb2, Rb3, Rd, Rg3, and Rk1,
were purchased from Chemfaces (Wuhan, Hubei, China). Dulbecco’s modified Eagle’s
medium (DMEM), penicillin/streptomycin, and fetal bovine serum (FBS) were purchased
from Gibco BRL (Grand Island, NY, USA). Human total MMP-2 and MMP-9 ELISA kits
were obtained from R&D Systems (Minneapolis, MN, USA).

3.2. Preparation of Processed Ginseng Leaf Extract (PGL)

Dried ginseng leaves were purchased from Shaanxi EDW Biotech Co., Ltd. (Xian,
China). The leaf tissue (500 g) was extracted with 50% ethanol for 4 h in vacuo, evaporated,
and then freeze dried to obtain 618.5 g of ginseng leaf extract (yield 23.7%). Ginseng leaf
powder (100 g) was rehydrated using 400 mL of water, and 12 mL of acetic acid was added.
The mixture was refluxed for 1 h, and a precipitate was obtained. The precipitate obtained
was then washed with water, freeze-dried, and labeled as PGL.

3.3. Analytical Conditions

An Ultra Performance Liquid Chromatography (UPLC, Waters, MA, USA) System
equipped with a quaternary pump, auto-sampler, and photodiode array detector with
Acquity UPLC® BEH C18, 100 × 2.1 mm, 1.7 µm was used for analysis. Elution was
performed using solvent A (water) and solvent B (acetonitrile) in a gradient elution at a
flow rate of 0.5 mL/min as follows: 0–5 min, 18–18% B; 5–7 min, 18–20% B; 7–12 min,
20–28% B; 12–18 min, 28–30% B; 18–25 min, 30–35% B; 25–28 min, 35–35% B; 28–30 min,
35–40% B; 30–38 min, 40–40% B; 38–40 min, 40–46% B; 40–45 min, 46–46% B; 45–47 min,
46–100% B; 47–48 min, 100–18% B; 48–50 min, and 18–18% B. The detection wavelength
was 200 nm. The column temperature was maintained at 40 ◦C, and the injection volume
was 2 µL.

3.4. Cell Culture and UVB Irradiation

Human dermal keratinocytes (HaCaT, Korean Cell Line Bank, Seoul, Republic of
Korea) were cultured in DMEM containing 10% (v/v) FBS and antibiotics for 24 h in a 37 ◦C,
5% CO2 incubator. Cells were sub-cultured every 2–3 days, and 120 mJ/cm2 of area was
irradiated with UV rays (wavelength, 31 nm) to induce cell damage. UVB irradiation and
cell treatment were performed as follows: cells were treated with various concentrations of
ginsenosides Rg3 and Rk1 (5, 10, 20, 40, and 80 µg/mL) for 24 h and then exposed to UVB
irradiation at a dose of 40 mJ/cm2 for 1 min (UV-X000; LAB24, Seoul, Republic of Korea).
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The final UVB irradiation intensity on the upper surface of the plate was 0.6 mW/m2. Cells
not pre-treated or exposed to UVB irradiation were used as a control group.

3.5. Cytotoxicity Assay

HaCaT cells were seeded in 100 µL of medium in a 96-well plate (1 × 104 cells/well).
After 24 h of incubation, cells were treated with ginsenosides Rg3 and Rk1 at the indicated
concentrations and subjected to UVB irradiation for an additional 24 h. The effects of Rg3 and
Rk1 on keratinocytes were determined by MTT (3-(4,5-Dimethylthiazol-2-yl) assay (Sigma-
Aldrich Chemical Co., St. Louis, MO, USA). MTT solution (50 µg) was added to each well,
and incubation was performed at 37 ◦C for 4 h. The supernatant was discarded, and the
formazan crystals were dissolved in 100 µL of dimethyl sulfoxide. Cell viability was evaluated
by measuring absorbance using a microplate reader (Bio-Rad, Hercules, CA, USA).

3.6. Evaluation of MMP-2 and MMP-9 Secretion

HaCaT cells were seeded in 96-well plates (5 × 104 cells/well) and pretreated with the
ginsenosides Rg2 and Rk1 using the same protocol. Cells were exposed to UVB radiation,
and the supernatant of culture medium was obtained and centrifuged at 189× g for 10 min.
The concentration of MMP-2 and MMP-9 in the culture medium was determined using a
microplate reader (Molecular Devices, LLC, San Jose, CA, USA) using MMP-2 (Cat. No.
DMP200) and MMP-9 (Cat. No. DMP900) ELISA kits.

3.7. Experimental Animals

Hos:HR-1 hairless mice (6 weeks old) were purchased from Orient Bio (Seongnam,
Republic of Korea). Mice were individually housed under conditions of a 12-h light and
dark cycle and 22 ± 2 ◦C with a relative humidity of 50 ± 10%. The mice had ad libitum
access to food and water. All animal experimental protocols were reviewed and approved
by the Animal Protection Committee of Daejeon University (Daejeon, Republic of Korea;
DJUARB2022-029).

3.8. PGL Treatment and Experimental Design

HR-1 hairless mice were randomly divided into five groups (n = 5 per group):
(1) normal untreated controls (normal); (2) untreated UV-induced vehicle (vehicle);
(3) UV-induced + 50 mg/kg PGL (PGL 50); (4) UV-induced + 100 mg/kg PGL (PGL
100); and (5) UV-induced + 200 mg/kg PGL (PGL 200). Mice in the PGL treatment group
received oral administration of PGL by gavage daily.

3.9. UV Irradiation and Body Weight

The dorsal skin of HR-1 mice was subjected to UVB irradiation using a UVB lamp
(15 W; UV intensity, 100 µW/cm2; maximum wavelength, 312 nm; Ieda Boeki Co., Tokyo,
Japan). For 12 weeks, dietary intake and body weight were measured at regular intervals
each week [36,37]. Body weight was measured and recorded on Mondays on weeks 8 and
16 to investigate the effects of PGL treatment and UVB irradiation on the body weight of
HR-1 mice.

3.10. Skin Wrinkles and TEWL

The degree of skin wrinkles caused by UVB was determined by observing the formation
of wrinkles. To evaluate the formed wrinkles, we anesthetized HR-1 mice in the 16th week by
injecting them intraperitoneally with chloral hydrate. Following exposure to UVB irradiation
exposure, skin wrinkles were measured at weeks 10, 12, 14, and 16 using Double-stick Disc
(3M, Neuss, Germany) and DETAX system II (MIXPAC, Sulzer Ltd., Winterthur, Switzerland).
The Double-Stick Disc was stuck to the mouse skin and removed 2–3 min later. The wrinkles
formed on the disc were evaluated based on the scoring system reported by Tsukahara [36].
According to the scoring system, wrinkle-free skin is level 0, multiple shallow wrinkles is level
1, multiple wrinkles is level 2, and multiple deep wrinkles is level 3. After removing the disc,
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we washed the skin with 70% ethanol to visually analyze and photograph skin wrinkles using
a USB Digital Microscope (×400; CE FOROHS, Shenzhen, Guangdong, China). TEWL was
measured on week 16 using the TM 300 Tewameter (Courage & Khazaka Electronics, Cologne,
Germany).

3.11. RT-PCR Analysis

Mice were euthanized after 16 weeks of UVB irradiation, and total RNA was extracted
from the dorsal skin tissue using the RNeasy Mini Kit (Qiagen, Hilden, Germany). Total
RNA was converted to cDNA using the iScript cDNA Synthesis Kit (Bio-Rad) according to
the manufacturer’s protocol. After cDNA synthesis, quantitative RT-PCR was conducted
using an ABI StepOnePlus™ Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA) and iQ SYBR Green Supermix (Bio-Rad). The sequences of the primers used in
this study are shown in Table 2. The PCR conditions were denaturation at 95 ◦C for 30 s,
annealing at 95 ◦C for 15 s, and extension at 72 ◦C for 60 s. The data were evaluated using
the ∆∆Ct method and expressed relative to GAPDH.

Table 2. Sequences of the primers used for the real-time polymerase chain reaction.

Gene Primer Sequence

MMP-2
Forward 5′-CAG GGA ATG AGT ACT GGG TCT ATT-3′

Reverse 5′-ACT CCA GTT AAA GGC AGC ATC TAC-3′

MMP-9
Forward 5′-AAT CTC TTC TAG AGA CTG GGA AGG AG-3′

Reverse 5′-AGC TGA TTG ACT AAA GTA GCT GGA-3′

IL-6 FAM 5′-CTGTGTAATGAAAGACGGCACACCCACC-3′

COX-2
Forward 5′-ATG GAT CGA AGA CTA CGT GCA A-3′

Reverse 5′-GGG ATT TCC CAT AAG TCC TTT C-3′

3.12. Histological Observation of Skin

After 16 weeks, the dorsal skin of the mice located between the ilia was harvested
under anesthesia, and later, the mice were euthanized through a sodium pentobarbital
overdose. The skin was fixed with 4% paraformaldehyde for 24 h, and then a 30 µm
frozen section was obtained. Histological characteristics and epidermal thickness were
investigated by H&E staining. Histological changes were investigated and imaged using a
light microscope (Olympus, Tokyo, Japan).

3.13. Statistical Analyses

All data are presented as the mean ± standard error of the mean. Significant dif-
ferences were analyzed using a one-way analysis and Dunnett’s test. All analyses were
performed using GraphPad Prism 7.0 (GraphPad Software, San Diego, CA, USA). Statistical
significance was set to a p-value of less than 0.05.

4. Conclusions

Compared to ginseng roots, ginseng leaves contained a greater amount of beneficial
ginsenosides. PGL exerted an inhibitory effect on UV-induced skin aging. This effect was
achieved by increasing the content of minor ginsenosides, such as Rg3 and Rk1, in ginseng
leaves through acid reactions. Following PGL administration for 16 weeks in HR-1 hairless
nude mice, the mean depth of skin wrinkles, epidermal thickness, TEWL, MMP-2, MMP-9,
and IL-6 improved in a dose-dependent manner. Therefore, oral administration of PGL
may be an effective herbal remedy for skin aging caused by UV damage and should be
verified in future clinical studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28186734/s1, Figure S1: Representative chromatogram
of ginseng leaf and processed ginseng leaf extract.
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