Decomposition of SO2 on Ni(111) Surface and the Effect of Metal Doping: A First-Principles Study
Abstract
:1. Introduction
2. Results
2.1. Absorption of S and O on Different Metal Surfaces
2.2. SO2 on Ni(111)
2.2.1. Configurations of SO2 on Ni(111) Surface
2.2.2. SO2 Decomposition on Ni(111)
- Pathway1: SO2-tbn
- Pathway2: SO2-tht
- Pathway3: SO2-ttt
2.3. SO2 on Doped Ni(111)
2.3.1. Doping Effect
2.3.2. Adsorption
2.3.3. Decomposition on Doped Metal Surfaces
2.4. Analysis
3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Aas, W.; Mortier, A.; Bowersox, V.; Cherian, R.; Faluvegi, G.; Fagerli, H.; Hand, J.; Klimont, Z.; Galy-Lacaux, C.; Lehmann, C.M.B.; et al. Global and regional trends of atmospheric sulfur. Sci. Rep. 2019, 9, 953. [Google Scholar] [CrossRef]
- Grabke, H.J.; Reese, E.; Spiegel, M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits. Corros. Sci. 1995, 37, 1023. [Google Scholar] [CrossRef]
- Oesch, S.; Faller, M. Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminum. A short literature survey and results of laboratory exposures. Corros. Sci. 1997, 39, 1505–1530. [Google Scholar] [CrossRef]
- Parkinson, G.S. Iron oxide surfaces. Surf. Sci. Rep. 2016, 71, 272–365. [Google Scholar] [CrossRef]
- Forzatti, P.; Lietti, L. Catalyst deactivation. Catal. Today 1999, 52, 165–181. [Google Scholar] [CrossRef]
- Bartholomew, C.H. Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 2001, 212, 17–60. [Google Scholar] [CrossRef]
- Argyle, M.D.; Bartholomew, C.H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269. [Google Scholar] [CrossRef]
- Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011.
- Babich, I.V.; Moulijn, J.A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel 2003, 82, 607–631. [Google Scholar] [CrossRef]
- Song, C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 2003, 86, 211–263. [Google Scholar] [CrossRef]
- Ma, X.; Sprague, M.; Song, C. Deep Desulfurization of Gasoline by Selective Adsorption over Nickel-Based Adsorbent for Fuel Cell Applications. Ind. Eng. Chem. Res. 2005, 44, 5768–5775. [Google Scholar] [CrossRef]
- Ryzhikov, A.; Bezverkhyy, I.; Bellat, J. Reactive adsorption of thiophene on Ni/ZnO: Role of hydrogen pretreatment and nature of the rate determining step. Appl. Catal. B Environ. 2008, 84, 766–772. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Tian, S.; Chai, Y.; Liu, C. Reactive adsorption of thiophene on Ni/ZnO adsorbent: Effect of ZnO textural structure on the desulfurization activity. J. Nat. Gas Chem. 2010, 19, 327–332. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Han, H.; Yang, M.; Wang, L.; Zhang, Y.; Jiang, Z.; Li, C. Ultra-deep desulfurization via reactive adsorption on Ni/ZnO: The effect of ZnO particle size on the adsorption performance. Appl. Catal. B Environ. 2012, 119–120, 13–19. [Google Scholar] [CrossRef]
- Meng, X.; Huang, H.; Shi, L. Reactive Mechanism and Regeneration Performance of NiZnO/Al2O3-Diatomite Adsorbent by Reactive Adsorption Desulfurization. Ind. Eng. Chem. Res. 2013, 52, 6092–6100. [Google Scholar] [CrossRef]
- Qiu, L.; Xiang, Y.; Xin, M.; Zou, K.; Zheng, A.; Xu, G. Structural verification of nickel sulfide on spent S Zorb adsorbent as studied by HRTEM and XPS. J. Mol. Struct. 2020, 1202, 127215. [Google Scholar] [CrossRef]
- Peng, B.; Zou, K.; Song, Y.; Xin, M.; Yang, X.; Lu, L.; Liu, J.; Lin, W. Development of Ni/ZnO desulfurization adsorbent with high stability: Formation of Zn2SiO4 and the impact from substrate. Chem. Eng. J. 2021, 409, 127374. [Google Scholar] [CrossRef]
- Song, Y.; Peng, B.; Yang, X.; Jiang, Q.; Liu, J.; Lin, W. Trail of sulfur during the desulfurization via reactive adsorption on Ni/ZnO. Green Energy Environ. 2021, 6, 597–606. [Google Scholar] [CrossRef]
- Gould, B.D.; Baturina, O.A.; Swider-Lyons, K.E. Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2, H2S and COS. J. Power Sources 2009, 188, 89–95. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, R.; Rodriguez, J.A. First-principles study of the adsorption of sulfur on Pt(111). Score-level shifts and the nature of the Pt-S bond. Phys. Rev. B Condens. Matter Mater. Phys. 2002, 65, 155409/1. [Google Scholar] [CrossRef]
- Wang, J.; Liu, M. Surface regeneration of sulfur-poisoned Ni surfaces under SOFC operation conditions predicted by first-principles-based thermodynamic calculations. J. Power Sources 2008, 176, 23–30. [Google Scholar] [CrossRef]
- Turner, M.D.; Laurence, R.L.; Yngvesson, K.; Conner, W.C. The effect of microwave energy on three-way automotive catalysts poisoned by SO2. Catal. Lett. 2001, 71, 133–138. [Google Scholar] [CrossRef]
- Sakai, Y.; Koyanagi, M.; Mogi, K.; Miyoshi, E. Theoretical study of adsorption of SO2 on Ni(111) and Cu(111) surfaces. Surf. Sci. 2002, 513, 272–282. [Google Scholar] [CrossRef]
- Harrison, M.J.; Woodruff, D.P.; Robinson, J. Density functional theory investigation of the structure of SO2 and SO3 on Cu(111) and Ni(111). Surf. Sci. 2006, 600, 1827–1836. [Google Scholar] [CrossRef]
- Wei, X.; Dong, C.; Chen, Z.; Xiao, K.; Li, X. Density functional theory study of SO2-adsorbed Ni(1 1 1) and hydroxylated NiO(1 1 1) surface. Appl. Surf. Sci. 2015, 355, 429–435. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, P.; Hrbek, J.; Rodriguez, J. The chemisorption of SO2 on the Cu/Au(111) surface: Interplay between ensemble and electronic effects. Surf. Sci. 2005, 592, 25–36. [Google Scholar] [CrossRef]
- Mozo, R.; Agusta, M.K.; Rahman, M.; Diño, W.A.; Rodulfo, E.T.; Kasai, H. Pathways for SO2 dissociation on Cu(100): Density functional theory. J. Phys. Condens. Matter. 2007, 19, 365244. [Google Scholar] [CrossRef]
- Lin, X.; Hass, K.C.; Schneider, W.F.; Trout, B.L. Chemistry of Sulfur Oxides on Transition Metals I: Configurations, Energetics, Orbital Analyses, and Surface Coverage Effects of SO2 on Pt(111). J. Phys. Chem. B 2002, 106, 12575–12583. [Google Scholar] [CrossRef]
- Tang, H.; Trout, B.L. Electronic Composition−Property Relationship Applied to SO2 Chemisorption on Pt(111) Surfaces, Alloys, and Overlayers. J. Phys. Chem. B 2005, 109, 6948–6951. [Google Scholar] [CrossRef]
- Happel, M.; Luckas, N.; Viñes, F.; Sobota, M.; Laurin, M.; Görling, A.; Libuda, J. SO2 adsorption on Pt(111) and oxygen precovered Pt(111). A combined infrared reflection absorption spectroscopy and density functional study. J. Phys. Chem. C 2011, 115, 479–491. [Google Scholar] [CrossRef]
- Ungerer, M.J.; Santos-Carballal, D.; Santos-Carballal, D.; Santos-Carballal, D.; de Leeuw, N.H. Interaction of SO2 with the Platinum (001), (011), and (111) Surfaces: A DFT Study. Catalysts 2020, 10, 558. [Google Scholar] [CrossRef]
- Jiang, R.; Guo, W.; Li, M.; Zhu, H.; Li, J.; Zhao, L.; Fu, D.; Shan, H. Density Functional Study of the Reaction of SO2 on Ir(111). J. Phys. Chem. C 2009, 113, 18223–18232. [Google Scholar] [CrossRef]
- Yeh, C.; Ho, J. A First-Principle Calculation of Sulfur Oxidation on Metallic Ni(111) and Pt(111), and Bimetallic Ni@Pt(111) and Pt@Ni(111) Surfaces. ChemPhysChem 2012, 13, 3194–3203. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.N.; Sharma, V.; Hamzehlouyan, T.; Epling, W.; Mhadeshwar, A.B.; Ramprasad, R. SOx Oxidation Kinetics on Pt(111) and Pd(111): First-Principles Computations Meet Microkinetic Modeling. J. Phys. Chem. C 2014, 118, 6934–6940. [Google Scholar] [CrossRef]
- Galea, N.M.; Lo, J.M.H.; Ziegler, T. A DFT study on the removal of adsorbed sulfur from a nickel(111) surface: Reducing anode poisoning. J. Catal. 2009, 263, 380–389. [Google Scholar] [CrossRef]
- Niu, J.; Ran, J.; Du, X.; Qi, W.; Zhang, P.; Yang, L. Effect of Pt addition on resistance to carbon formation of Ni catalysts in methane dehydrogenation over Ni-Pt bimetallic surfaces: A density functional theory study. Mol. Catal. 2017, 434, 206–218. [Google Scholar] [CrossRef]
- Qiu, H.; Ran, J.; Niu, J.; Guo, F.; Ou, Z. Effect of different doping ratios of Cu on the carbon formation and the elimination on Ni (111) surface: A DFT study. Mol. Catal. 2021, 502, 111360. [Google Scholar] [CrossRef]
- Jing, W.; Shen, H.; Qin, R.; Wu, Q.; Liu, K.; Zheng, N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem. Rev. 2023, 123, 5948–6002. [Google Scholar] [CrossRef]
- Das, N.K.; Saidi, W.A. Effects of Cr-doping on the adsorption and dissociation of S, SO, and SO2 on Ni(111) surfaces. J. Chem. Phys. 2017, 146, 154701. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Wang, P.; Shi, X.R.; Zhang, Y.; Wei, M. The influence of Co nucleation in Co Ni single atom alloy on low-temperature methane dry reforming with DFT simulations and microkinetic modeling. Mol. Catal. 2023, 549, 113515. [Google Scholar] [CrossRef]
- Halgren, T.A.; Lipscomb, W.N. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49, 225–232. [Google Scholar] [CrossRef]
Configuration 1 | ΔEa | Ni-S/Ni-O 2 | S-O 3 | ∠O-S-O 4 | |
---|---|---|---|---|---|
a | SO2-tnt | −0.44 | 1.981/NM/1.982 | (1.522, 1.522) | 111.1 |
b | SO2-ntn | −0.65 | NM/2.066/NM | (1.456, 1.456) | 117.8 |
c | SO2-ntn-2 | −0.66 | NM/2.066/NM | (1.456, 1.456) | 117.8 |
d | SO2-nbn | −1.08 | NM/(2.140, 2.140)/NM | (1.476, 1.477) | 117.0 |
e | SO2-tbn | −1.22 | 2.064/(2.141, 2.142)/NM | (1.458, 1.527) | 114.1 |
f | SO2-nbt | −1.23 | NM/(2.136, 2.145)/2.065 | (1.459, 1.527) | 114.2 |
g | SO2-tht | −1.19 | 2.167/(1.994, 2.734, 2.732)/1.995 | (1.544, 1.544) | 109.0 |
h | SO2-ttt | −1.03 | 2.129/2.019/2.038 | (1.554, 1.559) | 110.5 |
i | SO2-btt | −1.11 | (2.064, 2.174)/2.129/2.026 | (1.540, 1.597) | 108.7 |
j | SO2-ttb | −1.09 | 2.100/2.138/(2.069, 2.074) | (1.543, 1.590) | 108.8 |
k | SO2-gas | - | - | (1.449, 1.449) | 119.5 |
Configuration | Ni-Oa | Ni-Ob | Ni-S | S-Oa | S-Ob | ΔEr* |
---|---|---|---|---|---|---|
SO2-tbn | 2.065 | NM | 2.136, 2.145 | 1.459 | 1.527 | −1.23 |
TS-tbn-1 | 1.819, 1.916 | NM | 2.081, 2.145, 2.242 | 2.318 | 1.463 | −0.44 |
SO-O-tbn | 1.820, 1.840, 1.886 | NM | 2.059, 2.091, 2.155 | 2.975 | 1.475 | −1.67 |
TS-tbn-2 | 1.823, 1.841, 1.845 | 1.926, 1.988 | 2.130, 2.158, 2.332 | 2.897 | 1.960 | −1.28 |
S-O-O-tbn | 1.840, 1.840, 1.845 | 1.838, 1.842, 1.845 | 2.136, 2.137, 2.140 | 2.574 | 2.579 | −1.68 |
Configuration | Ni-Oa | Ni-Ob | Ni-S | S-Oa | S-Ob | ΔEr |
---|---|---|---|---|---|---|
SO2-tht | 1.994 | 1.995 | 2.167 | 1.544 | 1.544 | −1.19 |
TS-tht-1 | 1.926, 1.930 | 2.013 | 2.090, 2.500 | 1.970 | 1.551 | −0.54 |
SO-O-tht | 1.822, 1.839, 1.909 | 1.980 | 2.127, 2.193, 2.420 | 2.758 | 1.574 | −1.46 |
TS-tht-2 | 1.832, 1.846, 1.864 | 1.923, 1.953 | 2.114, 2.138, 2.279 | 2.858 | 1.938 | −1.29 |
S-O-O-tht | 1.838, 1.843, 1.847 | 1.838, 1.843, 1.846 | 2.136, 2.137, 2.139 | 2.575 | 2.573 | −1.69 |
Configuration | Ni-Oa | Ni-Ob | Ni-S | S-Oa | S-Ob | ΔEr |
---|---|---|---|---|---|---|
SO2-ttt | 2.019 | 2.038 | 2.129 | 1.554 | 1.559 | −1.03 |
TS-1-ttt | 1.925, 1.928 | 2.015 | 2.088, 2.469 | 1.969 | 1.555 | −0.53 |
SO-O-ttt | 1.822, 1.839, 1.907 | 1.979 | 2.125, 2.193, 2.426 | 2.747 | 1.575 | −1.44 |
TS-2-ttt | 1.835, 1.846, 1.865 | 1.924, 1.965 | 2.119, 2.147, 2.277 | 2.863 | 1.935 | −1.29 |
S-O-O-ttt | 1.838, 1.843, 1.847 | 1.838, 1.843, 1.846 | 2.136, 2.137, 2.139 | 2.575 | 2.573 | −1.69 |
Types | Doping Metal | ||||
---|---|---|---|---|---|
Pristine | Cu | Co | Rh | Pd | |
SO2-tht-1 | −1.19 | −0.77 | −1.21 | −0.87 | −0.78 |
SO2-tht-2 | −1.01 | −1.07 | −0.97 | −0.94 | |
SO2-ttt-1 | −1.03 | −0.73 | −1.05 | −0.64 | −0.68 |
SO2-ttt-2 | −0.50 | −1.08 | −0.76 | −0.60 | |
SO2-ttt-3 | −1.09 | −1.04 | −0.64 | −0.68 | |
SO2-nbt-1 | −1.23 | −0.83 | −1.18 | −0.94 | −0.83 |
SO2-nbt-2 | −1.07 | −1.28 | −0.96 | −0.88 |
Reaction | Energy | Doping Metal | ||||
---|---|---|---|---|---|---|
Pristine | Cu | Co | Rh | Pd | ||
SO2(g) → SO2(ad) | ΔEads/eV | −1.19 | −1.01 | −1.07 | −0.97 | −0.94 |
SO2(ad) → SO(ad) + O(ad) | Ea/eV | 0.66 | 0.66 | 0.63 | 1.08 | 1.16 |
ΔEr/eV | −0.27 | 0.00 | −0.35 | 0.14 | 0.34 | |
SO(ad) + O(ad) → S(ad) + O(ad) + O(ad) | Ea/eV | 0.17 | 0.39 | 0.06 | 0.69 | 0.60 |
ΔEr/eV | −0.23 | 0.20 | −0.33 | 0.50 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, C.; Wang, W.; Li, G.; Zhu, B. Decomposition of SO2 on Ni(111) Surface and the Effect of Metal Doping: A First-Principles Study. Molecules 2023, 28, 6739. https://doi.org/10.3390/molecules28186739
Liu L, Zhang C, Wang W, Li G, Zhu B. Decomposition of SO2 on Ni(111) Surface and the Effect of Metal Doping: A First-Principles Study. Molecules. 2023; 28(18):6739. https://doi.org/10.3390/molecules28186739
Chicago/Turabian StyleLiu, Lingtao, Chenxin Zhang, Wenshou Wang, Genghong Li, and Bingtian Zhu. 2023. "Decomposition of SO2 on Ni(111) Surface and the Effect of Metal Doping: A First-Principles Study" Molecules 28, no. 18: 6739. https://doi.org/10.3390/molecules28186739
APA StyleLiu, L., Zhang, C., Wang, W., Li, G., & Zhu, B. (2023). Decomposition of SO2 on Ni(111) Surface and the Effect of Metal Doping: A First-Principles Study. Molecules, 28(18), 6739. https://doi.org/10.3390/molecules28186739