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Abstract: In order to separate the colloidal in high-turbidity water, a kind of magnetic composite
(Fe3O4/HBPN) was prepared via the functional assembly of Fe3O4 and an amino-terminal hyper-
branched polymer (HBPN). The physical and chemical characteristics of Fe3O4@HBPN were investi-
gated by different means. The Fourier Transform infrared spectroscopy (FTIR) spectra showed that the
characteristic absorption peaks positioned at 1110 cm−1, 1468 cm−1, 1570 cm−1 and 1641 cm−1 were
ascribed to C–N, H–N–C, N–H and C=O bonds, respectively. The shape and size of Fe3O4/HBPN
showed a different and uneven distribution; the particles clumped together and were coated with an
oil-like film. Energy-dispersive spectroscopy (EDS) displayed that the main elements of Fe3O4/HBPN
were C, N, O, and Fe. The superparamagnetic properties and good magnetic response were re-
vealed by vibrating sample magnetometer (VSM) analysis. The characteristic diffraction peaks of
Fe3O4/HBPN were observed at 2θ = 30.01 (220), 35.70 (311), 43.01 (400), 56.82 (511), and 62.32 (440),
which indicated that the intrinsic phase of magnetite remained. The zeta potential measurement
indicated that the surface charge of Fe3O4/HBPN was positive in the pH range 4–10. The mass loss of
Fe3O4/HBPN in thermogravimetric analysis (TGA) proved thermal decomposition. The –C–NH2 or
–C–NH perssad of HBPN were linked and loaded with Fe3O4 particles by the N–O bonds. When the
Fe3O4/HBPN dosage was 2.5 mg/L, pH = 4–5, the kaolin concentration of 1.0 g/L and the magnetic
field of 3800 G were the preferred reaction conditions. In addition, a removal efficiency of at least
86% was reached for the actual water treatment. Fe3O4/HBPN was recycled after the first application
and reused five times. The recycling efficiency and removal efficiency both showed no significant
difference five times (p > 0.05), and the values were between 84.8% and 86.9%.

Keywords: hyperbranched polymer; Fe3O4; coating; magnetic separation; water treatment

1. Introduction

The water environment is of vital importance to the sustainable development of
mankind [1]. In light of the rapid industrial development, urbanization and growing
utilization of chemical materials, as well as the increased concentration of raw turbidity
and suspended sediment in water treatment caused by extreme weather (heavy precipita-
tion and floods), water treatment is facing unprecedented challenges, such as black odor,
eutrophication, etc. [2–4]. Therefore, it is of great significance to study the separation of sus-
pended particles in high-turbidity water. Kaolin is a kind of typical mineral, and abundant
colloidal particles exist in its suspension. The colloidal particles increase the turbidity in
solution and are difficult to settle under gravity alone due to the electrostatic interactions.

The major methodologies currently used for separating suspended particles include
filtration, centrifugation, flotation, electrophoresis, flocculation, etc. [5–7]. Flocculation is
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often applied as a common method, which can be defined as the process by which a solute
particle in a solution forms aggregates named flocs. The flocculation process can occur in
the mechanisms acting alone or in combination with charge neutralization, electrostatic
patch, bridging and sweeping flocculation [8–10]. Magnetic flocculation is a branch of the
flocculation technology that removes the pollutants by reaction with magnetic flocculant.
The strategies are based on the replacement of traditional flocculant in water treatment by
magnetic flocculant. Due to the addition of the magnetic materials, the flocs characterized
by a high magnetic susceptibility are formed and separated with the external magnetic
field. Moreover, the settling velocity of magnetic floc is much faster under the influence of
magnetic force than that in the situation of gravity [11].

In the process of magnetic flocculation separation, the selection of magnetic floccu-
lant plays a key role in improving the separation effect. Typically, it is obtained by the
functional assembly of magnetic materials with conventional flocculants, which combines
both characteristics of magnetic separation and flocculation simultaneously [12]. Fe3O4 is a
common magnetic material which can be used for the functional assembly of flocculants.
But single Fe3O4 nanoparticles are usually insoluble in water, and the flocculation effect
could be affected due to agglomeration and precipitation [13,14]. After functional assembly,
the resulting magnetic composites not only improve the surface charge and polymerization
properties of Fe3O4 but also improve the electrophoretic mobility and isoelectric point [15].
Polymers including inorganic polymers, organic polymers, and biopolymers are often
used in the assembly of magnetic materials [16–18]. Most of these polymers are linear or
chained with one or more –N group functional groups (e.g., –NH2, –CONH2, –N+) in the
main or branch chains. These functional groups can be grafted onto the surface of Fe3O4
by electrostatic force and Van Der Waals force to form active sites and improve magnetic
separation efficiency [19]. Among the polymers, hyperbranched polymers (HBP) show
great potential for the functional assembly with Fe3O4 due to the highly branched and
unique three-dimensional configuration [20–22].

In the three-dimensional quasi-spherical structure of HBP, a large number of internal
cavities and active –N groups are filled. In functional assembly with Fe3O4, supramolecular
assemblers with multiple force forms (Van Der Waals forces, hydrogen bonds) are con-
structed based on the non-covalent interactions of the three-dimensional super-branching
structure [23–25]. When reacted with the target pollutant, the magnetic composites showed
excellent removal properties by forming electrostatic interactions and hydrogen bond in-
teractions with the analytes [26–28]. The magnetic composites obtained by an embedded
assembly of HBP and Fe3O4 improve the assembly and regeneration stability [29]. In addi-
tion, the risk of the active site being replaced or complex reaction during water treatment is
overcome, and the adsorption performance of the material is maintained [30].

In the research, amino-terminated hyperbranched magnetic composites were prepara-
tion by an embedded assembly of three-dimensional HBPN and Fe3O4. The physical and
chemical characteristics were analyzed with the methods of FTIR, scanning electron mi-
croscopy (SEM), EDS, VSM, XRD, XPS, zeta potential and TGA. Meanwhile, the separation
properties of the magnetic nanocomposite were evaluated by applying to the removal and
separation of suspended particles in high turbidity water. Also, the recycling and reusing
effects were explored.

2. Results and Discussion
2.1. Characterization of Fe3O4/HBPN
2.1.1. FTIR

The FTIR spectra of Fe3O4 and Fe3O4/HBPN are shown in Figure 1. The absorption
peak at 586 cm−1 was attributed to the vibration peak of Fe–O [31–33]. For the sample of
Fe3O4/HBPN, the peak at 1468 cm−1 was caused by the bending vibration of the H–N–C
bond connected to the amino group [34,35]. In addition, the characteristic absorption peaks
corresponding to the C=O and N–H stretching vibrations were observed at 1641 cm−1 and
1570 cm−1 due to the created amido bond [36]. A small peak at 1189 cm−1 was ascribed to
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C–N stretching vibration [37,38]. The typical functional bonds of the amino functional group
were detected on the spectra of Fe3O4/HBPN in the corresponding position, which indicated
that the amino functional group was coated on the surface of Fe3O4/HBPN successfully.
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Figure 1. FTIR spectra of Fe3O4 and Fe3O4/HBPN.

2.1.2. XRD

In order to analyze the crystalline structure of Fe3O4/HBPN composites, analysis of
the XRD spectra of Fe3O4/HBPN was carried out. In the XRD patterns shown in Figure 2,
Fe3O4/HBPN showed characteristic diffraction at 2θ = 30.01◦, 35.70◦, 43.01◦, 56.82◦, and
62.32◦, corresponding to crystal planes (220), (311), (400), (511), and (440), respectively.
The position and relative intensity of the diffraction peaks suitably matched those of the
JCPDS card (88-0866) for magnetite [39,40]. This meant that Fe3O4/HBPN still remained
an intrinsic phase of magnetite. In addition, the diffraction peaks also matched the JCPDS
card (52-1140) for iron silicon oxide [41]. The silicon in Fe3O4/HBPN came from the
APTMs, which was one of the most important ingredients for preparation. This result also
corroborated the results of EDS.
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2.1.3. XPS

In order to investigate the elemental composition, the chemical oxidation states of
surface and near-surface species, the XPS of Fe3O4/HBPN in the survey and high-resolution
narrow scan are presented, respectively (Figure 3). From the survey scan in Figure 3a, a
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new peak owing to N 1s could be observed on the Fe3O4/HBPN spectra, which is assigned
to the constituent elements of HBPN coated on Fe3O4 surface.
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The N 1s high-resolution scan of Fe3O4/HBPN can be deconvoluted into three indi-
vidual peaks at binding energies of 398.6 eV, 399.1 eV and 400.2 eV (Figure 3b), which were
assigned to the N atoms in the C–NH2, C–NH, and N–O groups [42–44], respectively. In
the C 1s spectrum (Figure 3c), the C 1s peak in Fe3O4/HBPN was decomposed into three
subpeaks at 284.9 eV, 285.6 eV and 287.9 eV, respectively. The peak at 284.9 eV belonged to
the C–(C, H) from hydrocarbon-like compounds [45]. The second peak 285.6 was attributed
to the –C or C–N or O–C–O bonds in amide polymers [46]. The third peak 287.6 eV corre-
sponded to the C=O in groups from carboxylate [47]. As illustrated in Figure 3d, the peaks
at 529.9 eV and 531.2 eV were, respectively, related to the chemical bonds between oxygen
atoms and the Fe and –OH groups on the magnetic composite surface [48]. Also, the peaks
related to 532.0 eV and 533.1 eV contributed to the lattice oxygen in Fe3O4 and bidentate
species (O–C=O), respectively [49,50].

As for Fe 2p peaks (Figure 3e), the two main peaks at 710.8 eV and 724.6 eV were
attributed to Fe 2p3/2 and Fe 2p1/2 with peak areas of 59.6% and 40.4%, respectively. Also,
the two peaks Fe 2p3/2 and Fe 2p1/2 were deconvoluted into Fe3+ and Fe2+, and two dou-
blets were split. Specifically, the peaks centered at 709.9 eV and 723.7 eV were, respectively,
attributed to Fe2+ 2p3/2 (15.1%) and Fe2+ 2p1/2 (16.2%) split orbitals. Meanwhile, the
deconvoluted peaks at 712.6 eV and 727.0 eV were attributed to Fe3+ 2p3/2 (30.4%) and
Fe3+ 2p1/2 (38.7%) split orbitals, correspondingly [51–53]. The Fe2+/Fe3+ ion ratio for Fe
2p3/2 was found to be 0.49, which was close to 0.50, which was obtained from the atomic
ratio contained in the naked Fe3O4 particles. The above-mentioned results confirmed the
presence of amine groups from HBPN in the synthesized Fe3O4/HBPN composites, and
the coating mechanism of Fe3O4/HBPN composites was mainly due to the –C–NH2 or
–C–NH linkages of HBPN polymers, which bonded to the Fe3O4 particles via the N–O
bonds in the convolving process between loading sites of Fe3O4 and HBPN polymers.

2.1.4. SEM and EDS

The surface morphology of Fe3O4 and Fe3O4/HBPN was determined by FE-SEM
(Figure 4a–f). The Fe3O4 particles presented an irregular granular morphology with dif-
ferent sizes, a block-like structure, a smooth surface and wrinkled edges. The irregular
granular morphology may be owing to the co-precipitation method of Fe3O4 prepara-
tion [54]. In contrast, the Fe3O4/HBPN composites clumped together and were loaded
with an oil-like film after HBPN coating (Figure 4e,f). The high magnification image of
Fe3O4/HBPN showed that the membranous-like structure was enveloped and wrapped
around the Fe3O4 particles. These membranous-like structures on the Fe3O4/HBPN surface
may be formed due to the high viscosity and high polymerization characteristics [55,56].

The surface elements of Fe3O4 and Fe3O4/HBPN are shown by the EDS spectrum
analysis. As shown in Table 1, the main elements of the Fe3O4 sample are Fe and O. The
wt% ratio of Fe and O was 2.87, which proved the successfully prepared of Fe3O4. For
the Fe3O4/HBPN, the main elements were C, N, O, Si and Fe. Relative to Fe3O4, the
appearance of C and N elements illustrated that the results of elemental analysis were
consistent with the composition characteristics of the material, which further verified the
successful synthesis of the material.

Table 1. The EDS value of Fe3O4 and Fe3O4/HBPN.

Fe3O4 Fe3O4/HBPN

O Fe C N O Si Fe

Wt% At% Wt% At% Wt% At% Wt% At% Wt% At% Wt% At% Wt% At%

23.90 52.30 76.10 47.70 13.75 28.17 5.93 10.42 23.03 35.44 1.64 1.44 55.65 24.53
23.62 51.91 76.38 48.09 20.86 39.18 6.93 11.17 19.57 27.60 1.95 1.57 50.69 20.48
29.93 59.85 70.07 40.15 15.40 28.88 6.77 10.88 28.03 39.45 1.76 1.41 48.05 19.38
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Figure 4. SEM images of Fe3O4 (a–c) and Fe3O4/HBPN (d–f).

2.1.5. TGA

TGA is a process used to heat the analyzed samples and decompose them by breaking
their chemical bonds, which is completed in order to assess the effect of thermal weight-
lessness and thermal stability [49,57,58]. Figure 5 shows the weight loss curves of Fe3O4
and Fe3O4/HBPN against temperature changes, respectively. The weight loss of Fe3O4
at 20–500◦C was about 6%, revealing a high content of Fe3O4 with little impurity and
humidity on its surface. In the temperature range of 500–800 ◦C, 0.9% mass loss appeared
due to the thermal decomposition of the magnetite residue [59]. The results demonstrated
that the Fe3O4 particles exhibited excellent thermal stability.
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The weight loss of Fe3O4/HBPN was analyzed through three stages at different
temperature ranges. In the range of 20–110 ◦C, the weight loss was 3%, which was caused
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by the thermal decomposition of residual organic solvents during the assembly process.
There was a rapid weight loss (45%) in the range of 110–640 ◦C, which was due to the
degradation of super-branched amino groups and alkyl [60]. Following, the weight loss
was 10% from 500 to 800 ◦C, which was due to the chain-breaking thermal decomposition
of HBPN, which was gradually carbonized. Overall, the mass loss curve of Fe3O4/HBPN
exhibited an approximately linear trend, indicating that a constant weight loss occurred
over the 20–800 ◦C ranges. Because the thermal stability of the composites mainly depends
on the mass of the organic chemical groups, which was coated onto the surface of the target
objects [61]; thus, the super-branched amino groups of –C–NH2 and –C–NH will induce
the degradation with increasing temperature.

2.1.6. VSM

In order to study the magnetic properties of Fe3O4 and Fe3O4/HBPN particles, the
magnetic hysteresis loop was investigated; thus, the parameters of saturation magnetization
(Ms), remanent magnetization (Mr), and coercive force (Hc) could also be extracted. Ms means
the maximal magnetization value of magnetic particles, which magnetized as an external
magnetic field was applied. Following, as the external magnetic field was removed, the
magnetic particles still retained their remanent magnetization, which was named Mr. In
order to remove the remanent magnetization, an external field with an opposite direction
of Mr will be applied, and the strength of the opposite magnetic field is named Hc [62–64].
Also, the value of Hc exhibited the difficulty level of the magnetic particles to be magnetized.

In order to evaluate the magnetic properties, the Fe3O4 and Fe3O4/HBPN samples
were tested by VSM. As shown in Figure 6, the saturation magnetization (Ms) value of the
Fe3O4 was 66.1 emu/g, while the Ms value of Fe3O4/HBPN was attenuated to 33.7 emu/g.
This was possibly because of the presence of amino-terminated hyperbranched polymers
coated on Fe3O4, and the polymers were non-magnetic. However, the Ms value of the
Fe3O4/HBPN indicated that it was high enough to meet the requirement of magnetic sepa-
ration by an external magnetic field. Moreover, the curves passed the origin of coordinates,
which indicated that the coercivity (Hc) and residual magnetization (Mr) were close to
zero, and there was almost no residual magnetic generation. It showed that Fe3O4/HBPN
had superparamagnetic properties and a good magnetic response, so it was convenient for
separation, recycle and reuse by recovering through an external magnetic field.
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2.1.7. Zeta Potential

The zeta potential mainly investigates the occurrence of electric potential between the
colloidal particles and bulk liquid, which causes the suspension of colloids [65]. As shown
in Figure 7, the characteristic surface charge of Fe3O4 and Fe3O4/HBPN was investigated
by zeta potential measurement. The results showed that Fe3O4 exhibited a negative charge
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in the pH range 4–10. On the contrary, Fe3O4/HBPN showed a positive charge in the
same pH range. This indicated that the zeta potential changed from negative to positive
when the amino-terminated hyperbranched polymer assembled on Fe3O4. When the naked
Fe3O4 particles were dispersed in distilled water, the Fe3O4 surface captured more H+

ions than OH−. The hydrogen ions adsorbed on the Fe3O4 surface, forming hydroxyl
groups, which resulting in the naked Fe3O4 being negatively charged [66–68]. In addition,
the H+ from hydroxyl groups can react with amine groups such as –NH, –NH2, –N+ and
–N(CH3) [69,70]. In the Fe3O4/HBPN, the dendritic structure with –NH2 displaced H+ ions
on the Fe3O4 surface, and the ionic exchange resulted in a positive charge on the Fe3O4
surface, changing the zeta potential of Fe3O4/HBPN to positive. Thus, the zeta potential of
Fe3O4/HBPN was positive.
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2.2. Application Performance of Fe3O4/HBPN
2.2.1. Effects of Dosage

The kaolin-simulated high-turbidity wastewater was used to investigate the perfor-
mance of Fe3O4/HBPN, and different influence factors including dosing concentration, pH,
kaolin suspension concentration, magnetic field intensity were explored. As observed in
Figure 8a, although the removal effect of all the dosages was increased before 5 min, there
was already a noticeable difference. When the Fe3O4/HBPN concentration was 2.5 mg/L,
the removal efficiency of kaolin was 80% in 5 min, and it reached 87% in 30 min (Figure 8b).
In the first echelon, the removal effect was similar to 3.0 mg/L and 4.0 mg/L. However,
with the increase in Fe3O4/HBPN concentration, the removal effect was worse, and the
kaolin removal efficiency was 44% in 30 min.

According to the zeta potential, the surface of Fe3O4/HBPN was positively charged,
which neutralized and reacted with the negative charges on the surface of kaolin. The large
kaolin magnetic flocs were formed and then trapped smaller flocs through the sweeping
effect. At last, all magnetic flocs moved and settled along the magnetic field. In addi-
tion, the amino groups of Fe3O4/HBPN provided a large amount of adsorption sites to
enhance the removal effect by bridging action, simultaneously. Unfortunately, when the
Fe3O4/HBPN concentration was too high, a large electrostatic repulsion among the initially
flocs was formed, resulting in the instability of the flocs and difficulty of generating and
aggregating [71].
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2.2.2. Effects of pH

As shown in Figure 9, when the pH was 4–5, Fe3O4/HBPN showed a good removal
performance of kaolin, and the removal effect was 88% in 30 min. On the contrary,
Fe3O4/HBPN performed worse in alkaline conditions; the kaolin removal effect was
less than 30% in 30 min. The results indicated that Fe3O4/HBPN had good flocculation
characteristics in acidic environments. When the pH was 4–5, the zeta potential value of
Fe3O4/HBPN was close to the negatively charged kaolin. At this time, the amino group
(-NH2) was protonated into –NH3

+, which made it easy to react with negatively charged
kaolin, and it was integrated into larger magnetic flocs [72]. When the pH increased to
alkaline, Fe3O4/HBPN still carried a positive charge, but the zeta potential value decreased
significantly, and it was difficult for -NH2 to protonate. However, the zeta potential value
of kaolin particles increased and carried a large amount of negative charge, which increased
the electrostatic repulsion between particles and decreased the removal effect [73].
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2.2.3. Effects of Concentration of Kaolin Suspensions

The removal effect of Fe3O4/HBPN at different kaolin concentrations is shown in
Figure 10. When the kaolin concentration was 1.0 g/L, the removal performance of
Fe3O4/HBPN was the best. The removal efficiency was 87% at 30 min, and it was signifi-
cantly higher than other concentrations (0.5 g/L, 2.0 g/L, 5.0 g/L). This was because when
the kaolin concentration was low, the Fe3O4/HBPN in solution was excessive, and the
electrostatic repulsion among the flocs increased and inhibited the flocculation process.
Moreover, the excessive kaolin concentration caused the amount of positive charge on the
surface of Fe3O4/HBPN to be insufficient to neutralize the negative charge on the surface
of kaolin particles.
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2.2.4. Effects of Magnetic Fields

Figure 11 showed the removal effect of magnetic field strength. It was obviously
observed that the removal effect of Fe3O4/HBPN increased significantly with the increase
in magnetic field intensity. When the magnetic field intensity increased from 500 to 3800 G,
the removal efficiency of kaolin went up to 52% at 0.5 min, while it rose to 80% at 5 min. For
the magnetic particles, the addition of the magnetic field contributed to the rapid moving
of magnetic flocs, colliding with each other during the process of agglomeration [74]. It
created more opportunities for the subsequent bridging and charge neutralization. In the
process of magnetic flocs movement, the magnetic force received was positively correlated
with the magnetic field intensity and gradient, and the magnetic field force played a very
important role in magnetic flocculation separation. Therefore, with the increase in magnetic
field intensity, the removal rate gradually increases [75].

In general, the optimum reaction conditions were obtained by conducting the series
experiments. These showed that the dosage of Fe3O4/HBPN was 2.5 mg/L, pH = 5.6,
magnetic field intensity was 3800 G, and the kaolin suspension concentration was 1.0 g/L.
By comparing with some other reported material applied on kaolin removal (Table 2), it was
found that although the removal effect of Fe3O4/HBPN was slightly inferior to others, the
dosage of Fe3O4/HBPN was much lower than other materials. That means Fe3O4/HBPN
was more economical in the application process.
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Table 2. The comparison of reported materials treated with kaolin.

Materials Dosage Treatment Capacity Conference

Fe3O4/SiO2 1.0 g/L 93.8% [15]
CE-PEI 0.15 mg/mL 98.2% [71]
CPAMF 0.24 g/L 92.4% [13]

FS@CTS-P 150 mg/L 92.54% [76]
Fe3O4/HBPN 2.5 mg/L 87% This paper

2.2.5. The Actual Water Application

The water samples from two lakes were treated with Fe3O4/HBPN, respectively, and
the results are shown in Figure 12. The removal efficiency for Lake 1 was 86% at 30 min,
while it was 87% for Lake 2. It indicated that Fe3O4/HBPN still showed a significant
flocculation effect for actual water due to the charge neutralization and adsorption bridging
effects. The generated floc could quickly separate under the action of applied magnetic
fields and obtain a high-turbidity removal rate. Moreover, there was no obvious difference
regarding the treatment effect between the simulated and actual water (p > 0.05). When
Fe3O4/HBPN was applied to actual water, the interference of complex water quality
conditions was eliminated, and the flocculation effect was stable performance.

2.3. Recycling and Reusing

The recovery of Fe3O4 particles from magnetic aggregates is an essential step, not
only for particle recycle and reusing, but also for the downstream water treatment [77].
After Fe3O4/HBPN was used to treat kaolin suspensions, the material was separated from
the solution via an external magnetic field. The recovered Fe3O4/HBPN was used again
for the treatment of kaolin, and the operations were repeated five times to investigate
the effect of regeneration and reusing. The recycling and reusing results are shown in
Figure 13. Figure 13a shows the recycling efficiency of Fe3O4 and Fe3O4/HBPN. The
recycling efficiency of Fe3O4 (92.3–94.5%) was slightly higher than that of Fe3O4/HBPN
(91.2–93.2%), which is due to the fact that a small amount of functional groups loaded on
the Fe3O4/HBPN surface fall off during separation. However, during the five recycling
periods, there was no significant difference in RE regarding either Fe3O4 or Fe3O4/HBPN
(p > 0.05). This showed that even if there was a small amount of loss in the application of
Fe3O4/HBPN, the overall stability performed well.
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The reusing performance of Fe3O4 and Fe3O4/HBPN is also shown in Figure 13b.
As the control group, the removing efficiency of Fe3O4 was from 46.3% to 47.9%, and
it showed no significant difference five times (p > 0.05). On the contrary, the removal
efficiency of Fe3O4/HBPN before recycling was 87.5%, while the removal efficiency after
1–5 times recycling was in the range of 84.8%–86.9%. Although the removal efficiency
before recycling was slightly higher than the subsequent recycled materials, there was no
significant difference regarding the removal efficiency five times (p > 0.05). At the beginning
of the application, a small amount of functional groups fell from the material surface and
resulted in the slight variation after reusing. However, the stability of Fe3O4/HBPN
remained after several times recycling and reusing, and the removal efficiency stayed at a
relatively stable level.
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3. Materials and Methods
3.1. Materials

Ferrous sulfate heptahydrate (FeSO4·7H2O), iron chloride hexahydrate (FeCl3·6H2O) and
kaolin were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Am-
monia (NH3·H2O), methanol, ethanol, methyl acrylate and diethylenetriamine were obtained
from Shanghai Macklin Biochemical Technology Co., Ltd. 3-aminopropyl trimethoxysilane
(APTMs) was bought from Shanghai Aladdin Biochemical Technology Co., Ltd. All the
chemical reagents were analytical grade and were used for without further pretreatment.

3.2. Synthesis of magnetic Fe3O4 nanoparticles

The synthesis process of magnetic Fe3O4 nanoparticles was used by the method of co-
precipitation [78]. First, 2.7 g of FeSO4·7H2O and 5.7 g of FeCl3·6H2O (molar ratio: 2:1) were
dissolved in 100 mL of deionized water. Then, the pH of the mixture solutions was adjusted
to 10.0 by NH3·H2O solution, which was added dropwise and stirred vigorously on a
magnetic stirrer at 25 ◦C. Once the mixture solution turned to black, the black precipitate
was separated from the solution using a permanent magnet. Furthermore, the precipitate
was heated to the temperature of 80 ◦C for 30 min and washed 3 times using alternate
solutions of distilled water and ethanol. Then, the magnetic Fe3O4 nanoparticles were
obtained and free-dried.

3.3. Preparation of Magnetic Fe3O4/HBPN Composites

Firstly, the magnetic Fe3O4 nanoparticles were dispersed in the solution of methanol
(200 mL) using an ultrasonic bath for 30 min. Subsequently, 11.6 mL of APTMs was
dropped to the stirring solution at 25 ◦C for 4 h, and the mixture was separated after
intensive stirring, which involved washing with methanol. Next, 100 mL of methanol and
21.6 mL of methyl acrylate were added into the above mixture and stirred continuously
for 7 h. Then, the magnetic mixture was separated and washed with methanol again. At
last, 18.12 mL of diethylenetriamine and 25 mL of methanol were added into the magnetic
mixture in a conical flask; afterwards, it was reacted in an oil bath at 65◦C for 1 h and 140 ◦C
for 2 h, respectively, until the methanol evaporated. The final product in the flask consisted
of hyperbranched magnetic composite Fe3O4/HBPN.

3.4. Characterization of Fe3O4/HBPN

The Fourier transform infrared (FTIR) spectra were monitored by employing a VERTEX
70 spectrometer (Bruker, Germany). The materials were grounded with KBr (1:100) and
then compressed to form tables. The X-ray diffraction (XRD) patterns were collected with
a Shimadzu XRD-7000 instrument at a scan rate of 0.02◦·S−1 with a 2θ range of 20◦–80◦

and Cu Kα radiation (λ = 0.1542 nm). XPS spectra were obtained via an Escalab 250 Xi
spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) with a monochromated
source of X-rays (Al Kα, 1486.6 photo energy) as the excitation source. SEM measurements
were conducted on a TESCAN MIRA LMS microscope equipped with energy-dispersive
X-ray spectrometry (Xplore 30, Oxford, UK). The thermal behavior analyses were conducted
in an N2 atmosphere between room temperature and 800◦C at a rate of 10 ◦C·min−1 using
a Q50 thermogravimetric analyzer (TA Instruments- Waters LLC, New Castle, DE, USA).
The magnetic properties of the samples were measured using a LakeShore 7404S vibrational
sample magnetometer (Lake Shore Cryotronics, Inc., Westerville, OH, USA). The thermal
behavior analyses were conducted in an N2 atmosphere between room temperature and
800◦C at a rate of 10 ◦C·min−1 using a Q50 thermogravimetric analyzer (TA Instruments-
Waters LLC, New Castle, DE, USA).

3.5. The Magnetic Separation Experiment

In order to investigate the performance of Fe3O4/HBPN, the kaolin-simulated high-
turbidity wastewater and natural water were employed in the research. The kaolin suspen-
sion was prepared using kaolin suspended in a 2.0 L volumetric flask with a concentration
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of 2.0 g/L (1410 NTU). Except for the pH experiment, the pH of the kaolin suspensions
was adjusted to 6.0.

The magnetic separation process was conducted in a jar test apparatus (ZR4-6, Zhon-
grun Water Industry Technology Development co., Ltd., China). The magnetic composite
was first added to 400 mL kaolin suspensions (1.0 g/L) and then stirred for 1 min at 500 rpm;
then, the beaker was placed inside a magnetic field created by a cubic NdFeB permanent
magnet (50 mm L × 50 mm W × 25 mm H) with a magnetic induction intensity of 0.38 T.
During magnetic separation, a 10 mL sample was collected from 3 cm below the solution
surface at different time intervals (0.5, 5, 15, 30 min) to determine the concentration of
kaolin. The separating efficiency (SE) was calculated using Equation (1):

Separating efficiency(%) =
x0 − xt

x0
(1)

where x0 (mg/L) and xt (mg/L) denote the initial kaolin concentration and kaolin concen-
tration at time t, respectively.

The magnetic separation process was first tested at different dosages of magnetic
composite Fe3O4/HBPN (1.0–20.0 mg/L). To investigate the effects of pH on separating,
the pH of kaolin solution was adjusted in the range of 4–10, which using 1.0 mol/L HCl
or 1.0 mol/L NaOH. Then, 0.5–5.0 g/L of kaolin concentrations was applied to explore
the treatment effect. Different magnetic fields intensity of 500–3800 G were selected to test
the kaolin removal effect. In the actual aqueous samples, the samples were taken freshly
from two lakes in Luoyang City. To retain the accordant turbidity of the kaolin-simulated
sample, moderate kaolin was added into the actual aqueous sample directly, keeping the
turbidity at 1350–1450 NTU.

3.6. Recycle and Reuse of Fe3O4/HBPN

After the magnetic separation experiment, the supernatant was thoroughly removed
from the beakers using a permanent magnet. The initial dosage of Fe3O4/HBPN was
2.5 mg/L. The magnetic aggregates were collected from all reaction vessels and dispersed
in 5 mL of deionized water; then, the kaolin particles were detached from Fe3O4/HBPN
composites by employing an ultrasonic generator (50 Hz, 1200 W) for 1 min. The recycled
Fe3O4/HBPN composites were collected using the magnet (3800 G) and washed three times
with deionized water. The recycled wet Fe3O4/HBPN composites were freeze-dried for
further magnetic separation experiments. After weighing, Fe3O4/HBPN was evenly added
to each reaction vessel to repeat the experiment. The recycling efficiency of Fe3O4/HBPN
was calculated using Equation (2):

recycling efficiency(%) =
mi,recovery

mi,dosing
(2)

where mi, recovery (mg) means the recovering weight of Fe3O4/HBPN, and mi, dosing (mg)
means the dosing weight of Fe3O4/HBPN at dosing time i (i = 0, 1, 2. . .5).

3.7. Analytical Methods

Zeta potentials were measured in a model environment (distilled water, pH 2–12) at
25 ◦C using a Zetasizer Nano (2000HSA, Malvern, UK). Measurements were taken for
kaolin (1.0 g/L), Fe3O4 (2.5 mg/L), Fe3O4/HBPN (2.5 mg/L) and recovered Fe3O4/HBPN.
The supernatant after flocculation was detected directly. The pH of the solution was
adjusted by 0.1 mol/L HCl and 0.1 mol/L NaOH, and the pH value was detected using a
digital pH meter (PB-10, BSISL, China).
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3.8. Statistical Analysis

The experiment data were analyzed using IBM SPSS 20 (SPSS Inc., Chicago, IL, USA).
One-way analysis of variance (ANOVA) was employed to determine significant differences.
A value of p < 0.05 was considered to be significantly different.

4. Conclusions

A kind of magnetic composites (Fe3O4/HBPN) was obtained by the embedded as-
sembly of a three-dimensional amino-terminal hyperbranched polymer and Fe3O4. The
–C–NH2 or –C–NH perssad of HBPN was linked with Fe3O4 particles by N–O bonds,
which changed the physicochemical characteristics of naked Fe3O4. The shape and size of
Fe3O4/HBPN showed a different and uneven distribution; the particles clumped together
and were coated with an oil-like film. Meanwhile, Fe3O4/HBPN showed a positive charge
in the pH range 4–10 and exhibited superparamagnetic properties. In the treatment of
high-turbidity wastewater, Fe3O4/HBPN performed best on the kaolin suspension under
the conditions of adding a dosage of 2.5 mg/L, pH = 4–5, the kaolin concentration of
1.0 g/L, and the magnetic field of 3800 G. Whether using simulated wastewater or actual
water, the removal efficiency reached 86%. The recycle efficiency of Fe3O4/HBPN was in
the range of 91.2%–93.2%, while the removal efficiency of kaolin suspension achieved 84.8%
after five recycling and reuse cycles. These results show that Fe3O4/HBPN has strong
structural stability for the efficient treatment of high-turbidity wastewater.
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