An Overview of Spirits Made from Sugarcane Juice
Abstract
:1. Introduction
2. From the Raw Material to the Spirit
2.1. Agronomic Characteristics and Agricultural Concerns
2.2. General Uses and Chemical Composition of Sugarcane
3. Styles and Methods of Production of SCJS
3.1. The Notion of Terroir
3.2. Sugarcane Juice Spirits in the World
3.3. Rum and Rhum Agricole
3.4. Cachaça
3.5. Other SCJS
3.6. Traditional Customs and Uses
3.7. The Sugarcane Juice Spirit Process
3.7.1. From the Field to the Mill
3.7.2. The Key Step of Fermentation
3.7.3. The Art of Distillation
3.7.4. Aging
Compound | Evolution | Biochemical Reaction Involved | Ref. | A | I | S |
---|---|---|---|---|---|---|
Sulfuric compounds | ↓ | Interact with copper—High volatility | [122] | X | ||
Copper | ↓ | Absorbed or adsorbed by the wood. Reaction with phenolic compounds | [67] | X | X | |
Ethanol | ↓ | Evaporation, oxidation, reaction with secondary compounds | [67] | X | X | |
Aldehyde (Ethanal) | ↑ | Oxidation of amino acids, alcohols, and fatty acids | [67] | X | ||
Esters (Ethyl acetate) | ↑ | Esterification of fatty acids with ethanol | [67] | X | ||
Acetic acid | ↑ | Due to ethanol oxidation—Degradation of hemicellulose | [67] | X | X | |
Volatile acidity | ↑ | Acetic acidity increasing and transfer of non-volatile organic acids from the barrel to the beverage | [67] | X | X | |
Methanol | ↑ | Degradation of hemicellulose (pectin) | [67] | X | X | |
Ethyl carbamate | ↑ | Conversion of cyanide to cyanate by the action of peroxides | [67] | X | ||
Tannin | ↑ | Extraction from the wood | [123] | X | ||
Gallic acid | ↑ | Hydrolysis of wood tannins → increase viscosity | [67] | X | ||
Furfural and 5-HMF | ↑ | Thermal breakdown of pentoses and hexoses from hemicellulose | [67] | X | ||
Cinammic aldehydes | ↑ | Coniferaldehyde and sinapaldehyde generated from lignin | [10] | X | ||
Vanillin, syringaldehyde | ↑ | Derived from lignin; oxidation of sinapaldehyde and coniferaldehyde | [10] | X | ||
Vanillic acid, syringic acid | ↑ | Derived from lignin; oxidation of vanillin and syringaldehyde | [123] | X | ||
Phenolic compounds | ↑ | Simple extraction (low molecular weight) and extraction and hydroalcoholic degradation of lignin | [123] | X | X | |
Sugars (glucose, arabinose, sucrose, maltol, xylose, etc.) | ↑ | Hydrolysis of tannins, extracted from the wood, hemicellulose degradation | [20,123] | X | X | |
Glycerol and fatty acids | ↑ | Extraction and/or hydrolyzed of resins and triglycerides from cell walls of wood | [123] | X | X | |
Coumarin | ↑ | Formed by the cyclization of o-coumaric acid | [123] | X |
3.7.5. Quality Control during the SCJS Making Process
Step of Process | Matrix to Be Analyzed | Analysis | Unit | Analytical Method/Apparatus | Cost | Technical Skills | References |
---|---|---|---|---|---|---|---|
Harvest/ Grinding | Cane juice | Brix | % | Refractometer—Brix spindle | + | + | [131,132] |
Sucrose | % | Polarimeter | +++ | ++ | [131,132] | ||
Free amino acid | μL/mL | Spectrophotometer-UV | ++ | +++ | [133] | ||
Purity | % | Calculation: P% = (Sucrose/Brix) × 100 | +++ | +++ | [132] | ||
Grinding | Crushed cane | Fiber | % | Weight and calculation | ++ | + | [132] |
Bagasse | Moisture | % | Moisture analyzer | ++ | + | [132] | |
Fermentation | Wort Wine | Density | - | Mustimeter/Densitometer | + | + | - |
pH | - | pH-meter | + | + | [134] | ||
Temperature | °C | Thermometer | + | + | - | ||
Total acidity | mg/L | Titration method | + | ++ | [134] | ||
Volatile acidity | mg of acetic acid/100 mL aa * | Titration method | ++ | ++ | [130] | ||
Budding index | % | Microscope | + | + | [99] | ||
Enumeration of yeast and bacteria | UFC/mL | Microbiological analysis | + | ++ | [99,100,101,102,103] | ||
Cell count | Cell/mL | Microscope/Neubauer chamber/Malassez cell | + | ++ | [102] | ||
Cell viability | % | Eritrosin/methylene blue | + | ++ | [102] | ||
Alcohol content | % (v/v) | Ebulliometer/Distiller | ++ | ++ | [61] | ||
Total nitrogen | mg/L | Kjeldahl method | ++ | ++ | [102] | ||
Sugar: glucose, fructose, sucrose | mg/L | HPLC-RI | +++ | +++ | [99] | ||
Total reducing sugar (TRS) | g/L | DNS method | ++ | ++ | [135] | ||
Distillation | Vinasse | Alcohol loss | % | GC-FID | ++ | ++ | [110] |
DCO, DBO5, N, P, K | g/L or mg/L | Mostly spectrophotometry methods | +++ | +++ | [136] | ||
Distillation Maturation Aging | Distillate (SCJS) | Inorganic components (anion, cation) | mg/L | IC/ICP OES/AAS | ++ | +++ | [80,137,138] |
Ethanol content | % (v/v) | Densitometer/Hydrostatic balance/Pycnometer/spectrophotometric method | ++ to +++ | + to +++ | [73,102,131,139] | ||
Volatile acidity | mEq/L acetic acid | Titration method | ++ | ++ | [102] | ||
VOCs content | μg to mg/L | GC with FID/MS | ++ | + | [67,127] | ||
Ethyl carbamate | μg/L | GC MS/HPLC MS | +++ | +++ | [74,140] | ||
Matured-related congeners | μg/L to mg/L | HPLC—fluorescence/UV/DAD/MS detector | ++ | + | [52,67,127,130] | ||
Antioxidant activity | % inhibition | DPPH | ++ | + | [141,142] | ||
Antibacterial activity of phenolic extract | μg/ml | Bacteria culture. Minimal inhibitory concentration | ++ | ++ | [141] | ||
Dry extract | g/L | Drying under stirring | ++ | + | [116] | ||
Chromatic characteristics | - | CIELab method/Spectrophotometer | ++ | +++ | [114,116,139,143] | ||
Total phenolic index | OD/g | Spectrophotometer at 280 nm | + | + | [114,116] | ||
Total phenolic compounds | mg/L | Folin–Ciocalteu method | ++ | ++ | [123] | ||
Dissolved oxygen | mg/L | Fluorometer | +++ | ++ | [114] | ||
Sensory Evaluation | SCJS | Odor activity | - | Odor thresholds—GC-olfactometry | ++ | +++ | [71,144,145] |
Descriptive tests | - | Panel of experts | ++ | ++ | [74,122,146,147] | ||
Hedonic test | - | Consumers | + | + | [102,103,122] | ||
Difference test: triangle test | - | Consumers or experts | + | + | [71,148] |
4. Chemical Composition and Their Contribution to the Flavor of SCJSs
4.1. Fermentation Congeners
4.1.1. The Aliphatic Acids
4.1.2. The Alcohols
4.1.3. The Aldehydes and Ketones
ORGANIC ACIDS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | N° CAS | Concentration (mg/L) | Type of SCJS | Pungent | Vinegar | Milk/Butter | Rancid/Sour | Sweaty | Oily/Fatty | Waxy | Soapy | References | |
Non-Aged | Aged | ||||||||||||
Short-chain aliphatic acids (≤C5) | |||||||||||||
Formic acid | 64-18-6 | 1.90–4.50 | 5.9–29.90 | C | ■ | [54,161] | |||||||
Acetic acid | 64-19-7 | 14.60–1211 | 125–848 | C-AR | ■ | [51,71,122,125,144,145] | |||||||
Glycolic acid | 79-14-1 | <LOD to 0.16 | <LOD to 6.71 | C | ■ | [122,162] | |||||||
Propionic acid | 79-09-4 | 0.0001-0.00396 a | - | C | ■ | ■ | ■ | [54,103,163,164] | |||||
Pyruvic acid | 127-17-3 | <LOD to 0.40 | <LOD to 3.91 | C | ■ | ■ | [122,162] | ||||||
Lactic acid | 50-21-5 | 0.32–883 | 4.89–64.50 | C | ■ | [122] | |||||||
Isobutyric acid | 79-31-2 | 0.43 | - | C | ■ | ■ | ■ | [163,164,165] | |||||
Butyric acid | 107-92-6 | 0.00096–2.30 | 0.563 | C-AR | ■ | ■ | ■ | [54,103,144,163,164,165] | |||||
Succinic acid | 110-15-6 | <LOD to 0.05 | <LOD to 0.61 | C | ■ | [122,162] | |||||||
(S)-2-Methylbutanoic acid | 1730-91-2 | - | 0.865 | AR | [144] | ||||||||
Isovaleric acid | 503-74-2 | - | - | AR | ■ | ■ | ■ | [144] | |||||
Valeric acid | 109-52-4 | - | 0.89 a | AR | ■ | ■ | [54,166] | ||||||
2-Methylvaleric acid, | 97-61-0 | - | - | C | ■ | ■ | [166] | ||||||
3-Methylvaleric acid | 105-43-1 | - | - | C | ■ | ■ | [54] | ||||||
Citramalic acid | 597-44-4 | <LOD to 0.10 | <LOD to 0.80 | C | [122] | ||||||||
Medium-chain saturated fatty acids (C6 to C10) | |||||||||||||
Caproic acid | 142-62-1 | 0.0016–0.0047 a | - | C | ■ | ■ | ■ | [54,103,163,164,166] | |||||
Enanthic acid | 111-14-8 | 0.00011–0.00093 a | - | C | ■ | [54,103] | |||||||
Caprylic acid | 124-07-2 | 0.001–0.004 | 0–0.29 | C | ■ | ■ | [54,103,144,163,164,167] | ||||||
Pelargonic acid | 112-05-0 | 0.00055–0.00175 a | - | C | ■ | ■ | [103,166] | ||||||
Capric acid | 334-48-5 | 0–0.91 | 0–11.40 | C-AR | ■ | ■ | ■ | [54,103,122,144,163,164,167] | |||||
Long-chain saturated fatty acids (>C10) | |||||||||||||
Lauric acid | 143-07-7 | 0.00032–0.48 | 0–2.94 | C | ■ | [54,54,103,122,167] | |||||||
Myristic acid | 544-63-8 | 0.01–0.37 | <LOD to 5.16 | C | ■ | ■ | ■ | ■ | [54,122] | ||||
Pentadecanoic acid | 1002-84-2 | - | - | C | ■ | [54] | |||||||
Palmitic acid | 57-10-3 | 0.003–0.73 | 0.10–1.44 | C | ■ | ■ | ■ | [54,103,122,164] | |||||
Octadecadienoic acid | 59404-49-8 | - | - | C | ■ | [54,103,122] | |||||||
Octadecenoic acid | 2825-79-8 | - | - | C | ■ | ■ | [54] | ||||||
ALDEHYDES & KETONES | |||||||||||||
Methanol | 67-56-1 | 1.07–66 | 0–100 | C | ■ | ■ | [122,125,152,163,167] | ||||||
Propanol | 71-23-8 | 21.99 b–329 | 3.76–409 | C-G-AR | ■ | ■ | ■ | [10,73,74,89,122,163,164,166] | |||||
Propylene glycol | 57-55-6 | 0.00008–0.010 a | - | C | ■ | [103,162] | |||||||
Glycerol | 56-81-5 | <LOD to 5.30 | <LOD to 66 | C | ■ | [127,162] | |||||||
1,3-Butanediol | 107-88-0 | 0.00004–0.00062 | - | C | ■ | [103] | |||||||
Saturated fatty alcohols (>C4) | |||||||||||||
1-Butanol | 71-36-3 | <LOD to 10.30 | 0–9 | C-AR | ■ | ■ | [10,54,122,145,147,164,167] | ||||||
Isobutanol | 78-83-1 | 2.88–256 | 0–452 | C-G-AR | ■ | ■ | ■ | [51,54,81,122,144,166,167,168] | |||||
2-Butanol | 78-92-2 | <LOD to 78.20 | <LOD to 269 | C | ■ | ■ | [122,125,162] | ||||||
Amyl alcohol | 71-41-0 | 0.05–0.20 c | - | C | ■ | ■ | ■ | [163,168] | |||||
Isoamyl alcohol | 123-51-3 | 152–937 | 450–1290 | C-G-AR | ■ | ■ | ■ | ■ | [51,54,81,122,144,147,163,167,168] | ||||
2-Methyl-1-butanol | 137-32-6 | 48.02 | - | C | ■ | ■ | ■ | ■ | [48,144,162,163,166] | ||||
(S)-2-Methyl-1-butanol | 1565-80-6 | - | 245 a | AR | ■ | [144,162] | |||||||
1-Hexanol | 111-27-3 | 0.00008–9.30 | 0.644–18.1 | C-AR | ■ | ■ | [10,103,122,154,163] | ||||||
3-Methyl-1-pentanol | 589-35-5 | 0.00042 a–0.00118 a | - | C | ■ | ■ | [103,162] | ||||||
Enanthic alcohol | 111-70-6 | 0.00031–0.00064 | - | C | ■ | ■ | ■ | [103,163] | |||||
2-Heptanol | 543-49-7 | - | 3.38–4.54 | AR | ■ | [10,166] | |||||||
Caprylic alcohol | 111-87-5 | 0.00086–0.00163 | 8.05–8.46 | C-AR | ■ | ■ | [10,103,163] | ||||||
3-Octanol | 589-98-0 | - | 0.32–0.35 | AR | ■ | ■ | ■ | [10,162] | |||||
4-Octanol | 589-62-8 | 0.00042 a–0.00373 a | - | C | [103] | ||||||||
Pelargonic alcohol | 143-08-8 | - | 3.40–50 | AR | ■ | ■ | [10,162] | ||||||
Capric alcohol | 112-30-1 | - | 0.018–12.12 | AR | ■ | ■ | [10,154,162] | ||||||
Lauryl alcohol | 112-53-8 | 0.00045–0.04 | 4.15–8.67 | C-AR | ■ | [10,103,162,168] | |||||||
Myristyl alcohol | 112-72-1 | 0.16 | 4.45–7.50 | AR | ■ | ■ | [10,162,168] | ||||||
Cetyl alcohol | 36653-82-4 | 6.13 c | 0.31–1.05 | C-AR | ■ | [10,162,168] | |||||||
Unsaturated fatty alcohols | |||||||||||||
trans-3-Hexen-1-ol | 928-97-2 | 0.00008–0.0007 | - | C | [103,162] | ||||||||
3-Decen-1-ol | 10339-60-3 | - | 2.92–3.64 | AR | ■ | [10] | |||||||
Saturated aldehydes | |||||||||||||
Methanal | 50-00-0 | 0–20.40 | 2.04–16.70 | C | [51,122,130,169] | ||||||||
Acetaldehyde (ethanal) | 75-07-0 | 5.7–200 | 1.55–439 | C-AR | ■ | ■ | ■ | [10,51,74,80,89,122,164,165,167,169] | |||||
Propionaldehyde | 123-38-6 | 0–0.55 b | <LOD to 0.92 | C | ■ | ■ | [51,122,125,130,169] | ||||||
Butyraldehyde | 123-72-8 | <LOD to 22 | <LOD to 1.34 | C | ■ | [122,169] | |||||||
Acetoin | 513-86-0 | 0.914 | - | C | ■ | ■ | [163,165] | ||||||
Valeraldehyde | 110-62-3 | <LOD to 0.31 c | - | C | ■ | [51,169] | |||||||
(R)-2-Methylbutyraldehyde | 33204-48-7 | - | 0.0189 a | AR | [144] | ||||||||
(S)-2-Methylbutyraldehyde | 1730-97-8 | - | 0.0274 a | AR | ■ | [144] | |||||||
Isovaleraldehyde | 590-86-3 | <LOD to 0.09 | 0.233 a | C-AR | ■ | [51,125,144,169] | |||||||
Hexanaldehyde (hexanal) | 66-25-1 | <LOD to 0.77 | <LOD to 1.07 | C-AR | ■ | ■ | [10,122,144] | ||||||
Heptaldehyde (heptanal) | 111-71-7 | - | - | C | ■ | ■ | [71,162] | ||||||
Caprylaldehyde (octanal) | 124-13-0 | - | 0.77–0.93 | AR | ■ | ■ | ■ | [10,145,165] | |||||
Pelargonaldehyde (nonanal) | 124-19-6 | - | 2.44–2.72 | AR | ■ | [10] | |||||||
Capraldehyde (decanal) | 112-31-2 | - | 0.68–0.87 | AR | ■ | [10] | |||||||
Unsaturated aldehydes | |||||||||||||
Acrolein/acrylaldehyde | 107-02-8 | 0–5.80 b | <LOD to 0.36 | C | ■ | [122,130,169] | |||||||
Crotonaldehyde | 123-73-9 | <LOQ to 5.32 c | - | C | [51] | ||||||||
2,4-Nonadienal | 5910-87-2 | - | - | C | ■ | ■ | ■ | [71] | |||||
trans-2-Nonenal | 18829-56-6 | - | - | C | ■ | [71] | |||||||
trans-trans-2,4-Decadienal | 25152-84-5 | - | 0.00115 a | AR | ■ | ■ | ■ | [144] | |||||
Ketones | |||||||||||||
Acetone | 67-64-1 | 0–23 | <LOD to 6.90 | C | ■ | ■ | ■ | [122,125,130,167] | |||||
Diacetyl | 431-03-8 | 0–9.77 | 0.0437 | C-AR | ■ | [71,125,130,144,145,167,170] | |||||||
Cyclopentanone | 120-92-3 | 0–2.87 | - | C | [51,167] | ||||||||
1-Octen-3-one | 4312-99-6 | - | - | C | ■ | ■ | [71,162] | ||||||
2-Nonanone | 821-55-6 | 0–0.00028 a | 0.87–2.55 | C-AR | ■ | ■ | ■ | [10,103] | |||||
2-Undecanone | 112-12-9 | - | 0.94–1.72 | AR | ■ | ■ | [10] | ||||||
2-Pentadecanone | 2345-28-0 | - | 0.97–2.14 | AR | [10] | ||||||||
Acetals | |||||||||||||
Acetal | 105-57-7 | - | 25 a | AR | ■ | ■ | ■ | [71,144,164,171] | |||||
1,1,3-Triethoxypropane | 7789-92-6 | - | - | C | ■ | [172,173] | |||||||
ESTERS | |||||||||||||
Ethyl formate | 109-94-4 | - | - | C | ■ | ■ | ■ | [54] | |||||
Methyl propionate | 554-12-1 | 0.08 | - | C | ■ | ■ | [162,168] | ||||||
Ethyl acetate | 141-78-6 | 1.56 c–623 c | 15.5–1160 | C-AR | ■ | ■ | ■ | [10,51,54,74,80,122,163,167,168,169] | |||||
Ethyl acrylate | 140-88-5 | - | - | C | ■ | [71] | |||||||
Ethyl lactate | 97-64-3 | <LOD to 75.90 | 2.21–120 | C-AR | ■ | ■ | ■ | [10,122,125,130] | |||||
Ethyl isobutyrate | 97-62-1 | - | - | C | ■ | ■ | [71,171] | ||||||
Ethyl butyrate | 105-54-4 | <LOD to 19.70 c | <LOD to 3.20 | C-AR | ■ | ■ | [54,71,122,144,163,171,174] | ||||||
Isoamyl acetate | 123-92-2 | - | 1.06 a–13.83 | AR | ■ | ■ | ■ | [10,54,71,144,163,166,171] | |||||
Ethyl valerate | 539-82-2 | - | 0.0515–2.02 | AR | ■ | [10,144] | |||||||
Ethyl isovalerate | 108-64-5 | - | 0.211 a–2.56 | AR | ■ | ■ | [10,144,154,166] | ||||||
Ethyl 2-methylbutyrate | 7452-79-1 | - | - | C-AR | ■ | [71,144,171] | |||||||
Ethyl(S)-2-methylbutanoate | 10307-61-6 | - | 0.23 | AR | ■ | [144] | |||||||
Propyl butyrate | 105-66-8 | 0.08 | - | C | ■ | ■ | [162,168] | ||||||
Ethyl caproate | 123-66-0 | <LOD to 9.84 b | 0.55–66.42 | C-AR | ■ | ■ | ■ | [10,54,103,122,130,144,163,164,171] | |||||
Diethyl succinate | 123-25-1 | 0.00308–0.0069 | - | C | ■ | ■ | [103,164] | ||||||
Amyl propionate | 624-54-4 | 0.02 c | - | C | ■ | ■ | [168] | ||||||
2-Hexyl acetate | 5953-49-1 | - | - | C | ■ | [54,162] | |||||||
Ethyl enanthate | 106-30-9 | 0.05 c | 3.29–4.07 | C-AR | ■ | [10,162,168] | |||||||
Ethyl cyclohexanoate | 3289-28-9 | - | 0.00103 a | AR | ■ | [144,162] | |||||||
Ethyl caprylate | 106-32-1 | 0–16.28 | 586.18–723.19 | C-AR | ■ | [10,54,103,130,163,164,171,174] | |||||||
Isoamyl valerate | 2050-09-1 | 0.01 c | - | C | ■ | [162,168] | |||||||
Ethyl pelargonate | 123-29-5 | 0.1508–0.552 | 15.47–21.45 | C-AR | ■ | ■ | ■ | [10,166,174] | |||||
Methyl caprate | 110-42-9 | - | 0.00004–0.00033 a | AR | ■ | ■ | ■ | [154] | |||||
Ethyl caprate | 110-38-3 | 0.132 c–13.01 c | - | C | ■ | ■ | ■ | ■ | [10,54,130,170,171,174] | ||||
Isoamyl octanoate | 2035-99-6 | 0.0666 c–0.234 c | - | C | ■ | ■ | ■ | ■ | [162,174] | ||||
Ethyl laurate | 106-33-2 | 0.015 a–4.03 c | - | C | ■ | ■ | ■ | ■ | ■ | [10,54,103,174] | |||
Ethyl myristate | 124-06-1 | 0.00042 a–0.00706 a | - | C | ■ | ■ | [103,162] | ||||||
Ethyl palmitate | 628-97-7 | - | - | C | ■ | [54,162] | |||||||
Ethyl 9-hexadecenoate | 54546-22-4 | 0.00088–0.00175 a | - | C | [103] | ||||||||
Methyl linoleate | 112-63-0 | - | - | C | ■ | [54,162] | |||||||
Ethyl margarate | 14010-23-2 | - | - | C | [54] | ||||||||
Ethyl linolate | 544-35-4 | - | - | C | ■ | ■ | [54,162] | ||||||
Ethyl stearate | 111-61-5 | - | - | C | ■ | [54,162] |
4.1.4. The Esters
4.2. Maturation-Related Congeners
N° CAS | Concentration (mg/L) | Type of SCJS | Fruity | Sweet | Woody | Phenol | Balsamic | Floral | Spicy | Empyreu 1 | Chemical | References | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-Aged | Aged | |||||||||||||
Phenolic compounds and derivatives | ||||||||||||||
Phenol | 108-95-2 | 0.0005 a–0.0041 a | 0.0002 a–0.014 a | C | ■ | [142,162] | ||||||||
o-Cresol | 95-48-7 | 0.001 a–0.005 a | 0–0.097 a | C | ■ | ■ | [142,162] | |||||||
p-Cresol | 106-44-5 | - | 0.00341 a | AR | ■ | ■ | [144,162] | |||||||
Guaiacol | 90-05-1 | 0.0002–0.003 | 0.0005–0.047 | C-AR | ■ | ■ | ■ | [54,71,103,142,144,171] | ||||||
Protocatechuic acid | 99-50-3 | - | 2.65–2.83 | AR | ■ | ■ | [10,162] | |||||||
Gallic acid | 149-91-7 | - | 0-12.97 | C-AR | [10,123,167] | |||||||||
2-Ethylphenol | 90-00-6 | 0–0.0027 a | 0.0009 a–0.124 a | C | ■ | [142,162] | ||||||||
3,5-Xylenol | 108-68-9 | 0–0.0058 a | 0–0.065 a | C | ■ | ■ | ■ | ■ | [142,162,163] | |||||
4-Ethylphenol | 123-07-9 | 0–0.021 a | 0.0023 a–0.117 a | C-AR | ■ | ■ | [142,144,162] | |||||||
Vanillin | 121-33-5 | - | 0–3.29 | C-AR | ■ | ■ | ■ | [10,54,71,144,144,162,167,171] | ||||||
Syringol | 91-10-1 | - | - | C | ■ | ■ | ■ | ■ | ■ | ■ | [54,162] | |||
Vanillic acid | 121-34-6 | - | 0–2.24 | C-AR | ■ | ■ | ■ | [10,54,162,167] | ||||||
4-Vinylguaiacol | 7786-61-0 | - | - | C | ■ | ■ | ■ | ■ | [54,71,162] | |||||
4-Ethylguaiacol | 2785-89-9 | 0.005 a–0.052 a | 0.0006 a–0.298 a | C-AR | ■ | ■ | ■ | ■ | [142,144,162] | |||||
p-Coumaric acid | 7400-08-0 | - | 0–7.09 | C-AR | [10,167] | |||||||||
Caffeic acid | 331-39-5 | - | 0–1.39 | AR | [10] | |||||||||
Syringaldehyde | 134-96-3 | - | 0–6.11 | C-AR | ■ | ■ | ■ | [10,162,167] | ||||||
Syringic acid | 530-57-4 | - | 0–4.57 | C-AR | [10,167] | |||||||||
Anethole | 104-46-1 | - | 12.62–17.61 | AR | ■ | ■ | [10,162] | |||||||
Eugenol | 97-53-0 | 0.0012–0.088 | 0.002–0.1183 | C-AR | ■ | ■ | ■ | [71,142,144,162,171] | ||||||
Dihydroeugenol | 2785-87-7 | - | 0.0193 | AR | ■ | ■ | ■ | ■ | [144,144,162,171] | |||||
Coniferaldehyde | 458-36-6 | - | 0–0.25 | C | ■ | ■ | [162,167] | |||||||
Scopoletin | 92-61-5 | 0–0.030 | 0–1.31 | C | [142] | |||||||||
Methoxyeugenol | 6627-88-9 | - | - | C | ■ | ■ | ■ | ■ | [54,162] | |||||
Sinapaldehyde | 4206-58-0 | - | 0–1.20 | C | [167] | |||||||||
Ellagic acid | 476-66-4 | - | 0–4.51 | C-AR | [10,167] | |||||||||
Flavonoids | ||||||||||||||
Kaempferol | 520-18-3 | 0 | 0–1.95 | AR | [10,142] | |||||||||
Epicatechin | 490-46-0 | 0–0.22 | 0–1.53 | C | [142,167] | |||||||||
Catechin | 154-23-4 | 0–0.15 | 0–0.42 | C | [142] | |||||||||
Quercetin | 117-39-5 | 0 | 0–2.30 | C-AR | [10,142] | |||||||||
Myricetin | 529-44-2 | - | 0–3.48 | AR | [10] | |||||||||
Rutin | 153-18-4 | - | 4.34–7.99 | AR | [10] | |||||||||
Aromatic alcohols and acids | ||||||||||||||
Benzyl alcohol | 100-51-6 | - | - | C | ■ | ■ | ■ | ■ | [54,162] | |||||
Benzoic acid | 65-85-0 | - | - | C | ■ | ■ | [54,162] | |||||||
Phenethyl alcohol | 60-12-8 | 0.02 c | 6.66–17.10 | C-AR | ■ | ■ | [10,54,71,144,163,168,171] | |||||||
Cinnamic alcohol | 104-54-1 | 6.95 c | - | C | ■ | ■ | ■ | ■ | [168] | |||||
Aromatic esters | ||||||||||||||
Phenyl acetate | 122-79-2 | 0–0.00014 | - | C | ■ | ■ | ■ | ■ | [103,162] | |||||
Ethyl benzoate | 93-89-0 | 1.84 | - | C | ■ | ■ | ■ | [162,168] | ||||||
Phenethyl acetate | 103-45-7 | 0.00016 a–0.00029 a | - | C | ■ | ■ | [71,103,162,163,164,171] | |||||||
Ethyl hydrocinnamate | 2021-28-5 | - | 0.00354 a | AR | ■ | ■ | [144,162] | |||||||
Lactones | ||||||||||||||
β-Angelica lactone | 591-11-7 | - | - | C | ■ | [54] | ||||||||
Sotolon | 28664-35-9 | - | 0.0162 | AR | ■ | ■ | [144,162] | |||||||
Coumarin | 91-64-5 | - | - | C | ■ | ■ | [54,162] | |||||||
Hydrocoumarin | 119-84-6 | - | - | C | ■ | ■ | ■ | [54,162] | ||||||
cis-Whiskey lactone | 80041-00-5 | - | 1.12 | AR | ■ | ■ | [144,171] | |||||||
trans-Whiskey lactone | 80041-01-6 | - | 0.124 | AR | ■ | ■ | [144,171] | |||||||
γ-Nonalactone | 104-61-0 | - | - | AR | ■ | [144,171] | ||||||||
γ-Dodecalactone | 2305-05-7 | - | 0.0037–0.0070 | AR | ■ | ■ | [154,162] | |||||||
Aromatic aldehydes and ketones | ||||||||||||||
Benzoic aldehyde | 100-52-7 | 0–8.57 | 1.77–8.61 | C | ■ | ■ | ■ | ■ | [10,51,122,130,147,162,169] | |||||
Acetophenone | 98-86-2 | 0–2.90 | - | C | ■ | ■ | ■ | ■ | [51,167] | |||||
Furanic compounds | ||||||||||||||
3-Furaldehyde | 498-60-2 | - | 0.00108–0.0128 a | AR | [154] | |||||||||
Furfural (2-Furaldehyde) | 98-01-1 | 0–4.57 c | 1.12 b–24.59 b | C-AR | [10,51,67,130,163,169,170,180,181] | |||||||||
Furfuryl alcohol | 98-00-0 | 0-1.30 | - | C | [103,162] | |||||||||
5-HMF | 67-47-0 | <LOQ to 7.23 c | 0.8–19.40 | C-AR | [10,51,67,125,162,169,170] | |||||||||
Furfuryl acetate | 623-17-6 | 0.00029 a–0.00105 a | - | C | [103,162] | |||||||||
Aromatic hydrocarbons | ||||||||||||||
o-Xylene | 95-47-6 | - | 0.71–1.68 | AR | [10] | |||||||||
p-Cymene | 99-87-6 | - | 14.7–18.25 | AR | ■ | [10] | ||||||||
Cumene | 98-82-8 | - | 2.12–3.93 | AR | ■ | [10] | ||||||||
TDN 2 | 30364-38-6 | - | 3.09–4.32 | AR | [10] |
4.3. The Other Organic Compounds
4.4. Inorganic Compounds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorak, A.; Sorensen, E. Distillation: Fundamentals and Principles; Elsevier: Oxford, UK, 2014; ISBN 978-0-12-386547-2. [Google Scholar]
- European Parliament and of the Council of 17 April 2019 Regulation (EU) 2019/787. Available online: https://www.legislation.gov.uk/eur/2019/787 (accessed on 19 October 2022).
- Statistica.com. Topic: Spirits Market Worldwide. Available online: https://www.statista.com/topics/6788/spirits-market-worldwide/ (accessed on 18 October 2022).
- Décret n° 2009–1350 du 29 Octobre 2009 Relatif Aux Appellations d’Origine Contrôlées «Martinique», «Marc d’Alsace» Suivie de la Dénomination «Gewurztraminer», «Calvados», «Calvados Domfrontais», «Calvados Pays d’Auge», «Cornouaille», «Domfront», «Pays d’Auge», «Pommeau du Maine» et «Pommeau de Normandie». Available online: https://www.legifrance.gouv.fr/loda/article_lc/LEGIARTI000021220378/2009-11-02 (accessed on 1 August 2023).
- François, R. Appellations of origin and local customs: The need for innovation “Le Rhum de la Martinique”: An example of AOC recognition of a product in an industrialised context. In Proceedings of the European Association of Agricultural Economists 67th Seminar, LeMans, France, 28–30 October 1999. [Google Scholar]
- Medeiros, A.; Matos, M.E.; Monteiro, A.; De Carvalho, J.; Soccol, C. Cachaça and Rum. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 451–468. ISBN 978-0-444-63666-9. [Google Scholar]
- Bortoletto, A.M.; Silvello, G.C.; Alcarde, A.R. Good Manufacturing Practices, Hazard Analysis and Critical Control Point plan proposal for distilleries of cachaça. Sci. Agric. 2018, 75, 432–443. [Google Scholar] [CrossRef]
- Lima, C.M.G.; Benoso, P.; Pierezan, M.D.; Santana, R.F.; Hassemer, G.d.S.; da Rocha, R.A.; Dalla Nora, F.M.; Verruck, S.; Caetano, D.; Simal-Gandara, J. A state-of-the-art review of the chemical composition of sugarcane spirits and current advances in quality control. J. Food Compos. Anal. 2022, 106, 104338. [Google Scholar] [CrossRef]
- Mbolidi-Baron, H. Les Conditions de Durabilité de la Production de la Canne à Sucre à la Martinique: Une Approche Territoriale. Ph.D. Thesis, University of Toulouse, Toulouse, France, 2002. [Google Scholar]
- Aguiar, D.; Pereira, A.C.; Marques, J.C. Agricultural Rum of Madeira matured on the seafloor: Improved physicochemical changes induced by a pioneering seafloor ageing process. Eur. Food Res. Technol. 2021, 247, 3023–3035. [Google Scholar] [CrossRef]
- James, G. (Ed.) Sugarcane, 2nd ed.; World Agriculture Series; Blackwell Science: Oxford, UK, 2004; ISBN 978-0-632-05476-3. [Google Scholar]
- Moore, P.H.; Paterson, A.H.; Tew, T. Sugarcane: The Crop, the Plant, and Domestication. In Sugarcane: Physiology, Biochemistry, and Functional Biology; Moore, P.H., Botha, F.C., Eds.; John Wiley & Sons Ltd: Chichester, UK, 2013; pp. 1–17. ISBN 978-1-118-77128-0. [Google Scholar]
- Artschwager, E.; Brandes, E.W. Sugarcane (Saccharum officinarum L.): Origin, Classification, Characteristics, and Descriptions of Representative Clones; United States Department of Agriculture: Washington, DC, USA, 1958. [Google Scholar]
- Pompidor, N.; Charron, C.; Hervouet, C.; Bocs, S.; Droc, G.; Rivallan, R.; Manez, A.; Mitros, T.; Swaminathan, K.; Glaszmann, J.-C.; et al. Three founding ancestral genomes involved in the origin of sugarcane. Ann. Bot. 2021, 127, 827–840. [Google Scholar] [CrossRef]
- Evans, D.L.; Joshi, S.V. Complete chloroplast genomes of Saccharum spontaneum, Saccharum officinarum and Miscanthus floridulus (Panicoideae: Andropogoneae) reveal the plastid view on sugarcane origins. Syst. Biodivers. 2016, 14, 548–571. [Google Scholar] [CrossRef]
- Cheavegatti-Gianotto, A.; de Abreu, H.M.C.; Arruda, P.; Bespalhok Filho, J.C.; Burnquist, W.L.; Creste, S.; di Ciero, L.; Ferro, J.A.; de Oliveira Figueira, A.V.; de Sousa Filgueiras, T.; et al. Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil. Trop. Plant Biol. 2011, 4, 62–89. [Google Scholar] [CrossRef]
- Premachandran, M.N.; Prathima, P.T.; Lekshmi, M. Sugarcane and Polyploidy—A Review. J. Sugarcane Res. 2011, 1, 1–15. [Google Scholar]
- Wang, K.; Zhang, H.; Khurshid, H.; Esh, A.; Wu, C.; Wang, Q.; Piperidis, N. Past and recent advances in sugarcane cytogenetics. Crop J. 2023, 11, 1–8. [Google Scholar] [CrossRef]
- Chen, J.C.; Chou, C.C. Cane Sugar Handbook: A Manual for Cane Sugar Manufacturers and Their Chemists; John Wiley & Sons: New York, NY, USA, 1993; ISBN 0-471-53037-9. [Google Scholar]
- Fahrasmane, L.; Ganou-Parfait, B. De la Canne au Rhum; Editions Quae; Institut National de la Recherche Agronomique: Paris, France, 1997; ISBN 2-7380-0728-7. [Google Scholar]
- Smith, F.H. Caribbean Rum: A Social and Economic History; University Press of Florida: Gainesville, FL, USA, 2005; ISBN 978-0-8130-2867-5. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 February 2023).
- Henry, R.J.; Kole, C. (Eds.) Genetics, Genomics and Breeding of Sugarcane; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-1-57808-684-9. [Google Scholar]
- Hébert, A.; Goebel, F.-R.; Domaingue, R.; Lebourgeois, V.; Fovet-Rabot, C.; Bégué, A.; Chabalier, P.; Chopart, J.-L.; Dagallier, J.-C.; Della Mussia, S.; et al. (Eds.) La Canne Aux Multiples Ressources! CIRAD: Montpellier, France, 2008; Available online: https://agritrop.cirad.fr/542892/ (accessed on 26 July 2023).
- De Morais, L.K.; de Aguiar, M.S.; de Albuquerque e Silva, P.; Câmara, T.M.M.; Cursi, D.E.; Fernandes, A.R., Jr.; Chapola, R.G.; Carneiro, M.S.; Bespalhok Filho, J.C. Breeding of Sugarcane. In Industrial Crops: Breeding for BioEnergy and Bioproducts; Cruz, V.M.V., Dierig, D.A., Eds.; Handbook of Plant Breeding Series; Springer: New York, NY, USA, 2015; pp. 29–42. ISBN 978-1-4939-1447-0. [Google Scholar]
- Tabriz, S.S.; Kader, M.A.; Rokonuzzaman, M.; Hossen, M.S.; Awal, M.A. Prospects and challenges of conservation agriculture in Bangladesh for sustainable sugarcane cultivation. Environ. Dev. Sustain. 2021, 23, 15667–15694. [Google Scholar] [CrossRef]
- Hong, J.; Boussetta, N.; Enderlin, G.; Merlier, F.; Grimi, N. Degradation of Residual Herbicide Atrazine in Agri-Food and Washing Water. Foods 2022, 11, 2416. [Google Scholar] [CrossRef]
- Sass, J.B.; Colangelo, A. European Union bans atrazine, while the United States negotiates continued use. Int. J. Occup. Environ. Health 2006, 12, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Kogevinas, M. Probable carcinogenicity of glyphosate. BMJ 2019, 365, l1613. [Google Scholar] [CrossRef] [PubMed]
- Meena, M.R.; Kumar, R.; Chinnaswamy, A.; Karuppaiyan, R.; Kulshreshtha, N.; Ram, B. Current breeding and genomic approaches to enhance the cane and sugar productivity under abiotic stress conditions. 3 Biotech 2020, 10, 440. [Google Scholar] [CrossRef] [PubMed]
- Galinaro, C.A.; Cardoso, D.R.; Franco, D.W. Profiles of Polycyclic Aromatic Hydrocarbons in Brazilian Sugar Cane Spirits: Discrimination between Cachaças Produced from Nonburned and Burned Sugar Cane Crops. J. Agric. Food Chem. 2007, 55, 3141–3147. [Google Scholar] [CrossRef]
- Thai, C.; Doherty, W. The composition of sugarcane juices derived from burnt cane and whole green cane crop. In Proceedings of the 33rd Annual Conference of the Australian Society of Sugar Cane Technologists 2011, Mackay, QLD, Australia, 4–6 May 2011; Bruce, R.C., Ed.; Australian Society of Sugar Cane Technologists: Mackay, QLD, Australia; Curran Associates, Inc.: Red Hook, NY, USA, 2011; pp. 368–376, ISBN 978-1-61782-921-5. [Google Scholar]
- Shaner, D.L.; Beckie, H.J. The future for weed control and technology. Pest Manag. Sci. 2014, 70, 1329–1339. [Google Scholar] [CrossRef]
- Hussain, S.; Khaliq, A.; Mehmood, U.; Qadir, T.; Saqib, M.; Iqbal, M.A.; Hussain, S.; Hussain, S.; Khaliq, A.; Mehmood, U.; et al. Sugarcane Production under Changing Climate: Effects of Environmental Vulnerabilities on Sugarcane Diseases, Insects and Weeds. In Climate Change and Agriculture; IntechOpen: London, UK, 2018; ISBN 978-1-78985-668-2. [Google Scholar]
- Eggleston, G. Positive Aspects of Cane Sugar and Sugar Cane Derived Products in Food and Nutrition. J. Agric. Food Chem. 2018, 66, 4007–4012. [Google Scholar] [CrossRef]
- Kaavya, R.; Pandiselvam, R.; Kothakota, A.; Banuu Priya, E.P.; Arun Prasath, V. Sugarcane Juice Preservation: A Critical Review of the State of the Art and Way Forward. Sugar Tech. 2019, 21, 9–19. [Google Scholar] [CrossRef]
- Canilha, L.; Chandel, A.K.; Suzane dos Santos Milessi, T.; Antunes, F.A.F.; Luiz da Costa Freitas, W.; das Graças Almeida Felipe, M.; da Silva, S.S. Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation. J. Biomed. Biotechnol. 2012, 2012, 989572. [Google Scholar] [CrossRef]
- Singh, A.; Lal, U.; Mukhtar, H.; Singh, P.; Shah, G.; Dhawan, R. Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn. Rev. 2015, 9, 45–54. [Google Scholar] [CrossRef]
- Chen, E.; Song, H.; Li, Y.; Chen, H.; Wang, B.; Che, X.; Zhang, Y.; Zhao, S. Analysis of aroma components from sugarcane to non-centrifugal cane sugar using GC-O-MS. RSC Adv. 2020, 10, 32276–32289. [Google Scholar] [CrossRef]
- Hill, R. Aptitude or adaptation: What lies at the root of terroir? Geogr. J. 2020, 186, 346–350. [Google Scholar] [CrossRef]
- Brillante, L.; Bonfante, A.; Bramley, R.G.V.; Tardaguila, J.; Priori, S. Unbiased Scientific Approaches to the Study of Terroir Are Needed! Front. Earth Sci. 2020, 8, 539377. [Google Scholar] [CrossRef]
- Kyraleou, M.; Herb, D.; O’Reilly, G.; Conway, N.; Bryan, T.; Kilcawley, K.N. The Impact of Terroir on the Flavour of Single Malt Whisk(e)y New Make Spirit. Foods 2021, 10, 443. [Google Scholar] [CrossRef] [PubMed]
- Malfondet, N. La Typicité d’Une Eau de Vie de Cognac: Itinéraire Technologique et Lien au Terroir. Ph.D. Thesis, University of Burgundy, Dijon, France, 2015. [Google Scholar]
- Portugal, C.B.; de Silva, A.P.; Bortoletto, A.M.; Alcarde, A.R. How native yeasts may influence the chemical profile of the Brazilian spirit, cachaça? Food Res. Int. 2017, 91, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.A.; Vicente, M.A.; Fietto, L.G.; de Miranda Castro, I.; Coutrim, M.X.; Schüller, D.; Alves, H.; Casal, M.; de Oliveira Santos, J.; Araújo, L.D.; et al. Biochemical and Molecular Characterization of Saccharomyces cerevisiae Strains Obtained from Sugar-Cane Juice Fermentations and Their Impact in Cachaça Production. Appl. Environ. Microbiol. 2008, 74, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Portugal, C.B.; Alcarde, A.R.; Bortoletto, A.M.; de Silva, A.P. The role of spontaneous fermentation for the production of cachaça: A study of case. Eur. Food Res. Technol. 2016, 242, 1587–1597. [Google Scholar] [CrossRef]
- Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef]
- Duarte, W.F.; Amorim, J.C.; Schwan, R.F. The effects of co-culturing non-Saccharomyces yeasts with S. cerevisiae on the sugar cane spirit (cachaça) fermentation process. Antonie Van Leeuwenhoek 2013, 103, 175–194. [Google Scholar] [CrossRef]
- Alcarde, A.R.; Souza, L.M.; Bortoletto, A.M. Ethyl carbamate kinetics in double distillation of sugar cane spirit. Part 2: Influence of type of pot still: Ethyl carbamate kinetics in double distillation of sugar cane spirit. J. Inst. Brew. 2012, 118, 352–355. [Google Scholar] [CrossRef]
- Bruno, S.; Vaitsman, D.; Kunigami, C.; Brasil, M. Influence of the distillation processes from Rio de Janeiro in the ethyl carbamate formation in Brazilian sugar cane spirits. Food Chem. 2007, 104, 1345–1352. [Google Scholar] [CrossRef]
- Reche, R.V.; Leite Neto, A.F.; Da Silva, A.A.; Galinaro, C.A.; De Osti, R.Z.; Franco, D.W. Influence of Type of Distillation Apparatus on Chemical Profiles of Brazilian Cachaças. J. Agric. Food Chem. 2007, 55, 6603–6608. [Google Scholar] [CrossRef]
- Bortoletto, A.M.; Alcarde, A.R. Aging marker profile in cachaça is influenced by toasted oak chips. J. Inst. Brew. 2015, 121, 70–77. [Google Scholar] [CrossRef]
- Bortoletto, A.M.; Correa, A.C.; Alcarde, A.R. Aging practices influence chemical and sensory quality of cachaça. Food Res. Int. 2016, 86, 46–53. [Google Scholar] [CrossRef]
- Bortoletto, A.M.; Silvello, G.C.; Alcarde, A.R. Aromatic profiling of flavor active compounds in sugarcane spirits aged in tropical wooden barrels. Braz. J. Food Technol. 2021, 24, e2019071. [Google Scholar] [CrossRef]
- Campos, J.O.S.; De Aquino, F.W.B.; Do Nascimento, R.F.; Da Costa, J.G.M.; Keukeleire, D.D.; De Casimiro, A.R.S. Influence and effect of thermal treatment in elaboration of regional wood extracts for cachaça. J. Food Compos. Anal. 2004, 17, 179–185. [Google Scholar] [CrossRef]
- Quesada-Granados, J.J.; Samaniego-Sánchez, C.; Blanca-Herrera, R.M. Rhum–Ron–Rum: Technology and Tradition. In Encyclopedia of Food and Health; Elsevier: Oxford, UK; Waltham, MA, USA, 2016; pp. 618–627. ISBN 978-0-12-384953-3. [Google Scholar]
- Stewart, G.G. A short history of rum. In Whisky and Other Spirits; Elsevier: London, UK, 2022; pp. 457–462. [Google Scholar]
- Council Regulation (EEC) No 1576/89 of 29 May 1989 Laying Down General Rules on the Definition, Description and Presentation of Spirit Drinks; European Union: Brussels, Belgium, 1989; Volume 160.
- CRS 25: 2008; CARICOM Regional Standard for Rum. CARICOM Regional Organisation for Standards and Quality (CROSQ): Belleville, Barbados, 2008.
- Mangwanda, T.; Johnson, J.B.; Mani, J.S.; Jackson, S.; Chandra, S.; McKeown, T.; White, S.; Naiker, M. Processes, Challenges and Optimisation of Rum Production from Molasses—A Contemporary Review. Fermentation 2021, 7, 21. [Google Scholar] [CrossRef]
- Jacques, K.A.; Lyons, T.P.; Kelsall, D.R. The Alcohol Textbook: A Reference for the Beverage, Fuel and Industrial Alcohol Industries, 4th ed.; Nottingham University Press: Nottingham, UK, 2003; ISBN 978-1-897676-13-4. [Google Scholar]
- Zamor, H. The history of Martiniquan rum. Int. J. Humanit. Cult. Stud. 2015, 2, 557–568. [Google Scholar]
- Anger, J.-P.; Kintz, P. Is rum toxic? Ann. Toxicol. Anal. 2008, 20, 137–144. [Google Scholar] [CrossRef]
- Ministère de l’Agriculture et de l’Alimentation. Arrêté du 29 Décembre 2020 Homologuant le Cahier des Charges de l’Appellation d’Origine Contrôlée «Rhum de la Martinique». J. Off. Repub. Fr. 2021, 316, 165–242. [Google Scholar]
- Agro-Média Le SIR 2023 Dévoile une Radiographie Inédite du Marché Mondial du Rhum. Available online: https://www.agro-media.fr/actualite/le-sir-2023-devoile-une-radiographie-inedite-du-marche-mondial-du-rhum-56145.html (accessed on 1 July 2023).
- Bates, J. Will Rum Finally Make Its Global Travel Retail Breakthrough?—Category Intel. Available online: https://drinks-intel.com/spirits/will-rum-finally-make-its-global-travel-retail-breakthrough-category-intel/ (accessed on 1 July 2023).
- Alcarde, A.R.; Souza, L.M.; Bortoletto, A.M. Formation of volatile and maturation-related congeners during the aging of sugarcane spirit in oak barrels. J. Inst. Brew. 2014, 120, 529–536. [Google Scholar] [CrossRef]
- Santiago, W.D.; das Graças Cardoso, M.; da Silva Lunguinho, A.; Barbosa, R.B.; Cravo, F.D.; da Silva Gonçalves, G.; Nelson, D.L. Determination of ethyl carbamate in cachaça stored in newly made oak, amburana, jatobá, balsa and peroba vats and in glass containers. J. Inst. Brew. 2017, 123, 572–578. [Google Scholar] [CrossRef]
- Cardoso, D.R.; Frederiksen, A.M.; Ataíde da Silva, A.; Franco, D.W.; Skibsted, L.H. Sugarcane spirit extracts of oak and Brazilian woods: Antioxidant capacity and activity. Eur. Food Res. Technol. 2008, 227, 1109–1116. [Google Scholar] [CrossRef]
- Da Silva, A.A.; do Nascimento, E.S.P.; Cardoso, D.R.; Franco, D.W. Coumarins and phenolic fingerprints of oak and Brazilian woods extracted by sugarcane spirit. J. Sep. Sci. 2009, 32, 3681–3691. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.D.C.A.; Vásquez, P.; del Mastro, N.L.; Acree, T.E.; Lavin, E.H. Characterization of Cachaça and Rum Aroma. J. Agric. Food Chem. 2006, 54, 485–488. [Google Scholar] [CrossRef]
- Mulling Neutzling, D.; Santos, M.S.D.; Barcellos, M.D.D.; Lauren Land, A. Value Creation from Internationalization of Sugar Cane by-products: A multi-stakeholder view of artisanal cachaça production. RBGN 2015, 17, 890–910. [Google Scholar] [CrossRef]
- Oliveira, E.S.; Cardello, H.M.A.B.; Jeronimo, E.M.; Souza, E.L.R.; Serra, G.E. The influence of different yeasts on the fermentation, composition and sensory quality of cachaça. World J. Microbiol. Biotechnol. 2005, 21, 707–715. [Google Scholar] [CrossRef]
- Bortoletto, A.M.; Alcarde, A.R. Assessment of chemical quality of Brazilian sugar cane spirits and cachaças. Food Control 2015, 54, 1–6. [Google Scholar] [CrossRef]
- Donaires Quispe, L. Fermentación del Mosto de Caña de Azúcar (Saccharum officinarum) Con Uso de Catalizadores Naturales y Comerciales Para Obtener Aguardiente—Pachachaca—Abancay—2018. Ph.D. Thesis, Universidad Tecnológica de los Andes, Abancay, Peru, 2018. [Google Scholar]
- Paranubes. Available online: https://www.paranubes.com/tech (accessed on 21 July 2023).
- Archive of Pure Cane Juice Rum—Rhum Attitude. Available online: https://www.rhumattitude.com/en/categorie/rhum/rhum-agricole/ (accessed on 21 July 2023).
- Ramos, A.C.N. Caracterização de Aguardente de Cana-de-Açúcar “Grogue de Cabo Verde”. Master’s Thesis, Instituto Politecnico de Leiria, Peniche, Portugal, 2015. [Google Scholar]
- Craveiro, I.; Alves, D.; Amado, M.; Santos, Z.; Fortes, A.; Delgado, A.; Correia, A.; Gonçalves, L. Determinants, Health Problems, and Food Insecurity in Urban Areas of the Largest City in Cape Verde. Int. J. Environ. Res. Public Health 2016, 13, 1155. [Google Scholar] [CrossRef]
- Pereira, R.F.R.; Melo, D.; de Barros, A.L.; Clecius, A.A.; do Nascimento, R.F. Comparative study of chemical constituents in sugar cane spirits from Brazil and Cape Verde. Afr. J. Food Sci. 2012, 6, 427–440. [Google Scholar] [CrossRef]
- Pereira, R.F.R.; Vidal, C.B.; de Lima, A.C.A.; Melo, D.Q.; Dantas, A.N.S.; Lopes, G.S.; do Nascimento, R.F.; Gomes, C.L.; da Silva, M.N. Chemometric Characterization of Alembic and Industrial Sugar Cane Spirits from Cape Verde and Ceará, Brazil. Int. J. Anal. Chem. 2012, 2012, 840528. [Google Scholar] [CrossRef]
- Moreira, É.A.S. Plano de Internacionalização do “Grogue” Para a Diáspora Cabo-Verdiana. Master’s Thesis, Instituto Politecnico do Porto, Peniche, Portugal, 2016. [Google Scholar]
- Rodríguez-Solana, R.; Vázquez-Araújo, L.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. Optimization of the process of aromatic and medicinal plant maceration in grape marc distillates to obtain herbal liqueurs and spirits. J. Sci. Food Agric. 2016, 96, 4760–4771. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, P. Une plante aromatique de la Caraïbe: Le bois d’Inde. J. d’Agric. Tradit. Bota. Appl. 1995, 37, 139–149. [Google Scholar] [CrossRef]
- Weniger, B.; Haag-Berrurier, M.; Anton, R. Plants of Haiti used as antifertility agents. J. Ethnopharmacol. 1982, 6, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Krippner, J. Historical Dictionary of Haiti. By Michael R. Hall. Lanham. Americas 2013, 69, 402. [Google Scholar] [CrossRef]
- Riffault-Valois, L.; Wattez, C.; Langrand, J.; Boucaud-Maitre, D.; Gaslonde, T.; Colas, C.; Nossin, E.; Blateau, A.; Michel, S.; Cachet, X. Health risk associated with the oral consumption of “Chiniy-tref”, a traditional medicinal preparation used in Martinique (French West Indies): Qualitative and quantitative analyses of aristolochic acids contained therein. Toxicon 2019, 172, 53–60. [Google Scholar] [CrossRef]
- Tmušić, N.; Ilić, Z.S.; Milenković, L.; Šunić, L.; Lalević, D.; Kevrešan, Ž.; Mastilović, J.; Stanojević, L.; Cvetković, D. Shading of Medical Plants Affects the Phytochemical Quality of Herbal Extracts. Horticulturae 2021, 7, 437. [Google Scholar] [CrossRef]
- Granato, D.; de Oliveira, C.C.; Caruso, M.S.F.; Nagato, L.A.F.; Alaburda, J. Feasibility of different chemometric techniques to differentiate commercial Brazilian sugarcane spirits based on chemical markers. Food Res. Int. 2014, 60, 212–217. [Google Scholar] [CrossRef]
- Allen, A.G.; Cardoso, A.A.; da Rocha, G.O. Influence of sugar cane burning on aerosol soluble ion composition in Southeastern Brazil. Atmos. Environ. 2004, 38, 5025–5038. [Google Scholar] [CrossRef]
- Solomon, S. Post-harvest deterioration of sugarcane. Sugar Tech. 2009, 11, 109–123. [Google Scholar] [CrossRef]
- Daniels, J.; Daniels, C. The Origin of the Sugarcane Roller Mill. Technol. Cult. 1988, 29, 493–535. [Google Scholar] [CrossRef]
- Inskip, S.T. Cane preparation-optimised technology. In Proceedings of the 27th International Society of Sugar Cane Technologists Congress, Veracruz, Mexico, 7–11 March 2010; Asociación de Técnicos Azucareros de México, AC (ATAM): Mexico City, Mexico, 2010. [Google Scholar]
- Agu, K.C.; Oduola, M.K. Kinetic modeling of ethanol production by batch fermentation of sugarcane juice using immobilized yeast. Glob. J. Eng. Technol. Adv. 2021, 7, 124–136. [Google Scholar] [CrossRef]
- Faria, J.B. Sugar cane spirits: Cachaça and rum production and sensory properties. In Alcoholic Beverages: Sensory Evaluation and Consumer Research; Woodhead Publishing, Ltd.: Cambridge, UK, 2012; pp. 348–358. ISBN 978-0-85709-051-5. [Google Scholar]
- Fahrasmane; Ganou-Parfait. Microbial flora of rum fermentation media. J. Appl. Microbiol. 1998, 84, 921–928. [Google Scholar] [CrossRef]
- Chantasiriwan, S. Numerical model of sugar mills with compound Imbibition. In Proceedings of the 35th Conference of the Australian Society of Sugar Cane Technologists, Townsville, QLD, Australia, 16–18 April 2013; Australian Society of Sugar Cane Technologists: Mackay, QLD, Australia, 2013. [Google Scholar]
- Walker, G.; Stewart, G. Saccharomyces cerevisiae in the Production of Fermented Beverages. Beverages 2016, 2, 30. [Google Scholar] [CrossRef]
- Freitas Schwan, R.; Mendonça, A.T.; da Silva, J.J.; Rodrigues, V.; Wheals, A.E. Microbiology and physiology of Cachaça (Aguardente) fermentations. Antonie Van Leeuwenhoek 2001, 79, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Nicol, D.A. Rum. In Fermented Beverage Production; Lea, A.G.H., Piggott, J.R., Eds.; Springer: Boston, MA, USA, 2003; pp. 263–287. ISBN 978-1-4615-0187-9. [Google Scholar]
- De Araújo Vicente, M.; Fietto, L.G.; de Miranda Castro, I.; Gonçalves dos Santos, A.N.; Coutrim, M.X.; Brandão, R.L. Isolation of Saccharomyces cerevisiae strains producing higher levels of flavoring compounds for production of “cachaça” the Brazilian sugarcane spirit. Int. J. Food Microbiol. 2006, 108, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Jeronimo, E.M.; de Souza Oliveira, E.; Souza, E.L.R.; de Almeida Silva, M.; Serra, G.E. Addition of proteic nitrogen during alcoholic fermentation for the production of cachaça. Sci. Agric. 2008, 65, 161–168. [Google Scholar] [CrossRef]
- Amorim, J.C.; Schwan, R.F.; Duarte, W.F. Sugar cane spirit (cachaça): Effects of mixed inoculum of yeasts on the sensory and chemical characteristics. Food Res. Int. 2016, 85, 76–83. [Google Scholar] [CrossRef]
- Vidal, E.E.; de Billerbeck, G.M.; Simões, D.A.; Schuler, A.; François, J.M.; de Morais, M.A. Influence of nitrogen supply on the production of higher alcohols/esters and expression of flavour-related genes in cachaça fermentation. Food Chem. 2013, 138, 701–708. [Google Scholar] [CrossRef]
- Beltran, G.; Rozès, N.; Mas, A.; Guillamón, J.M. Effect of low-temperature fermentation on yeast nitrogen metabolism. World J. Microbiol. Biotechnol. 2007, 23, 809–815. [Google Scholar] [CrossRef]
- Verbelen, P.J.; Saerens, S.M.G.; Van Mulders, S.E.; Delvaux, F.; Delvaux, F.R. The role of oxygen in yeast metabolism during high cell density brewery fermentations. Appl. Microbiol. Biotechnol. 2009, 82, 1143–1156. [Google Scholar] [CrossRef]
- Kiss, A.A. Distillation technology—Still young and full of breakthrough opportunities. J. Chem. Technol. Biotechnol. 2014, 89, 479–498. [Google Scholar] [CrossRef]
- Spaho, N. Distillation Techniques in the Fruit Spirits Production. In Distillation—Innovative Applications and Modeling; IntechOpen: London, UK, 2017; ISBN 978-953-51-3202-8. [Google Scholar]
- Christofoletti, C.A.; Escher, J.P.; Correia, J.E.; Marinho, J.F.U.; Fontanetti, C.S. Sugarcane vinasse: Environmental implications of its use. Waste Manag. 2013, 33, 2752–2761. [Google Scholar] [CrossRef] [PubMed]
- Batista, F.R.M.; Meirelles, A.J.A. Computer simulation applied to studying continuous spirit distillation and product quality control. Food Control 2011, 22, 1592–1603. [Google Scholar] [CrossRef]
- Faria, J.B.; Cardello, H.M.A.B.; Boscolo, M.; Isique, W.D.; Odello, L.; Franco, D.W. Evaluation of Brazilian woods as an alternative to oak for cachaças aging. Eur. Food Res. Technol. 2003, 218, 83–87. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Puech, J.-L. Wood maturation of distilled beverages. Trends Food Sci. Technol. 1998, 9, 95–101. [Google Scholar] [CrossRef]
- Clyne, J.; Conner, J.M.; Paterson, A.; Piggott, J.R. The effect of cask charring on Scotch whisky maturation. Int. J. Food Sci. Technol. 1993, 28, 69–81. [Google Scholar] [CrossRef]
- Canas, S.; Caldeira, I.; Anjos, O.; Belchior, A.P. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: Alternative technology using micro-oxygenation vs. traditional technology. LWT 2019, 111, 260–269. [Google Scholar] [CrossRef]
- Canas, S. Phenolic Composition and Related Properties of Aged Wine Spirits: Influence of Barrel Characteristics. A Review. Beverages 2017, 3, 55. [Google Scholar] [CrossRef]
- Vivas, N.; Picard, M.; Bourden-Nonier, M.-F.; Vivas de Gaulejac, N.; Mouche, C.; Rossy, C. Heartwood dry extract: A key fraction for the quality and the diversity of rums and spirits. J. Inst. Brew. 2021, 127, 59–69. [Google Scholar] [CrossRef]
- Stewart, G.; Kellershohn, J.; Russell, I. Whisky and Other Spirits: Technology, Production and Marketing; Academic Press: London, UK, 2021; ISBN 0-323-85360-9. [Google Scholar]
- Delgado-González, M.J.; García-Moreno, M.V.; Sánchez-Guillén, M.M.; García-Barroso, C.; Guillén-Sánchez, D.A. Colour evolution kinetics study of spirits in their ageing process in wood casks. Food Control 2021, 119, 107468. [Google Scholar] [CrossRef]
- Santiago, W.D.; das Graças Cardoso, M.; de Andrade Santiago, J.; Teixeira, M.L.; Barbosa, R.B.; Zacaroni, L.M.; de Sales, P.F.; Nelson, D.L. Physicochemical profile and determination of volatile compounds in cachaça stored in new oak (Quercus sp.), amburana (Amburana cearensis), jatoba (Hymenaeae carbouril), balsam (Myroxylon peruiferum) and peroba (Paratecoma peroba) casks by SPME-GC–MS. J. Inst. Brew. 2016, 122, 624–634. [Google Scholar] [CrossRef]
- Lee, K.-Y.M.; Paterson, A.; Piggott, J.R.; Richardson, G.D. Origins of Flavour in Whiskies and a Revised Flavour Wheel: A Review. J. Inst. Brew. 2001, 107, 287–313. [Google Scholar] [CrossRef]
- Zea, L.; Serratosa, M.P.; Mérida, J.; Moyano, L. Acetaldehyde as Key Compound for the Authenticity of Sherry Wines: A Study Covering 5 Decades. Compr. Rev. Food Sci. Food Saf. 2015, 14, 681–693. [Google Scholar] [CrossRef]
- Serafim, F.A.T.; Seixas, F.R.F.; Silva, A.A.D.; Galinaro, C.A.; Nascimento, E.S.P.; Buchviser, S.F.; Odello, L.; Franco, D.W. Correlation between Chemical Composition and Sensory Properties of Brazilian Sugarcane Spirits (Cachaças). J. Braz. Chem. Soc. 2013, 24, 973–982. [Google Scholar] [CrossRef]
- Dos Anjos, J.P.; das Graças Cardoso, M.; Saczk, A.A.; Dórea, H.S.; Santiago, W.D.; Machado, A.M.R.; Zacaroni, L.M.; Nelson, D.L. Evolution of the concentration of phenolic compounds in cachaça during aging in an oak (Quercus sp.) barrel. J. Braz. Chem. Soc. 2011, 22, 1307–1314. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, Y.; Zhang, L.; Zhu, M.; Liang, S.; Huang, Y. Study of sugarcane pieces as yeast supports for ethanol production from sugarcane juice and molasses. J. Ind. Microbiol. Biotechnol. 2008, 35, 1605–1613. [Google Scholar] [CrossRef]
- Serafim, F.A.T.; Pereira-Filho, E.R.; Franco, D.W. Chemical data as markers of the geographical origins of sugarcane spirits. Food Chem. 2016, 196, 196–203. [Google Scholar] [CrossRef]
- Capobiango, M.; Oliveira, E.S.; Cardeal, Z.L. Evaluation of Methods Used for the Analysis of Volatile Organic Compounds of Sugarcane (Cachaça) and Fruit Spirits. Food Anal. Methods 2013, 6, 978–988. [Google Scholar] [CrossRef]
- Garcia, A.C.; Serafim, F.A.T.; Keukeleire, D.D.; Franco, D.W. Evaluation of Glycerol Profiles in Sugarcane Spirits (Cachaças). J. Braz. Chem. Soc. 2015, 26, 57–63. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, J.; Duan, C.-Q.; Reeves, M.J.; He, F. A Review of Polyphenolics in Oak Woods. Int. J. Mol. Sci. 2015, 16, 6978–7014. [Google Scholar] [CrossRef]
- Castro, M.C.; Bortoletto, A.M.; Silvello, G.C.; Alcarde, A.R. Lignin-derived phenolic compounds in cachaça aged in new barrels made from two oak species. Heliyon 2020, 6, e05586. [Google Scholar] [CrossRef] [PubMed]
- Caetano, D.; Gonçalves Lima, C.M.; Lima Sanson, A.; Faria Silva, D.; de Souza Hassemer, G.; Verruck, S.; Gregorio, S.R.; da Silva, G.A.; de Cassia Franco Afonso, R.J.; Xavier Coutrim, M.; et al. Chemical Fingerprint of Non-aged Artisanal Sugarcane Spirits Using Kohonen Artificial Neural Network. Food Anal. Methods 2022, 15, 890–907. [Google Scholar] [CrossRef]
- Meade, G.P.; Chen, J.C. Cane Sugar Handbook; John Wiley & Sons: New York, NY, USA, 1977; ISBN 0-471-58996-9. [Google Scholar]
- Ali, M.N.H.A.; Jamali, L.A.; Soomro, S.A.; Chattha, S.H.; Ibupoto, K.A.; Abbasi, N.A.; Qumi, N.M. Post-Harvest Losses and Control of Unprocessed Sugarcane. Pak. J. Agric. Res. 2018, 31, 355–360. [Google Scholar] [CrossRef]
- Saxena, P.; Srivastava, R.P.; Sharma, M.L. Impact of Cut to Crush Delay and Bio-chemical Changes in Sugarcane. Aust. J. Crop Sci. 2010, 4, 692–699. [Google Scholar]
- Gabriel, A.V.M.D.; Verruma-Bernardi, M.R.; Margarido, L.A.C.; Borges, M.T.M.R.; Nassu, R.T.; Lavorenti, N.A.; Ceccato-Antonini, S.R. Effect of the spontaneous fermentation and the ageing on the chemo-sensory quality of Brazilian organic cachaça. Cienc. Rural 2012, 42, 918–925. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Mattos, D.S.; Margarido, L.A.C.; Ceccato-Antonini, S.R. Influence of sugarcane variety and management on the mineral composition of vinasse from alembic cachaça. Acta Scientiarum Technol. 2018, 40, e36581. [Google Scholar] [CrossRef]
- Nascimento, R.F.; Bezerra, C.W.B.; Furuya, S.M.B.; Schultz, M.S.; Polastro, L.R.; Lima Neto, B.S.; Franco, D.W. Mineral Profile of Brazilian Cachaças and Other International Spirits. J. Food Compos. Anal. 1999, 12, 17–25. [Google Scholar] [CrossRef]
- De Souza, J.C.; Toci, A.T.; Beluomini, M.A.; de Paula Eiras, S. Determination of copper in sugarcane spirit by flame atomic absorption spectrometry using a ternary solvent mixture (water-ethanol-acetone). Eclética Química 2017, 42, 33–39. [Google Scholar] [CrossRef]
- Rodrigues, B.U.; da Costa, R.M.; Salvini, R.L.; da Silva Soares, A.; da Silva, F.A.; Caliari, M.; Cardoso, K.C.R.; Ribeiro, T.I.M. Cachaça Classification Using Chemical Features and Computer Vision. Procedia Comput. Sci. 2014, 29, 2024–2033. [Google Scholar] [CrossRef]
- Jiao, Z.; Dong, Y.; Chen, Q. Ethyl Carbamate in Fermented Beverages: Presence, Analytical Chemistry, Formation Mechanism, and Mitigation Proposals: Ethyl carbamate in fermented beverages. Compr. Rev. Food Sci. Food Saf. 2014, 13, 611–626. [Google Scholar] [CrossRef]
- Rodrigues, L.M.A.; das Graças Cardoso, M.; Batista, L.R.; Santiago, W.D.; Resende, J.M.V.; de Andrade Santiago, J.; de Souza Gomes, M.; Andrade, M.A.; Teixeira, M.L.; Passamani, F.R.F. “Cachaças” (Sugarcane Spirit) Aged Quantitation of Phenolic Compounds, Antibacterial and Antioxidant Activity. Am. J. Plant Sci. 2014, 5, 2935. [Google Scholar] [CrossRef]
- Bettin, S.; Isique, W.; Franco, D.; Andersen, M.; Knudsen, S.; Skibsted, L. Phenols and metals in sugar-cane spirits. Quantitative analysis and effect on radical formation and radical scavenging. Eur. Food Res. Technol. 2002, 215, 169–175. [Google Scholar] [CrossRef]
- Bortoletto, A.M.; Alcarde, A.R. Congeners in sugar cane spirits aged in casks of different woods. Food Chem. 2013, 139, 695–701. [Google Scholar] [CrossRef]
- Franitza, L.; Schieberle, P.; Granvogl, M. Characterization of the Key Aroma Compounds in Rum Made from Sugar Cane Juice by Means of the Sensomics Approach. In Sex, Smoke, and Spirits: The Role of Chemistry; Guthrie, B., Beauchamp, J.D., Buettner, A., Toth, S., Qian, M.C., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2019; Volume 1321, pp. 291–309. ISBN 978-0-8412-3467-3. [Google Scholar]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Ickes, C.M.; Cadwallader, K.R. Characterization of Sensory Differences in Mixing and Premium Rums Through the Use of Descriptive Sensory Analysis. J. Food Sci. 2017, 82, 2679–2689. [Google Scholar] [CrossRef]
- Maza Gomez, S. Rum Aroma Descriptive Analysis. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2002. [Google Scholar] [CrossRef]
- González-Robles, M.I.W. Flavour Interactions Between the ‘Estery’ and ‘Mature/Woody’ Characters of Whisky, Bourbon & Tequila. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2018. [Google Scholar]
- Ickes, C.M.; Lee, S.-Y.; Cadwallader, K.R. Novel Creation of a Rum Flavor Lexicon Through the Use of Web-Based Material. J. Food Sci. 2017, 82, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Rota, M.B.; Piggott, J.R.; Faria, J.B. Sensory profile and acceptability of traditional and double-distilled cachaça aged in oak casks: Traditional and double-distilled cachaça aged in oak casks. J. Inst. Brew. 2013, 119, 251–257. [Google Scholar] [CrossRef]
- Puentes, C.; Joulia, X.; Vidal, J.-P.; Esteban-Decloux, M. Simulation of spirits distillation for a better understanding of volatile aroma compounds behavior: Application to Armagnac production. Food Bioprod. Process. 2018, 112, 31–62. [Google Scholar] [CrossRef]
- Caetano, D.; Lima, C.M.G.; Sanson, A.L.; Silva, D.F.; de Souza Hassemer, G.; Verruck, S.; da Silva, G.A.; de Cássia Franco Afonso, R.J.; Coutrim, M.X.; Gregório, S.R. Descriptive screening and lexicon development of non-aged artisanal cachaça sensorial profile using principal component analysis and Kohonen artificial neural networks. J. Sens. Stud. 2021, 36, e12645. [Google Scholar] [CrossRef]
- Vilela, A.F.; de Sousa Conrado Oliveira, L.; Muniz, M.B.; de Mélo, B.C.A.; de Figueiredo, M.J.; de Mélo Vieira Neto, J. Assessment of sensory and physical-chemical quality, and potential for certification of cachaças from the state of Paraíba, Brazil. Food Sci. Technol. 2021, 41, 661–668. [Google Scholar] [CrossRef]
- Franitza, L.; Nicolotti, L.; Granvogl, M.; Schieberle, P. Differentiation of Rums Produced from Sugar Cane Juice (Rhum Agricole) from Rums Manufactured from Sugar Cane Molasses by a Metabolomics Approach. J. Agric. Food Chem. 2018, 66, 3038–3045. [Google Scholar] [CrossRef] [PubMed]
- Bortoletto, A.M.; Corrêa, A.C.; Alcarde, A.R. Fatty acid profile and glycerol concentration in cachaças aged in different wood barrels. J. Inst. Brew. 2016, 122, 293–298. [Google Scholar] [CrossRef]
- Zamora, F. Biochemistry of Alcoholic Fermentation. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer: New York, NY, USA, 2009; pp. 3–26. ISBN 978-0-387-74118-5. [Google Scholar]
- Wang, Z.; Ickes, C.M.; Cadwallader, K.R. Influence of Ethanol on Flavor Perception in Distilled Spirits. In Sex, Smoke, and Spirits: The Role of Chemistry; Guthrie, B., Beauchamp, J.D., Buettner, A., Toth, S., Qian, M.C., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2019; Volume 1321, pp. 277–290. ISBN 978-0-8412-3467-3. [Google Scholar]
- Fahrasmane, L.; Parfait, A.; Jouret, C.; Galzy, P. Production of Higher Alcohols and Short Chain Fatty Acids by Different Yeasts Used in Rum Fermentations. J. Food Sci. 1985, 50, 1427–1436. [Google Scholar] [CrossRef]
- Pang, X.-N.; Li, Z.-J.; Chen, J.-Y.; Gao, L.-J.; Han, B.-Z. A Comprehensive Review of Spirit Drink Safety Standards and Regulations from an International Perspective. J. Food Prot. 2017, 80, 431–442. [Google Scholar] [CrossRef]
- Inês, A.; Falco, V.; Inês, A.; Falco, V. Lactic Acid Bacteria Contribution to Wine Quality and Safety. In Generation of Aromas and Flavours; IntechOpen: London, UK, 2018; ISBN 978-1-78984-453-5. [Google Scholar]
- Azevedo, M.S.; Pirassol, G.; Fett, R.; Micke, G.A.; Vitali, L.; Costa, A.C.O. Screening and determination of aliphatic organic acids in commercial Brazilian sugarcane spirits employing a new method involving capillary electrophoresis and a semi-permanent adsorbed polymer coating. Food Res. Int. 2014, 60, 123–130. [Google Scholar] [CrossRef]
- The Good Scents. Available online: http://www.thegoodscentscompany.com/ (accessed on 1 July 2023).
- Meilgaard, M.C. Flavor chemistry of beer. II. Flavor and threshold of 239 aroma volatiles. Tech. Quart. Master. Brew. Assoc. Am. 1975, 12, 151–168. [Google Scholar]
- Siebert, T.E.; Smyth, H.E.; Capone, D.L.; Neuwöhner, C.; Pardon, K.H.; Skouroumounis, G.K.; Herderich, M.J.; Sefton, M.A.; Pollnitz, A.P. Stable isotope dilution analysis of wine fermentation products by HS-SPME-GC-MS. Anal. Bioanal. Chem. 2005, 381, 937–947. [Google Scholar] [CrossRef]
- Duarte, W.F.; de Sousa, M.V.F.; Dias, D.R.; Schwan, R.F. Effect of Co-Inoculation of Saccharomyces cerevisiae and Lactobacillus fermentum on the Quality of the Distilled Sugar Cane Beverage Cachaça. J. Food Sci. 2011, 76, C1307–C1318. [Google Scholar] [CrossRef]
- Gracia, I.; Rodríguez, J.F.; García, M.T.; Alvarez, A.; García, A. Isolation of aroma compounds from sugar cane spirits by supercritical CO2. J. Supercrit. Fluids 2007, 43, 37–42. [Google Scholar] [CrossRef]
- Cardoso, D.R.; Andrade-Sobrinho, L.G.; Leite-Neto, A.F.; Reche, R.V.; Isique, W.D.; Ferreira, M.M.C.; Lima-Neto, B.S.; Franco, D.W. Comparison between Cachaça and Rum Using Pattern Recognition Methods. J. Agric. Food Chem. 2004, 52, 3429–3433. [Google Scholar] [CrossRef] [PubMed]
- Boscolo, M.; Bezerra, C.W.B.; Cardoso, D.R.; Lima Neto, B.S.; Franco, D.W. Identification and dosage by HRGC of minor alcohols and esters in Brazilian sugar-cane spirit. J. Braz. Chem. Soc. 2000, 11, 86–90. [Google Scholar] [CrossRef]
- Nascimento, R.F.; Marques, J.C.; Lima Neto, B.S.; De Keukeleire, D.; Franco, D.W. Qualitative and quantitative high-performance liquid chromatographic analysis of aldehydes in Brazilian sugar cane spirits and other distilled alcoholic beverages. J. Chromatogr. A 1997, 782, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.M.A.; das Graças Cardoso, M.; Santiago, W.D.; Barbosa, R.B.; de Andrade Santiago, J.; Lima, L.M.Z.; Nelson, D.L. Organic contaminants in distilled sugar cane spirits produced by column and copper alembic distillation. Res. Soc. Dev. 2020, 9, e930974879. [Google Scholar] [CrossRef]
- Pino, J.A.; Tolle, S.; Gök, R.; Winterhalter, P. Characterisation of odour-active compounds in aged rum. Food Chem. 2012, 132, 1436–1441. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Zheng, X.P.; Song, P.; Sun, Z.L.; Tian, T.T. Characterization of Volatiles in the Six Most Well-Known Distilled Spirits. J. Am. Soc. Brew. Chem. 2013, 71, 161–169. [Google Scholar] [CrossRef]
- Silveira, A.L.; Machado, A.M.d.R.; de Cássia Oliveira Gomes, F.; Garcia, C.F.; Badotti, F. Profile of volatile organic compounds in musts and cachaças produced by selected Saccharomyces cerevisiae yeast strains. Res. Soc. Dev. 2021, 10, e23410414009. [Google Scholar] [CrossRef]
- Nascimento, E.S.P.; Cardoso, D.R.; Franco, D.W. Quantitative Ester Analysis in Cachaça and Distilled Spirits by Gas Chromatography−Mass Spectrometry (GC−MS). J. Agric. Food Chem. 2008, 56, 5488–5493. [Google Scholar] [CrossRef]
- Mosedale, J.R. Effects of oak wood on the maturation of alcoholic beverages with particular reference to whisky. For. Int. J. For. Res. 1995, 68, 203–230. [Google Scholar] [CrossRef]
- Monties, B. Composition chimique des bois de chêne: Composés phénoliques, relations avec quelques propriétés physiques et chimiques susceptibles d’influencer la qualité des vins et des eaux-de-vie. OENO One 1987, 21, 169–190. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Blanco Gomis, D.; Mangas Alonso, J.J. Influence of Distillation System, Oak Wood Type, and Aging Time on Composition of Cider Brandy in Phenolic and Furanic Compounds. J. Agric. Food Chem. 2003, 51, 7969–7973. [Google Scholar] [CrossRef] [PubMed]
- De Aquino, F.W.B.; Rodrigues, S.; do Nascimento, R.F.; Casimiro, A.R.S. Simultaneous determination of aging markers in sugar cane spirits. Food Chem. 2006, 98, 569–574. [Google Scholar] [CrossRef]
- Thibaud, F.; Courregelongue, M.; Darriet, P. Contribution of Volatile Odorous Terpenoid Compounds to Aged Cognac Spirits Aroma in a Context of Multicomponent Odor Mixtures. J. Agric. Food Chem. 2020, 68, 13310–13318. [Google Scholar] [CrossRef] [PubMed]
- Viana, E.J.; de Carvalho Tavares, I.M.; Rodrigues, L.M.A.; das Graças Cardoso, M.; Baffa Júnior, J.C.; Gualberto, S.A.; de Oliveira, C.P. Evaluation of toxic compounds and quality parameters on the aged Brazilian sugarcane spirit. Res. Soc. Dev. 2020, 9, e395985544. [Google Scholar] [CrossRef]
- Cravo, F.D.; Santiago, W.D.; Da Silva Lunguinho, A.; Barbosa, R.B.; Da Silva Oliveira, R.E.; Alvarenga, G.F.; Santos, S.D.; Souza, R.H.Z.; De Souza, E.C.; De Almeida, K.J.; et al. Composition of Cachaças Produced from Five Varieties of Sugarcane and the Correlation of the Presence of Dhurrin in the Cane with That of Ethyl Carbamate in the Product. Am. J. Plant Sci. 2019, 10, 339–350. [Google Scholar] [CrossRef]
- Cardoso, D.R.; Andrade Sobrinho, L.G.; Lima-Neto, B.S.; Franco, D.W. A rapid and sensitive method for dimethylsulphide analysis in Brazilian sugar cane sugar spirits and other distilled beverages. J. Braz. Chem. Soc. 2004, 15, 277–281. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Lima, M.C.; Nóbrega, I.C.; Pereira, J.A.; Kerr-Corrêa, F.; Kanteres, F.; Rehm, J. Cancer risk assessment of ethyl carbamate in alcoholic beverages from Brazil with special consideration to the spirits cachaça and tiquira. BMC Cancer 2010, 10, 266. [Google Scholar] [CrossRef]
- Aresta, M.; Boscolo, M.; Franco, D.W. Copper(II) Catalysis in Cyanide Conversion into Ethyl Carbamate in Spirits and Relevant Reactions. J. Agric. Food Chem. 2001, 49, 2819–2824. [Google Scholar] [CrossRef]
- Article AOC “Martinique”—Décret n° 2009–1350 du 29 Octobre 2009 Relatif Aux Appellations d’Origine Contrôlées «Martinique», «Marc d’Alsace» Suivie de la Dénomination «Gewurztraminer», «Calvados», «Calvados Domfrontais», «Calvados Pays d’Auge», «Cornouaille», «Domfront», «Pays d’Auge», «Pommeau du Maine» et «Pommeau de Normandie»—Légifrance. Available online: https://www.legifrance.gouv.fr/loda/article_lc/LEGIARTI000021220378/2009-11-02 (accessed on 21 June 2023).
- Souza, J.C.; Toci, A.T.; Beluomini, M.A.; Eiras, S.P. Spectrophotometric Determination of Copper(II) in Sugarcane Spirit Using 1-(2-pyridylazo)-2-naphthol and a Homogeneous Ternary Mixture of the Solvents Water, Ethanol and Methyl Isobutyl Ketone. Rev. Virtual Quim. 2016, 8, 687–701. [Google Scholar] [CrossRef]
- Minez Tábua, M.C.; das Graças Cardoso, M.; Santiago, W.D.; da Silva Gonçalves, G.; Barbosa, R.B.; da Silva Lunguinho, A.; da Silva Oliveira, R.E.; d’Avila, G.B.; Magalhães, M.L.; Nelson, D.L. Physicochemical and Chromatographic Profiles of Distilled Sugarcane Spirits Produced in Mozambique. Am. J. Plant Sci. 2018, 9, 617–627. [Google Scholar] [CrossRef]
- Maia, M.V.; Suarez, W.T.; dos Santos, V.B.; de Almeida, J.P.B. Carbon dots on paper for determination of Cu2+ in sugar cane spirits samples for fluorescence digital image-based method. Microchem. J. 2022, 179, 107500. [Google Scholar] [CrossRef]
Spirit | Raw Material | Main Producer Countries |
---|---|---|
Armagnac (AOC) | White wine | France |
Baijiu | Sorghum, rice or cereal | China |
Brandy | Wine | Spain, Italy, Portugal, Greece |
Cachaça | Sugarcane juice | Brazil |
Cognac (AOC) | Wine | France |
Mezcal | Agave | Mexico |
Pisco | Wine | South America (Chili; Peru) |
Rhum Agricole | Sugarcane juice | French West Indies |
Rum | Sugarcane and its derivatives | Caribbean, South America |
Shōchū | Barley, rice, potato | Japan |
Schnaps | Potato or cereal + Fruit | Germany |
Soju | Cereal, potato | South Korea |
Tequila | Blue agave (Agave tequilana) | Mexico (State of Jalisco) |
Vodka | Cereal, potato, fruit | Russia and Scandinavia |
Whiskey | Cereal | Scotland, USA, Canada |
Classification | ||||
---|---|---|---|---|
Order | Poales | Species | ||
Family | Poaceae | Wild cane | S. spontaneum S. robustum | 2n = 40 to 128 2n = 60 to 200 |
Subfamily | Panicoideae | Noble cane | S. officinarum | 2n = 80 |
Tribe | Andropogoneae | Chinese cane | S. sinense | 2n = 116 to 120 |
Sub-tribe | Saccharinae | Indian cane | S. barberi | 2n = 81 to 124 |
Genus | Saccharum | Edible cane | S. edule | 2n = 60 to 122 |
Chemical Properties and Composition | References | |
---|---|---|
Color | Light gray to dark green | [36] |
pH | 4.9–5.5 | [36] |
Sugars | Sucrose, glucose, fructose | [19,20] |
Organic acids | trans-/cis-aconitic, malic, oxalic, citric, d-gluconic, succinic, l(+)-lactic acids | [32] |
Nitrogenous compounds | Amino acids, proteins | [36] |
Organic compounds | Starch, gums, chlorophyll, anthocyanin, biotin, polysaccharides | [36] |
Fatty compounds | Waxes, fatty acids, phosphatides, sterols | [37,38] |
Phenolic acids | Chlorogenic, cinnamic, hydroxycinnamic, sinapic and caffeic acids | [38] |
Phenolic compounds | Tannin, flavones (tricin, apigenin, luteolin and glycosides derivatives) | [38] |
Inorganic compound | K, Cl, Mg, P, S, Ca, Si, Fe, Na, Al, Mn, Zn; SiO2, K2O, P2O5, Fe2O3 | [36,37] |
Vitamins | A, C, B1, B2, B3, B5, and B6 | [35,36] |
Volatile Organic Compounds | N° CAS | Odor Description | Sugarcane | Juice |
---|---|---|---|---|
Acids | ||||
Acetic acid | 64-19-7 | Sour | X | X |
Isobutyric acid | 79-31-2 | Rancid, butter, cheese | X | X |
Caproic acid | 142-62-1 | Sweat | X | X |
Myristic acid | 544-63-8 | Sweet spicy | X | X |
Pentadecanoic acid | 1002-84-2 | Waxy | X | X |
Palmitic acid | 57-10-3 | Slightly waxy, fatty | X | X |
Alcohols | ||||
2,3-Butanediol | 513-85-9 | Fruit, onion | X | X |
cis-2-Penten-1-ol | 1576-95-0 | Green, plastic, rubber | nd | X |
1-Hexanol | 111-27-3 | Resin, flower, green | X | X |
cis-3-Hexen-1-ol | 928-96-1 | Grass | X | X |
2-Heptanol | 543-49-7 | Mushroom | X | X |
Phenylethyl alcohol | 60-12-8 | Honey, spice, rose, lilac | X | X |
1-Octen-3-ol | 3391-86-4 | Mushroom | X | X |
2-Ethyl-1-hexanol | 104-76-7 | Rose, green | X | X |
Caprylic alcohol | 111-87-5 | Chemical, metal, burnt | nd | X |
Lauryl alcohol | 112-53-8 | Fat, wax | nd | X |
Aldehydes | ||||
Benzaldehyde | 100-52-7 | Almond, burnt, sugar | X | X |
2,4-Heptadienal | 4313-03-5 | Nut, fat | X | X |
trans -2-Octenal | 2548-87-0 | Green, nut, fat | X | X |
trans -2-Nonenal | 18829-56-6 | Cucumber, fat, green | nd | X |
Nonanal | 124-19-6 | Fat, citrus, green | X | X |
Esters | ||||
Ethyl palmitate | 628-97-7 | Wax | nd | X |
Dibutyl phthalate | 84-74-2 | Faint odor | X | X |
Hydrocarbons | ||||
Styrene | 100-42-5 | Balsamic, gasoline | X | X |
m-Xylene | 108-38-3 | Plastic | X | X |
d-Limonene | 5989-27-5 | Citrus, mint | nd | X |
Phenols | ||||
4-Vinylguaiacol | 7786-61-0 | Clove, curry | X | X |
Eugenol | 97-53-0 | Clove, honey | X | X |
2,4-Di-tert-butylphenol | 96-76-4 | Phenolic | X | X |
2,6-Di-tert-butyl-methylphenol | 128-37-0 | Mild phenolic camphor | X | X |
Heterocyclic compound | ||||
2-Pentylfuran | 3777-69-3 | Green bean, butter | X | X |
Step of Process | AOC Martinique Technical Specifications | |
---|---|---|
Territory | Geographical area | Delimited on 23 municipalities of Martinique |
Raw material | Cane species | Saccharum officinarum and S. spontaneum hybrids Cane varieties approved by INAO |
Harvest period | From January 1st to August 31st | |
Culture | Yield ≤ 120 t/acres | |
Juice quality | Brix ≥ 12% and pH ≥ 4.7 | |
Juice extraction | Process | Cold mechanical extraction with water and/or juice from the last roll. The juice must be filtered |
Fermentation | Type | Discontinuous in an open vat of 500 hL max |
Yeast | Saccharomyces | |
Duration | <120 h | |
Wine alcohol content | ≤7.5% ABV | |
Distillation | Type | Multi-stage continuous distillation column without reflux, ‘creole’ column |
Stripping section | 15 trays in stainless steel or copper—diameter: 0.7 to 2 m | |
Rectifying section | 5 to 9 trays in copper | |
Rum alcohol content | 65 to 75% ABV | |
Non-ethanol content (NEC) | ≥225 g/HPA | |
Rums | White rum | Storage at least 6 weeks in stainless steel vat—NEC ≥ 225 g/HPA |
Straw rum (‘Élevé-sous-bois’) | At least 12 months in an oak vessel and NEC ≥ 250 g/HPA | |
Aged rum | At least 3 years in an oak vessel and NEC ≥ 325 g/HPA | |
Final validation | Each batch is tasted by a panel of experts who approved the AOC Martinique sensory profile |
Component | Limit Value | Unit |
---|---|---|
Alcohol strength | 38–48 | % of ethanol (v/v) at 20 °C |
Volatile acidity (expressed in acetic acid) | 150 | mg/100 mL anhydrous alcohol |
Methanol * | 20 | |
Total higher alcohols | <360 | |
1-butanol * | 3 | |
2-butanol * | 10 | |
Total esters (ethyl acetate) | 200 | |
Ethyl carbamate * | 210 | μg/L |
Total aldehydes (acetaldehyde) | 30 | mg/100 mL anhydrous alcohol |
Acrolein * | 5 | |
Furfural + 5HMF | 5 | |
Lead * | 200 | μg/L |
Arsenic * | 100 | |
Copper * | 5 | mg/L |
SCJS | Main Production Area | Harvest/Milling | Fermentation | Distillation | Aging |
---|---|---|---|---|---|
Aguardiente de Cana | Central and South America | Traditional method | Spontaneous for small-size producers | Pot still | Oak or tropical wood |
Cachaça | Brazil | From May to November | Spontaneous or with adding yeast. Continuously open vessel | Simple or double distillation Pot or column still | At least 12 months in oak or tropical wood |
Clairin | Haiti | Mainly manual harvesting | Addition of aromatic plants | Mostly copper Charentais alembic | Wooden barrel |
Grogue | Cape Verde | From January to July with ‘trapiche’: equipment powered by oxen or mules | Long fermentation: days to weeks Spontaneous or addition of yeast with sugar 6 g/L | Artisanal pot still | At least 12 months in wood container |
Agricultural rum | French overseas departments and Madeira | Imbibition water or composed juice | Imbibition water or composed juice | Pot or column still | Oak barrel |
Rhum Agricole AOC Martinique | Martinique | From January to August. Extraction at ambient temperature | Open vat Only Saccharomyces genus <5 days | Simple, creole column still From January to August | Only oak barrel Addition of caramel prohibited |
Condition | Low | High |
---|---|---|
pH | ↓ Yeast activity | ↑ Bacteria proliferation |
Temperature | ↓ Membrane fluidity → sluggish fermentation | ↓ Yeast activity |
Oxygen | ↓ Membrane permeability | ↑ ROS production |
Nutrient (nitrogen) | Sluggish fermentation | ↑ Higher alcohol and ester concentration |
Type of Aroma | Descriptor | Reference Standard | New Distillate Descriptors | Mature Descriptors | References |
---|---|---|---|---|---|
Fruity | Fruity in general | Isoamyl acetate Ethyl caprylate | X | X | [71] |
Apple | Ethyl caproate | X | [71] | ||
Melon | Dimethylheptanal | X | [71] | ||
Banana | Banana aroma | X | X | [150] | |
Floral | Honey | Natural honey | X | X | [95,150] |
Floral/rose | 2-Phenylethanol | X | [71] | ||
Sugarcane | Sugarcane | X | [152] | ||
Herbal | Grassy/Vegetable | cis-3-Hexen-1-ol | X | [46,71,95,122] | |
Spicy | Vanilla | Ethyl vanillin/vanilla | X | X | [95,146,150] |
Clove | Eugenol/Cloves aroma | X | [71,150] | ||
Animal | Leathery | - | X | [95] | |
Wood | Woody/Oak | Oak wood chips | X | [71,95,146,150] | |
Phenolic | - | X | [95] | ||
Empyreumatic | Burntsnug | - | X | [95] | |
Caramel | Maltol-Caramel syrup | X | [71,95,146] | ||
Smoky | Guaiacol-Smoked bacon | X | [71,146] | ||
Coffee | Dark roast coffee | X | [146] | ||
Default | Oily | Heptanal | X | X | [71,95] |
Sulphury | Dimethyl sulfide | X | [71,95] | ||
Buttery | Diacetyl | X | [71,95] | ||
Soapy | Ethyl laurate | X | [71,95] | ||
Mouldy | 2,4,6-Trichloroanisole | X | [71,95] | ||
Solvent | 2-Methylpropan-1-ol | X | [71,95] | ||
Vinegar | Acetic acid | X | X | [71] | |
Medicine | Thymol | X | X | [71] | |
Alcoholic | Ethanol | X | X | [150] | |
Fermented | Compressed yeast | X | [150,152] | ||
Bagasse | Bagasse | X | [152] | ||
Trigeminal sensation | Pungent | Formic acid | X | X | [71,95] |
Astringent | Over-brewed green tea | X | X | [146] | |
Sweetness | Sugar | X | X | [95,122] | |
Bitter | Caffeine solution | X | X | [122,150] | |
Burning | - | X | X | [152] | |
Sour taste | Acetic acid | X | X | [153] | |
Retronasal | Persistence | - | X | X | [149] |
Name | N° CAS | Concentration (mg/L) | Type of SCJS | Resinous | Terpenoid | Vegetal | Floral | Citrus | Fruity | Woody | Menthol | References | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-Aged | Aged | ||||||||||||
Terpenes | |||||||||||||
d-Limonene | 5989-27-5 | - | 89.51–99.65 | AR | ■ | [10] | |||||||
Sesquisabinene | 58319-04-3 | - | - | C | ■ | [54] | |||||||
Terpenoids | |||||||||||||
Citronellol | 106-22-9 | 0.00113–0.00292 | - | C | ■ | [103] | |||||||
Geraniol | 106-24-1 | 0.00015 a–0.21 c | - | C | ■ | ■ | [103,168] | ||||||
Linalool | 78-70-6 | 0.00035 a–0.00138 a | - | C | ■ | ■ | ■ | [103] | |||||
Menthol | 1490-04-6 | 0.095 a–0.73 c | 6.85–8.02 | C-AR | ■ | [10,103,168] | |||||||
α-Terpineol | 98-55-5 | 0.00018 a–0.00046 a | - | C | ■ | ■ | ■ | [103,162] | |||||
d-Isomenthol | 23283-97-8 | - | 1.44–1.77 | AR | ■ | ■ | [10,162] | ||||||
Farnesol | 106-28-5 | - | 1.14–2.09 | AR | ■ | ■ | [10] | ||||||
Nerolidol | 7212-44-4 | - | - | C | ■ | ■ | [54,119] | ||||||
α-Cadinol | 481-34-5 | - | - | C | ■ | ■ | [54] | ||||||
α-Elemol | 639-99-6 | - | - | C | ■ | ■ | ■ | [54] | |||||
Torulosol | 1438-65-9 | - | - | C | ■ | [54] | |||||||
C13-norisoprenoids | |||||||||||||
β-Ionone | 79-77-6 | - | 0.0061–0.012 | AR | ■ | ■ | [115,162] | ||||||
β-Damascenone | 23696-85-7 | - | 0.0437–3.31 | AR | ■ | ■ | ■ | [10,144,162] |
Compound Name | N° CAS | Concentration (mg/L) | Type of SCJS | References | |
---|---|---|---|---|---|
Non-Aged | Aged | ||||
Acetate | 71-50-1 | <LOD to 2.93 | - | C-G | [80] |
Dimethylsulphide | 75-18-3 | <LOQ to 52.10 c | 0.01–0.59 | C | [51,122] |
2,3-Butanedione monoxime | 57-71-6 | <LOQ to 0.859 c | - | C | [51] |
Ethyl carbamate | 51-79-6 | 0–1455.23 c | <LOD to 0.138 a | C | [51,74,122,170,180,181] |
Methyl anthranilate | 134-20-3 | - | - | C | [54,162] |
Name | Molecular Formula | N° CAS | Concentration (mg/L) | Type of SCJS | References | |
---|---|---|---|---|---|---|
Non-Aged | Aged | |||||
Anions | ||||||
Bicarbonate | HCO3− | 71-52-3 | <LOD to 105.15 | - | C | [80] |
Chloride | Cl− | 16887-00-6 | <LOD to 183 | - | C-G | [80] |
Sulfate | SO42− | 14808-79-8 | <LOD to 12.03 | - | C-G | [80] |
Cations | ||||||
Copper | Cu | 7440-50-8 | <LOQ to 9.70 | 0.021–7 | C | [74,122,125,130,142,167,180,181,186,187,188] |
Calcium | Ca | 7440-70-2 | 0–7.70 | 0.30–10.70 | C-G | [80,167] |
Cadmium | Cd | 7440-43-9 | <LOQ | 0–0.023 | C | [51,167] |
Chromium | Cr | 7440-47-3 | - | 0 | C | [167] |
Iron | Fe | 7439-89-6 | <LOD to 2.20 | 0–3.60 | C-G | [51,80,122,125,142,167] |
Potassium | K | 7440-09-7 | <LOD to 2.20 | - | C-G | [80] |
Lead | Pb | 7439-92-1 | <LOD to 0.24 | <LOD to 0.19 | C | [122,125] |
Magnesium | Mg | 7439-95-4 | 0–11.20 | 0.002–0.210 | C-G | [51,80,167] |
Manganese | Mn | 7439-96-5 | - | 0.035–2.70 | C | [80] |
Sodium | Na | 7440-23-5 | 1.90–20 | 0–36.20 | C-G | [80,167] |
Nickel | Ni | 7440-02-0 | - | 0–0.017 | C | [80] |
Strontium | Sr | 7440-24-6 | <LOQ | - | C | [51] |
Cobalt | Co | 7440-48-4 | - | 0 | C | [167] |
Zinc | Zn | 7440-66-6 | <LOD to 2.60 | 0–0.59 | C-G | [80,167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corbion, C.; Smith-Ravin, J.; Marcelin, O.; Bouajila, J. An Overview of Spirits Made from Sugarcane Juice. Molecules 2023, 28, 6810. https://doi.org/10.3390/molecules28196810
Corbion C, Smith-Ravin J, Marcelin O, Bouajila J. An Overview of Spirits Made from Sugarcane Juice. Molecules. 2023; 28(19):6810. https://doi.org/10.3390/molecules28196810
Chicago/Turabian StyleCorbion, Claudine, Juliette Smith-Ravin, Odile Marcelin, and Jalloul Bouajila. 2023. "An Overview of Spirits Made from Sugarcane Juice" Molecules 28, no. 19: 6810. https://doi.org/10.3390/molecules28196810
APA StyleCorbion, C., Smith-Ravin, J., Marcelin, O., & Bouajila, J. (2023). An Overview of Spirits Made from Sugarcane Juice. Molecules, 28(19), 6810. https://doi.org/10.3390/molecules28196810