Understanding the Plasmonic Effect of Enhanced Photodegradation with Au Nanoparticle Decorated ZnO Nanosheet Arrays under Visible Light Irradiation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological, Structural, and Chemical Characterization of Au-ZnO NS Arrays
2.2. Photodegradation Properties of Au-ZnO NS Arrays
2.3. Plasmonic Effect of Enhanced Photodegradation under Visible Light Irradiation
3. Materials and Methods
3.1. Materials
3.2. Preparation of Au-ZnO NS Arrays
3.3. Characterization of Au-ZnO NS Arrays
3.4. Photodegradation with Au-ZnO NS Arrays
3.5. Electric Field Simulation of Au-ZnO NS Arrays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Abdul Mutalib, A.A.; Jaafar, N.F. ZnO Photocatalysts Applications in Abating the Organic Pollutant Contamination: A Mini Review. Total Environ. Res. Themes 2022, 3–4, 100013. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Zinc Oxide Based Photocatalysis: Tailoring Surface-Bulk Structure and Related Interfacial Charge Carrier Dynamics for Better Environmental Applications. RSC Adv. 2015, 5, 3306–3351. [Google Scholar] [CrossRef]
- Samadi, M.; Zirak, M.; Naseri, A.; Khorashadizade, E.; Moshfegh, A.Z. Recent Progress on Doped ZnO Nanostructures for Visible-Light Photocatalysis. Thin Solid Film. 2016, 605, 2–19. [Google Scholar] [CrossRef]
- Perillo, P.M.; Atia, M.N. Solar-Assisted Photodegradation of Methyl Orange Using Cu-Doped ZnO Nanorods. Mater. Today Commun. 2018, 17, 252–258. [Google Scholar] [CrossRef]
- Etacheri, V.; Roshan, R.; Kumar, V. Mg-Doped ZnO Nanoparticles for Efficient Sunlight-Driven Photocatalysis. ACS Appl. Mater. Interfaces 2012, 4, 2717–2725. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhang, J.; Peng, T. New Insight into the Enhanced Photocatalytic Activity of N-, C- and S-Doped ZnO Photocatalysts. Appl. Catal. B Environ. 2016, 181, 220–227. [Google Scholar] [CrossRef]
- Mondal, C.; Pal, J.; Ganguly, M.; Sinha, A.K.; Jana, J.; Pal, T. A One Pot Synthesis of Au–ZnO Nanocomposites for Plasmon-Enhanced Sunlight Driven Photocatalytic Activity. New J. Chem. 2014, 38, 2999–3005. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Shah, A.A.; Almani, K.F.; Tahira, A.; Chalangar, S.E.; dad Chandio, A.; Nur, O.; Willander, M.; Ibupoto, Z.H. Efficient Photo Catalysts Based on Silver Doped ZnO Nanorods for the Photo Degradation of Methyl Orange. Ceram. Int. 2019, 45, 23289–23297. [Google Scholar] [CrossRef]
- Hamdy, M.S.; Abd-Rabboh, H.S.M.; Benaissa, M.; Al-Metwaly, M.G.; Galal, A.H.; Ahmed, M.A. Fabrication of Novel Polyaniline/ZnO Heterojunction for Exceptional Photocatalytic Hydrogen Production and Degradation of Fluorescein Dye through Direct Z-Scheme Mechanism. Opt. Mater. 2021, 117, 111198. [Google Scholar] [CrossRef]
- Alsulmi, A.; Mohammed, N.N.; Soltan, A.; Messih, M.F.A.; Ahmed, M.A. Engineering S-Scheme CuO/ZnO Heterojunctions Sonochemically for Eradicating RhB Dye from Wastewater under Solar Radiation. RSC Adv. 2023, 13, 13269–13281. [Google Scholar] [CrossRef]
- Kavitha, R.; Kumar, S.G. A Review on Plasmonic Au-ZnO Heterojunction Photocatalysts: Preparation, Modifications and Related Charge Carrier Dynamics. Mater. Sci. Semicond. Process. 2019, 93, 59–91. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface Plasmon Resonance in Gold Nanoparticles: A Review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Ahmad, M.; Rehman, W.; Khan, M.M.; Qureshi, M.T.; Gul, A.; Haq, S.; Ullah, R.; Rab, A.; Menaa, F. Phytogenic Fabrication of ZnO and Gold Decorated ZnO Nanoparticles for Photocatalytic Degradation of Rhodamine B. J. Environ. Chem. Eng. 2021, 9, 104725. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Abou-Gamra, Z.M.; ALshakhanbeh, M.A.; Medien, H. Control Synthesis of Metallic Gold Nanoparticles Homogeneously Distributed on Hexagonal ZnO Nanoparticles for Photocatalytic Degradation of Methylene Blue Dye. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100217. [Google Scholar] [CrossRef]
- Fernando, J.F.S.; Shortell, M.P.; Noble, C.J.; Harmer, J.R.; Jaatinen, E.A.; Waclawik, E.R. Controlling Au Photodeposition on Large ZnO Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 14271–14283. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, S.; Sahu, K.; Khan, S.A.; Tripathi, A.; Avasthi, D.K.; Mohapatra, S. Facile Synthesis of Au-ZnO Plasmonic Nanohybrids for Highly Efficient Photocatalytic Degradation of Methylene Blue. Opt. Mater. 2017, 64, 47–52. [Google Scholar] [CrossRef]
- Hu, J.; You, N.; Yu, Z.; Zhou, G.; Xu, X. Two-Dimensional ZnO Ultrathin Nanosheets Decorated with Au Nanoparticles for Effective Photocatalysis. J. Appl. Phys. 2016, 120, 074301. [Google Scholar] [CrossRef]
- Kang, S.W.; Deshmukh, P.R.; Sohn, Y.; Shin, W.G. Plasmonic Gold Sensitization of ZnO Nanowires for Solar Water Splitting. Mater. Today Commun. 2019, 21, 100675. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.L.; Liu, R.-S.; Tsai, D.P. Plasmonic Photocatalysis. Rep. Prog. Phys. 2013, 76, 046401. [Google Scholar] [CrossRef]
- Leong, K.H.; Aziz, A.A.; Sim, L.C.; Saravanan, P.; Jang, M.; Bahnemann, D. Mechanistic Insights into Plasmonic Photocatalysts in Utilizing Visible Light. Beilstein J. Nanotechnol. 2018, 9, 628–648. [Google Scholar] [CrossRef]
- Bora, T.; Dutta, J. Plasmonic Photocatalyst Design: Metal—Semiconductor Junction Affecting Photocatalytic Efficiency. J. Nanosci. Nanotechnol. 2019, 19, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-H.; Wu, J.-J.; Chou, M.M.C.; Chang, Y.-M.; Yoshimura, M. Charge Transfer in Au Nanoparticle–Nonpolar ZnO Photocatalysts Illustrated by Surface-Potential-Derived Three-Dimensional Band Diagram. J. Phys. Chem. C 2014, 118, 19814–19821. [Google Scholar] [CrossRef]
- Bruno, L.; Strano, V.; Scuderi, M.; Franzò, G.; Priolo, F.; Mirabella, S. Localized Energy Band Bending in ZnO Nanorods Decorated with Au Nanoparticles. Nanomaterials 2021, 11, 2718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, J.; Li, Z.; Feng, Q. Photodegradation Pathway of Rhodamine B with Novel Au Nanorods @ ZnO Microspheres Driven by Visible Light Irradiation. J. Mater. Sci. 2018, 53, 3149–3162. [Google Scholar] [CrossRef]
- Murillo, G.; Leon-Salguero, E.; Martínez-Alanis, P.R.; Esteve, J.; Alvarado-Rivera, J.; Güell, F. Role of Aluminum and HMTA in the Hydrothermal Synthesis of Two-Dimensional n-Doped ZnO Nanosheets. Nano Energy 2019, 60, 817–826. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, J.; Lv, Z.; Lu, K. Enhanced Piezocatalytic Performance of ZnO Nanosheet Microspheres by Enriching the Surface Oxygen Vacancies. J. Mater. Sci. 2020, 55, 14112–14124. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Meng, X.; Zhang, Z.; Mu, S. High Response Methane Sensor Based on Au-Modified Hierarchical Porous Nanosheets-Assembled ZnO Microspheres. Mater. Chem. Phys. 2020, 250, 123027. [Google Scholar] [CrossRef]
- Sanakousar, F.M.; Vidyasagar, C.C.; Jiménez-Pérez, V.M.; Prakash, K. Recent Progress on Visible-Light-Driven Metal and Non-Metal Doped ZnO Nanostructures for Photocatalytic Degradation of Organic Pollutants. Mater. Sci. Semicond. Process. 2022, 140, 106390. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Z.; Zhang, Z.; Xie, Y.; Wang, X.; Xing, Z.; Xu, R.; Zhang, X. Sonocatalytic Degradation of Acid Red B and Rhodamine B Catalyzed by Nano-Sized ZnO Powder under Ultrasonic Irradiation. Ultrason. Sonochem. 2008, 15, 768–774. [Google Scholar] [CrossRef]
- Arab Chamjangali, M.; Bagherian, G.; Bahramian, B.; Fahimi Rad, B. Synthesis and Application of Multiple Rods Gold–Zinc Oxide Nanostructures in the Photocatalytic Degradation of Methyl Orange. Int. J. Environ. Sci. Technol. 2015, 12, 151–160. [Google Scholar] [CrossRef]
- Kosmulski, M. Compilation of PZC and IEP of Sparingly Soluble Metal Oxides and Hydroxides from Literature. Adv. Colloid Interface Sci. 2009, 152, 14–25. [Google Scholar] [CrossRef]
- Young, S.-J.; Lai, L.-T. UV Enhanced Field Emission Properties of ZnO Nanosheets Grown on a Si Substrate. IEEE Photon. Technol. Lett. 2016, 28, 63–66. [Google Scholar] [CrossRef]
- Jain, P.K.; El-Sayed, M.A. Plasmonic Coupling in Noble Metal Nanostructures. Chem. Phys. Lett. 2010, 487, 153–164. [Google Scholar] [CrossRef]
- Wang, J.; Gao, B.; Liu, D.; Cheng, L.; Zhang, Y.; Lu, D.; Yu, H.; Chen, A.; Yuan, S.; Chen, K.; et al. Morphological Control of Supported ZnO Nanosheet Arrays and Their Application in Photodegradation of Organic Pollutants. Nanomaterials 2023, 13, 443. [Google Scholar] [CrossRef]
- Lumerical Inc. Available online: https://www.lumerical.com/products/fdtd/ (accessed on 20 May 2022).
- Palik, E.D.; Ghosh, G. Handbook of Optical Constants of Solids; Academic Press: London, UK, 1998. [Google Scholar]
Samples with Various Numbers of Au Deposition Cycles | E-00 | E-02 | E-04 | E-06 | E-08 | E-10 |
---|---|---|---|---|---|---|
MO (10−3/min) | 1.66 | 4.50 | 9.26 | 6.56 | 5.30 | 4.31 |
RhB (10−3/min) | 0.56 | 0.87 | 1.39 | 1.03 | 0.99 | 0.79 |
Simulated Model | S-00 | S-05 | S-10 | S-15 | S-20 | S-25 | |
---|---|---|---|---|---|---|---|
Light Irradiation Wavelength (nm) | |||||||
400 | 1.06986 | 1.12842 | 1.01792 | 0.55541 | 0.32871 | 0.26581 | |
450 | 0.99581 | 1.05311 | 0.95725 | 0.53829 | 0.35629 | 0.29659 | |
500 | 0.70619 | 1.01704 | 1.01711 | 0.52481 | 0.49423 | 0.43303 | |
550 | 0.64138 | 2.57102 | 5.22351 | 1.33754 | 1.18838 | 0.82411 | |
600 | 0.50409 | 1.28373 | 2.81448 | 2.61082 | 1.86501 | 0.46358 | |
650 | 0.50702 | 0.93076 | 1.74009 | 2.20957 | 1.02707 | 0.25531 | |
700 | 0.36422 | 0.60922 | 1.08103 | 1.85255 | 0.36574 | 0.15741 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, D.; Yuan, S.; Gao, B.; Cheng, L.; Zhang, Y.; Chen, K.; Chen, A.; Li, L. Understanding the Plasmonic Effect of Enhanced Photodegradation with Au Nanoparticle Decorated ZnO Nanosheet Arrays under Visible Light Irradiation. Molecules 2023, 28, 6827. https://doi.org/10.3390/molecules28196827
Wang J, Liu D, Yuan S, Gao B, Cheng L, Zhang Y, Chen K, Chen A, Li L. Understanding the Plasmonic Effect of Enhanced Photodegradation with Au Nanoparticle Decorated ZnO Nanosheet Arrays under Visible Light Irradiation. Molecules. 2023; 28(19):6827. https://doi.org/10.3390/molecules28196827
Chicago/Turabian StyleWang, Jun, Dongliang Liu, Shun Yuan, Bo Gao, Lin Cheng, Yu Zhang, Kaijia Chen, Aimin Chen, and Lianbi Li. 2023. "Understanding the Plasmonic Effect of Enhanced Photodegradation with Au Nanoparticle Decorated ZnO Nanosheet Arrays under Visible Light Irradiation" Molecules 28, no. 19: 6827. https://doi.org/10.3390/molecules28196827
APA StyleWang, J., Liu, D., Yuan, S., Gao, B., Cheng, L., Zhang, Y., Chen, K., Chen, A., & Li, L. (2023). Understanding the Plasmonic Effect of Enhanced Photodegradation with Au Nanoparticle Decorated ZnO Nanosheet Arrays under Visible Light Irradiation. Molecules, 28(19), 6827. https://doi.org/10.3390/molecules28196827