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Abstract: Increasing cases of cancer have been a primary concern in recent decades. Developing new
chemotherapeutics is challenging and has been faced with limitations, such as multidrug resistance,
poor specificity, selectivity, and toxicity. The aforementioned factors contribute to treatment failure.
Hybrid compounds have features that can overcome the limitations mentioned above. Chlorambucil,
an anticancer drug that is used to treat prostate and breast cancer, suffers from poor aqueous
solubility and specificity, a short half-life, and severe side effects, including anaemia and bone
marrow suppression. It compromises the immune system, resulting in treatment failure. Hence, its
combination with other pharmacophores has been reported to result in effective anticancer agents
with fewer side effects and high therapeutic outcomes. Furthermore, this review gives an update
(2010 to date) on the developments of chlorambucil hybrid compounds with anticancer activity, and
the structure-activity relationship (SAR), and also highlights future strategies for developing novel
anticancer agents.

Keywords: cancer; chlorambucil; drug resistance; hybridization; treatment

1. Introduction

The increasing number of cases of cancer worldwide is a major health crisis [1–4].
Cancer is one of the leading causes of death. Notably, it is caused by the unlimited growth
of abnormal cells in body organs, sometimes resulting in damage to other organs if it is
not detected and treated early, resulting in metastatic cancer (advanced stages) [1–6]. It
has been widely reported that an individual’s lifestyle, such as alcohol intake, obesity, lack
of exercise, and smoking, are factors that contribute to cancer. However, inherited genes
(5–10%) and gene mutations (90–95%) are major causes of cancer globally [1–6]. Cancer
types are classified according to the body organ they affect [6]. A concerning challenge is
that cancer-related deaths are high in Africa and Asia [6–9]. Hence, there is a pressing need
for the development of effective and affordable chemotherapeutics.

Various strategies are used to treat cancer, including surgical methods, radiography,
and chemotherapy. Chemotherapy is widely recognized as a better, safer, and more effective
approach. Currently, it is the most commonly used approach [10]. Anticancer agents
suffer from several limitations, such as poor solubility, specificity, selectivity, multidrug
resistance, instability, and toxicity [10,11]. Thus, their drawbacks contribute to increasing
cancer deaths [2,5]. Additionally, drug discovery failures also contribute to a delay in the
development of new anticancer drugs [12]. Among the compounds used to treat cancer is
chlorambucil, an alkylating anticancer agent which has been used to treat breast, ovary,
testicular cancer, and leukaemia for several decades [12]. This therapeutic agent binds to
the DNA and hinders replication, resulting in cell death [12].

Nonetheless, its unknown optimal dose and non-specificity result in toxicity, leading to
some severe side effects which compromise its anticancer activity [10,13,14]. Consequently,
hybridizing anticancer compounds through drug repurposing/repositioning is one of
the best strategies to overcome these limitations (Figure 1) [15–17]. Therefore, modifying
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Chlorambucil through the development of its hybrid derivatives has been investigated and
is still an ongoing strategy to improve its efficacy. This review reports currently developed
Chlorambucil hybrid compounds.
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2. Cancer Update

The rapidly increasing numbers of cancer cases and deaths show that current cancer
treatments have limitations with numerous drawbacks. Additionally, these rising numbers
are affecting the public healthcare system financially, with a lot of funds spent on anticancer
drug discovery, surgeries, and hospitalization [18–21]. The common cancers recorded in
the United States are those of the breast, colon, prostate, skin, kidney, liver, pancreatic, and
renal pelvis. Furthermore, lung, prostate, breast, and colorectal cancer are regarded as the
most common and deadly cancers around the globe among men and females [21].

An estimation from different researchers suggests that the number of cancer cases
could double in most countries between 2030 and 2040 [8,20–23]. The International Agency
for Research on Cancer reported more than 18 million cancer cases and 9.6 million cancer-
related deaths in 2018 [22]. Reports from different sources (GLOBOCAN and GCO) esti-
mated an increasing number of cancer cases with 19 million in 2020, with the number of
cancer-related deaths reaching 9.6 million in the same year. Thus, there is a pressing need
to develop new and effective chemotherapeutics for the treatment of cancer.

3. Hybrid Drug Strategy for the Treatment of Cancer

Hybrid drugs are a combination of two or more pharmacophores, resulting in a
single-entity drug with dual targets [16,24,25]. Treating cancer with single-entity drugs
suffers from several limitations, such as lack of selectivity and drug resistance, due to the
complexity of cancers and their mechanism of resistance [16,24,25]. Hence, hybrid drugs
are designed to combat these limitations. Some hybrid drugs do not obey Lipinski’s rule.
However, several researchers have reported some of the advantages of hybrid compounds,
such as interaction with several targets and reduced drug–drug interaction, among other
strategies such as fixed-dose therapy [16,24,25].

Additionally, combining already known pharmacophores into a single molecule with
known pharmacokinetics and pharmacodynamics results in drugs with reduced toxicity
and side effects. Even their development consumes less time. Hence, several researchers
are exploring this strategy [16,24,25]. In the development of anticancer drugs, hybrid drugs
have been widely explored using different synthetic approaches [24,25]. The combination
of two pharmacophoric moieties with the same or different mode of action, using functional
groups directly or indirectly (linkers or a spacer between the pharmacophores) has been
widely investigated. The linkers or spacers are categorized as non-cleavable and cleavable.
Cleavable linkers mostly result in hybrid prodrugs, such as amides, esters, and carbamates
that release the parent drugs to the target biological site. On the contrary, non-cleavable
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linkers result in hybrid drugs and sustain the hybrid structure in enzymatic conditions
throughout the action process [24,25]. Thus, Chlorambucil-based hybrid compounds
with different pharmacophores have been synthesized to improve their specificity, reduce
toxicity, and eradicate side effects.

4. About Chlorambucil

Chlorambucil is an alkylating agent used in cancer therapy (Figure 2). It belongs to
the aryl nitrogen mustard class of drugs, which was developed by Alexander Haddow
in the early 1950s at the Chester Beatty Institute, currently known as “The Institute of
Cancer Research” [26]. They published their first report on Chlorambucil in 1955 on its
biological activity on malignant lymphoma. Thus, Chlorambucil together with melphalan
and busulphan are the first treatment for chronic lymphocytic leukaemia, myeloma, and
myeloid leukaemia [13,26,27]. The Food and Drug Administration (FDA) approved the
clinical use of Chlorambucil to treat chronic lymphocytic leukaemia in 2008. It was also
approved to treat patients with indolent B-cell non-Hodgkin lymphoma [2,28].
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Moreover, it is typically used to treat Hodgkin’s disease, chronic lymphosarcoma,
lymphocytic leukaemia, giant follicular lymphoma, and malignant lymphoma [28,29].
Although it is a potent drug to treat different cancer types, its anticancer activity is hindered
by numerous drawbacks, such as a lack of specificity, drug resistance, toxicity, and a short
half-life. Therefore, its modification is an attractive approach for developing effective
anticancer drugs [19,28–30].

Generally, nitrogen mustard drugs are alkylating agents with the bis(2-chloroethyl)
group that acts as a chemical constituent. They are also genotoxic and mutagenic to the
cancer cells [28,31]. These chemotherapeutic agents, including Chlorambucil, prevent cell
proliferation and DNA replication through cross-linking and binding the DNA of cancer
cells [10,19]. Additionally, Chlorambucil uses the bis(2-chloroethyl) group to bind the
nucleobases guanine (at N7) and adenine (at N3), resulting in the prevention of DNA
replication and damage via DNA strand linking. Consequently, the formation of covalent
bonds leads to the activity inhibition of corresponding biomacromolecules. However, they
are toxic to normal cells since the construction of the covalent bond occurs in both cancer
and normal cells [2,5,10,19,30,31]. Nevertheless, poor selectivity and high toxicity result in
Chlorambucil chemoresistance [28]. Thus, there is a pressing need to modify Chlorambucil
via the butyric acid group to improve its activity and reduce its toxicity to normal cells.

5. Chlorambucil-Based Hybrid Compounds with Anticancer Activity
5.1. Chlorambucil–Estradiol Hybrids

A class of Chlorambucil–estradiol compounds was synthesized by Gupta et al. as
a potential treatment for breast cancer [31]. A series of compounds were synthesized
through the introduction of Chlorambucil at position 16α (compounds 1a–c) and 16β
(compound 2) of the estrone moiety, and the desired compounds were evaluated for anti-
breast cancer activity against MCF-7 (hormone-dependent) and hormone-independent
(MDA-MB-436 and MDA-MB-486) cancer cell lines (Figure 3). These compounds exhibited
moderate cytotoxic activity influenced by their chain length and concentration in vitro [31].
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Additionally, SAR indicated that increasing the chain length compromised the cytotoxic
effect of the compounds. Compound 1a (IC50 = 40 µM) with a short chain length exhibited
a superior cytotoxic effect than its counterparts against hormone-independent cancer cell
lines. However, the trend was the opposite against the hormone-dependent cancer cell
lines [31]. Moreover, it was noted that compound 2 with the −CO2 CH3 functional group
at the 16 β position displayed no anticancer effect against all breast cancer cell lines used
in the study. Modifying the hydroxymethyl group in position 16β of the estrone moiety
results in biologically inactive compounds in vitro. Descôteaux et al. reported similar
findings regarding the modification of hydroxymethyl groups [31,32]. However, further
elucidation of these compounds in vivo is paramount.
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16 β positions (2) [31].

5.2. Chlorambucil–Tyrosine Hybrids

Descôteaux et al. reported Chlorambucil combined with D- and L-tyrosine analogues
with anticancer activity [32]. They synthesized a series of hybrid compounds (3–4) and
evaluated their anticancer activity against breast cancer cell lines (MCF-7 and MDA-MB-
231) in vitro (Figure 4). The hybrid’s anticancer activity was more enhanced in comparison
with Chlorambucil (IC50 > 130 µM for all cell lines). Specifically, L-hybrids (IC50 values
between 19.39 and 67.90 µM) were generally superior to D-hybrids (IC50 values between
16.27 and 152.37 µM) [32]. Something noteworthy is that L-4b (IC50 = 19.39 µM) and D-4b
(IC50 = 16.27 µM) were the most potent compounds against MCF-7. However, these two
compounds displayed no significant effect against the MDA-MB-231 breast cancer cell line
in vitro [32].
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The SAR studies showed that the anticancer effects of L-4b and D-4b were influenced
by their long chain length (10 carbons) between the parental molecules (Chlorambucil and
tyrosine) [30]. In addition, the increasing solubility due to the presence of CH2 OH also
contributed to the improved anticancer effect, as the hydroxymethyl group is beneficial
for biological potency [32]. Notably, different chemical methods (linear and convergent
synthetic methods) were used to synthesize compounds 4a and 4b, and that influenced the
yields of compounds synthesized via fewer steps, resulting in high yields and vice versa [32].
Brasseur and Descôteaux investigated a series of Chlorambucil–tyrosine hybrid molecules
using the synthetic routes reported by Descôteaux et al. (2010) [31], and compounds
5–10 were evaluated against breast cancer cell lines (targeting estrogen receptor alpha)
(Figure 5) [30]. The location of the phenol hydroxyl group was essential in the development
of novel Chlorambucil–tyrosine hybrid drugs. Thus, meta-, ortho-, and para-substitutions
were explored during the synthesis of these analogues by Brasseur and Descôteaux [30].
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The IC50 values of the synthesized compounds (5–10) were in the range of 17.72–63.03 µM
for meta-substituted hybrids 7 and 8, 20.54–79.37 µM for ortho-substituted hybrids 5 and 6,
and 19.39–55.09 µM for para-substituted compounds 9 and 10, with parent drugs displaying
IC50 values of 130.36 µM for Chlorambucil and 136.8 µM for tyrosine against the MCF-7
and MDA-MB-231 cancer cell lines, respectively. Moreover, these compounds showed more
specificity to hormone-dependent cancer cells, and the position of the phenol hydroxyl
group (OH-*) influenced the activity of these analogues [30].

Pocasap et al. synthesized a class of Chlorambucil–tyrosine hybrid compounds (11a
and 11b) by combining Chlorambucil with L-tyrosine via esterification and amidation
reactions (Figure 6) [33]. The antiproliferative activity of these compounds was evaluated on
MCF-7 breast cancer cell lines [33]. Their antiproliferative activity was time–concentration-
dependent, with compounds 11a and 11b exhibiting higher antiproliferative activity and
cell viability than Chlorambucil [33]. The presence of a free carboxylic and amino group,
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an ester/amide linkage, and an aromatic side chain were responsible for the improved
chemotherapeutic effect of the compounds [33]. Additionally, the hybrid 11b with an amide
bond between the two drug scaffolds was preferable to compound 11a with an ester bond
because amide bonds are more stable in an enzymatic environment than esters. Animal
studies for these two hybrids are recommended to further validate the findings [33].
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esterification (11a) and amidation (11b) [33].

5.3. Chlorambucil–Methionine Hybrid

Omoomi et al. synthesized Chlorambucil–methionine hybrid 12 to improve Chlo-
rambucil efficacy and reduce its side effects (Figure 7) [14]. The MCF-7 breast cancer
cell line was used to evaluate the anticancer effect of the novel compound. The in vitro
biological studies of compound 12 showed that it exhibited a similar anticancer effect as
Chlorambucil. However, it was less toxic than Chlorambucil. It is worth noting that this
hybrid’s compound mode of action was via inducing apoptosis. However, further studies
to validate these findings are desired [14].
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5.4. Chlorambucil–7α-Testosterone Hybrid

A Chlorambucil–7α-testosterone hybrid compound 13 was reported by Bastien et al.
(Figure 8). This compound was synthesized using two different synthetic approaches
to improve its poor yield [32,34]. It was prepared through an SN2-type substitution
reaction (six-step reaction) and an olefin cross-metathesis reaction (five-step reaction).
Furthermore, the hybrid was evaluated against two prostate cancer cell lines (LNCaP and
PC3) in vitro [34]. The in vitro findings indicated that this novel chemotherapeutic agent
was selective towards cancer cells, with an IC50 value of 101.0 µM against LNCaP cancer
cell lines, but inactive against PC3 cancer cell lines. Therefore, its good specificity makes
it a promising hybrid molecule for the treatment of prostate cancer. However, further
investigations are also needed. Something noteworthy is that fewer reaction steps resulted
in higher yield and vice versa [34].
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5.5. Chlorambucil–Platinum Hybrids

Pathak et al. prepared a hybrid compound containing cisplatin with two moieties of
Chlorambucil to enhance the anticancer efficacy of both drugs and reduce their severe side
effects [35]. The synthesized hybrid 14 (Figure 9) was evaluated in vitro for its anticancer
effect against several human cancer cells (breast (MCF-7), prostate (PC3), and ovarian
(A2780) cancer cell lines), cisplatin-resistant human ovarian cancer cells (A2780/CP70), and
mouse breast cancer cells (4T1) [35]. The addition of nanoparticles after the synthesis of the
chlorambucil–cisplatin hybrid was considered due to the previous study by Pathak et al.,
where the addition of mitochondrial-targeted nanoparticles (NPs) resulted in the better
delivery of drugs due to the ability of nanocarriers to improve loaded drug biodistribution,
pharmacokinetics, and stability properties [35,36]. The findings from this study were
consistent with the previous research by Pathak et al., as hybrid drug 14 displayed enhanced
anticancer effects against PC3 and MCF-7 cancer cell lines than the parent molecules,
cisplatin and Chlorambucil [35]. Furthermore, the encapsulation of NPs resulted in a
significantly active chemotherapeutic agent, especially against prostate (PC3) and cisplatin-
resistant human ovarian cancer cell lines, as shown in Table 1 [35].
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Table 1. The IC50 (µmol/L) values of the synthesized compounds and their parent compounds tested
against PC3 and A2780/CP70 cancer cell lines.

Compound Cell Lines

PC3 A2780/CP70

T-Platin-Chlorambucil–NPs 0.22 ± 0.04 1.0 ± 0.50
NT-Platin-Chlorambucil–NPs 0.46 ± 0.42 1.30 ± 0.02

Hybrid 14 0.60 ± 0.06 5.2 ± 0.80
2Chlorambucil + Cisplatin 14.00 ± 5.00 12.00 ± 5.00

Cisplatin 13.50 ± 2.00 13.50 ± 4.00
Chlorambucil 181.00 ± 15.00 200.00 ± 40.00

Montagner et al. synthesized Chlorambucil–platinum hybrid compound 15 with one
Chlorambucil moiety, compared to the two moieties synthesized by Pathak et al., (Figure 10)
and evaluated the hybrid drug against several human cancer cell lines (C13*, HCT-15, 2008,
BCPAP, PSN1, LoVo, and A431), in vitro [37]. As shown in Table 2, compound 15 exhibited
superior cytotoxic activity on all the human cancer cell lines, even against drug-resistant
strains, compared to the parent drugs. Additionally, its drug specificity (DNA-targeting
ability) was higher than that of its parental drugs, resulting from its enhanced lipophilicity,
which led to its high capability of crossing the cell membrane and higher accumulation in
the tumor cells. Compound 15 is a promising chemotherapeutic agent with a high potential
to overcome cisplatin resistance. This compound was also ten times more cytotoxic than
other previously reported Chlorambucil–platinum hybrid molecules. Notably, this study
revealed that combining two DNA-binding molecules to form a hybrid compound can
further enhance their antitumor activity [37].
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Table 2. The in vitro cytotoxicity results of compound 15 and the parent drugs [IC50 (µM) ± SD] [37].

Cancer Cell Lines
Compound

15 Platinum Chlorambucil

BCPAP 0.51 ± 0.20 7.31 ± 1.20 >100
HCT-15 0.39 ± 0.10 15.28 ± 2.60 44.52 ± 9.50
BxPC3 1.74 ± 0.50 7.22 ± 2.20 >100
A431 0.41 ± 0.10 2.21 ± 0.40 74.48 ± 8.2 > 100
LoVo 0.98 ± 0.10 9.15 ± 2.10 >100
C13 0.28 ± 0.10 22.11 ± 3.20 >100
2008 0.31 ± 0.10 2.18 ± 0.90 34.58 ± 16.50
PSN1 0.42 ± 0.10 18.11 ± 3.20 >100

New platinum-based Chlorambucil hybrid compounds (16a,b) were synthesized by
Chen et al. to improve the anticancer effect of Chlorambucil (Figure 11). The two obtained
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hybrid compounds were evaluated for their anticancer activity against several human
cancer cell lines (both drug-sensitive and -resistant strains of cisplatin) in vitro [38]. The
cancer cell lines used for the study included lung (A549/CDDP and A549), gastric (SGC-
7901 and SGC-7901/CDDP), and human normal (HUVEC) cancer cell lines. Cisplatin and
Chlorambucil were used as reference compounds [38]. It was noteworthy that compound
16a displayed a high cytotoxic effect with IC50 values which were 62.04 and 34.93-fold lower
than Chlorambucil against drug-resistant strains, whereas its activity was comparable to
cisplatin when tested against drug-sensitive strains of cancer cell lines [38]. Additionally,
hybrid 16a reduced the drug resistance factor of cisplatin from 9.59 (cisplatin) to 0.58
and from 7.09 (cisplatin) to 0.81 against A549/CDDP and SGC-7901/CDDP, respectively.
Therefore, this compound had the potential to overcome cisplatin drug resistance [38].
However, the anticancer activity of compound 16b was comparable to cisplatin against
all the cancer cell lines used. Compounds 16a and 16b were less toxic towards human
normal cancer cell lines when compared to their parent molecules, and compound 16 a was
more cytotoxic than compound 16b. Hence, Chen et al. recommended further studies for
compound 16a [38].
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Qin et al. synthesized hybrids 17a&b, containing Chlorambucil with oxaliplatin and
cisplatin (Figure 12) [39]. Several human cancer cell lines, including breast, colorectal,
gastric, and hepatocellular cancer cell lines, and cisplatin-resistant cell lines, were used
to evaluate the synthesized drugs in vitro. The parent drugs (cisplatin, oxaliplatin, and
chlorambucil) were used as controls [39]. The reported findings showed that against the
drug-sensitive strains, compounds 17a and 17b exhibited improved cytotoxicity, with IC50
values in the range of 2.97–4.97 µM and 4.17–18.65 µM, respectively, when compared
to Chlorambucil, with IC50 values in the range of 53.47–97.56 µM. However, the results
were comparable to cisplatin and oxaliplatin [39]. Compound 17a displayed remarkable
anticancer activity compared to its counterpart and the parent drugs on the drug-resistant
strain (SGC7901/CDDP) [39]. It was twice as active as cisplatin against SGC7901/CDDP,
indicating its capability to overcome cisplatin drug resistance with a resistance factor of
1.42 compared to 3.35 for cisplatin [39]. Thus, there is a need for further studies to fully
understand its mode of action. Moreover, it exhibited a 91.1% apoptosis rate, which was
higher than Chlorambucil (5.2%) and cisplatin (83.6%) combined against SGC7901 cancer
cell lines; a similar trend was observed against SGC7901/CDDP [39]. Therefore, hybridizing
Chlorambucil with cisplatin offers significant potential to overcome drug resistance.
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5.6. Chlorambucil Hybridized with Long-Chained Hydrocarbons and Fluorocarbon Chains

To reduce the severe side effects associated with Chlorambucil, Nowak-Sliwinska et al.
synthesized hybrid compounds (18a&c) using long hydrocarbon and fluorocarbon chains
to inhibit tumor growth by altering Chlorambucil’s mode of action and improving its drug
specificity (Figure 13) [40]. These compounds were evaluated against different human
cancer cell lines in vitro and in vivo [40]. According to Clavel et al., Chlorambucil and
compound 18a displayed promising cytotoxic activity with IC50 values of 12 to 43 µM at 37
to 41.5 ◦C against A2780 and A2780 cisR cells (human ovarian carcinoma, cisplatin-sensitive
and -resistant) [40,41]. The antitumor activity of compounds 18b and 18c was evaluated
against human ovarian A2780 cancer cells in vivo [40]. The findings showed that, although
the results are comparable to Chlorambucil, these two compounds can inhibit tumor
growth through an anti-antiangiogenic effect. Additionally, compound 18c with a long
hydrocarbon chain was more active than 18b with a fluorocarbon chain, and it inhibited
tumor growth at lower doses than 18b in vivo [40]. The modification of the carboxylic
group of Chlorambucil through the introduction of fluorocarbon and hydrocarbon long
chains can alter the mechanism of action of Chlorambucil, resulting in improved anticancer
outcomes. Modifying available clinically approved drugs is a promising approach to
producing chemotherapeutics with enhanced selectivity and minimized side effects [40,41].
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5.7. Chlorambucil–Asparagine Hybrid

A novel therapeutic agent (19) (Figure 14) was prepared by Shafiee Ardestani et al. via
a combination of Chlorambucil and asparagine to improve the anticancer effect of Chloram-
bucil [42]. Asparagine was used in the research due to the amino acid carrier’s important
role in cancer cell growth and proliferation [42]. The anticancer effect of compound 19 was
evaluated against the HT1080 cancerous cell line, and Chlorambucil was also evaluated
to understand its effect on blood clotting and hemolysis [42]. Compound 19 was more
cytotoxic, with an EC50 value of 81.8702 µM, than Chlorambucil, with an EC50 value of
138.854 µM. The compound was effective even at low concentrations, and low doses of
the drug reduced the side effects. Compound 19 was not toxic to normal cell lines [42].
The mode of action of compound 19 was via apoptosis and did not influence the blood
hemolysis rate and clotting factor. Hence, it is considered a promising anticancer drug that
requires further studies [42].
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5.8. Chlorambucil–Lipid Hybrids

Three hybrid compounds (20a–c) were synthesized using known synthetic protocols
by Idowu et al. through the combination of Chlorambucil and glycosamine-derived glyc-
erolipids (GDGs) (Figure 15) [43]. These compounds were evaluated against different
prostate, breast, and pancreas cancer cell lines in vitro. Substituents were introduced to
positions (C-2* and C-6*) of the GDG moiety to investigate the SAR [43]. Idowu et al. also
considered each parent molecule’s effect on the synthesized hybrids’ anticancer activity.
Thus, GDG derivatives (20d and 20e) were synthesized and used in the study as refer-
ences [43]. The findings in Table 3 showed that the hybrid molecules 20a–c were selective
towards cancer cell lines. Compounds 20a and 20b were the most active anticancer hybrids
compared to the parent drug (CC50 > 150 µM) against all cancer cell lines except the pan-
creas cancer cell line. Compound 20c’s CC50 values were greater than 20 µM, and it did
not induce any significant activity against all cancer cell lines [43]. The presence of NH2 in
the glucose moiety influences the anticancer activity of these hybrids and should not be
modified [43]. Furthermore, for hybrids 20a and 20b, the position (C-2 or C-6) of NH2 in
the glucose moiety to which Chlorambucil was introduced displayed no significant impact
on the anticancer activity of these hybrid drugs [43]. In contrast, hybrid 20a exhibited a
CC50 equal to 6.0 µM while 20b exhibited a CC50 equal to 7.5 µM against prostate (DU145)
and breast (JIMT1) cancerous cells, respectively. However, these hybrids displayed no
significant effect against the pancreas (MiaPaCa2) cancer cell line [43]. Compounds 20d and
20e (CC50 > 15 µM) were less active than compounds 20a&b except on the MiaPaCa2 cancer
cell line, revealing that Chlorambucil contributed to the anticancer effect of the hybrids.
The cytotoxicities of hybrids 20a and 20b were comparable to those of glycosamine-derived
glycerolipids, indicating that further research is needed to investigate the mechanism of
action of these compounds [43].
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Figure 15. Chemical structures of Chlorambucil–lipid hybrids (20a–c) and modified lipids (20d and
20e) [43].

Table 3. In vitro cytotoxicity results of compounds 20a, 20b, 20d, and their parent drug (GDG) [CC50

(µM)] [43].

Cancer Cell Lines
Compound

GDG 20a 20b 20d

PC3 13.5 12.0 11.5 14.5
DU145 10.0 6.0 11.0 15.0
BT474 Not Tested 12.5 12.5 13.5

MDA-MB-231 7.1 8.5 10.5 13.5
JIMT1 9.0 8.5 7.5 11.0

MiaPaCa2 9.0 16.0 20.0 10.0

5.9. Chlorambucil Hybridized with DNA/ HDAC Inhibitors

The synthetic modification of Chlorambucil to improve its anticancer activity was
continued by Xie et al. through the synthesis of a Chlorambucil–tacedinaline hybrid
molecule 21 (Figure 16). The anticancer activity of the compound was tested against selected
cancer cell lines, H460, A549, HepG2, SMMC77212, A375, and H1299 [44]. Compound
21 exhibited better anticancer activity (IC50 values 3.1–14.2 µM) than Chlorambucil (IC50
values 22.2–163.0 µM) and tacedinaline (IC50 values 11.3–33.0 µM) against all the cancer
cell lines. The IC50 values of compound 21 were 1.3–6.1-fold and 3.6–40.8-fold lower than
tacedinaline and Chlorambucil, respectively [44]. The compound acted as a dual-targeting
molecule HDAC/DNA inhibitor [44].

Song et al. prepared Chlorambucil–hydroxamic acid hybrid compound 22 (Figure 16) [45].
The synthesized hybrid compound 22 was evaluated for its anticancer effect against several
human cancer cell lines, including two breast cancer cell lines (MCF-7 and MDA-MB-
231), two leukaemia cell lines (U-937 and HL-60), and one ovarian (A2780) cancer cell
line [45]. It exhibited superior antiproliferative activity compared to Chlorambucil against
the human leukaemia cancer cells. In contrast, the synthesized compound exhibited poor
antiproliferative activity against other cancer cell lines [45]. This compound displayed
great activity with GI50 values of 1.24 and 1.75 µM against HL-60 and U-937 compared to
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21.1 and 37.7 µM of Chlorambucil, respectively [45]. Hybrid 22 was not toxic to normal
cells. Therefore, it can be a better agent for the treatment of cancer [45].
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Qin et al. developed Chlorambucil–olaparib hybrids 23a,b as potential anticancer
compounds (Figure 17). They were evaluated for their anticancer effect against several hu-
man breast cancer cell lines in vitro. Hybrid 23 a displayed better antiproliferative activity
towards some cancer cell lines, whereas hybrid 23 b exhibited superior antiproliferative
activity against all selected cancer cells (except A549) compared to Chlorambucil (IC50
values between 1–100 µM) and olaparib (IC50 values 0.47–66.8 µM), with IC50 values rang-
ing between 0.18–14.1 µM and 0.13–11.7 µM, respectively [46]. Noteworthy, the length of
the linker between the two moieties influenced the antiproliferative activity of these com-
pounds. Thus, compound 23b was submitted for further analysis. The apoptotic analysis
was consistent with the antiproliferative findings as hybrid 23b displayed a prominent
apoptotic rate at low doses of 1 and 2 µM compared to the parent drugs at high doses (5
and 10 µM) (Table 4) [46]. Therefore, hybrid 23b can be a potential anticancer agent, but
further optimization is essential [46]
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Table 4. Apoptotic rate (%) of hybrid compound 23b and the parental drugs (olaparib and Chloram-
bucil) at different doses (µM) [46].

Compound Dose (µM) Apoptotic Rate (%)

23 1 & 2 10.96 & 12.69
olaparib 5 & 10 1.53 & 1.91

chlorambucil 5 & 10 2.49 & 2.96

5.10. Chlorambucil–Triphenylphosphonium Hybrids

Millard et al. repurposed Chlorambucil by modifying it with the triphenylphospho-
nium group to obtain hybrid compounds 24a–c via the amidation reaction between the
carboxylic group of Chlorambucil and the amine group of phosphonium salt derivatives
(Figure 18) [47]. These compounds targeted the mitochondria of the tumor cell as cancer
cells have higher intrinsic mitochondrial membranes than normal cells. Additionally, com-
pound 24a halogens (Cl) of the Chlorambucil moiety were converted to hydroxyl groups,
resulting in compound 24d. They were evaluated against several cancer cell lines (breast
and pancreatic cancer cell lines) in vitro [47].
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The in vitro results revealed that although all the hybrids displayed superior anticancer
activity compared to Chlorambucil against MCF7 breast cancer cell lines, compound 24a
exhibited remarkable anticancer activity with an IC50 value of 7.0 µM compared to other
hybrid drugs with IC50 values between 35.0 and 80.0 µM against MCF7. The aryl rings
contributed more to the cytotoxic effect of the molecules than saturated hydrocarbons.
However, 24d exhibited inferior activity compared to its derivative 24a, suggesting that
the modification of the chloro groups reduced the anticancer effect of the molecule [47].
Compound 24a was further analyzed against breast and pancreatic cancer cell lines to
validate the MCF7 results [47]. Against BxPC-3 and MIAPaCa-2 (pancreatic) cancer cells,
compound 24a displayed a significant increase in anticancer activity with IC50 values of
2.5 and 1.6 µM, respectively, which was more potent than Chlorambucil. Compound 24a
displayed superior activity on all the breast cancer cell lines compared to Chlorambucil,
with IC50 values between 1.7 and 9.5 µM [47]. The mode of action of compound 24a
was more dominant than that of Chlorambucil. There is a need for more research on the
development of mitochondrial-DNA-targeting therapeutics.

5.11. Chlorambucil–Honokiol Hybrid

Honokiol is extracted from natural products, such as the tree leaves, bark, and seed
cones of Magnolia officinal. It acts by targeting the mitochondria of the cancer cells
and preventing metastasis [48–51]. Hence, Xia et al. combined it with Chlorambucil
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via ester linkage, resulting in hybrid compound 25 with an improved anticancer effect
(Figure 19) [51]. Xia et al. biologically evaluated compound 25 against several human
leukemic cell lines, U937, CCRF-CEM, MV4–11, Jurkat, and K562, in vitro [51]. That
study revealed that compound 25 exhibited higher antiproliferative activity than its parent
drugs, Chlorambucil and honokiol, against human leukemic cell lines with IC50 values
1.09–4.86 µM, 6.73–25.90 µM, and 10.60–23.76 µM, respectively [51]. Moreover, this com-
pound displayed no cytotoxic effect against normal cancer cell lines in vitro. In vivo results
indicated that this hybrid showed no physiological toxicity and inhibited leukaemia cell
growth. Thus, this compound displayed a better therapeutic effect than Chlorambucil
in vitro and in vivo [51].
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5.12. Chlorambucil–Polyamide Hybrids

Funakoshi et al. synthesized Chlorambucil–polyamide hybrid 26 and evaluated
its antiproliferative effect against cancerous prostate cells in vitro (Figure 20) [52]. The
in vitro results indicated that compound 26 was more effective than Chlorambucil and
polyamide, with IC50 values between 0.984–4.643 µM, 160.3–821.3 µM, and 22.21–47.88 µM,
respectively [52]. Notably, the in vivo studies demonstrated that compound 26 exhibited
enhanced tumor inhibition growth without notably severe side effects when evaluated
using 22 Rv1 xenografts. Therefore, further in vivo studies are recommended for this
novel therapeutic agent [52]. Hirose et al. combined Chlorambucil with cyclic polyamides
to develop novel hybrids 27a–c (Figure 21) for cancer treatment [53]. After synthesizing
compounds 27a–c, the alkylation activity of the synthesized compounds against the human
prostate cancer cell line (LNCaP) in vitro was studied. The cytotoxicity results showed that
compound 27b (IC50 = 0.074 µM) had a better/comparable cytotoxic effect compared to
27c (IC50 = 0.093 µM) and compound 27a (IC50 = 0.60 µM), respectively. However, 27c had
better alkylating activity than 27b. Therefore, compound 27c was overall the most active
anticancer compound compared to 27a and 27b. Notably, SAR displayed that the attaching
position of Chlorambucil into the polyamides could be influential to the anticancer activity
of these novel hybrid compounds, as in compound 27a (least active compound), it was
attached on the N-terminus versus the y-aminobutyric acid turn on compounds 27b and 27c.
Hence, the overall results indicated that 27c is a novel DNA-alkylating chemotherapeutic
agent, and further studies are recommended [53].
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Figure 20. Chemical structure of Chlorambucil–polyamide hybrid 26 synthesized by Funakoshi
et al. [52].
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Figure 21. Chemical structures of Chlorambucil–polyamide hybrids 27a–c synthesized by Hirose
et al. [53].

5.13. Chlorambucil–Phenosafranin Hybrid

Miksa et al. developed a new hybrid drug, 28, to treat cancer by combining Chlo-
rambucil and phenosafranin through amide bonds (Figure 22) [54]. This drug’s anticancer
activity was tested on HeLa cancer cell lines in vitro. Compound 28 exhibited improved
anticancer activity, indicating that this is a promising chemotherapeutic agent. However,
in vivo studies are needed to establish this anticancer agent’s biodistribution [54]. Overall,
this hybrid drug is a promising chemotherapeutic agent.
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5.14. Chlorambucil–Artemisinin Hybrids

Chlorambucil derivatives 29–30 were among the sixteen artemisinin-nitrogen mus-
tard anticancer agents synthesized by Dai et al. (Figure 23) [55]. These compounds were
evaluated for their cytotoxic effect against several leukaemia cancer cell lines in vitro [55].
Compound 29 was less effective than the parent drugs, dihydroartemisinin and Chloram-
bucil, in vitro. In addition, compound 30 was selective against the cancer cell lines and
displayed improved anticancer effect against HCT-116, A549, and CCRF-CEM with IC50
values of 12.333 ± 0.647 µM, 14.878 ± 0.844 µM, and 1.38 ± 0.042 µM, respectively, in
comparison with the parent molecules [55]. However, further in vivo study to validate the
results is crucial.
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5.15. Chlorambucil–Evodiamine Hybrids

Evodiamine is a quinolone extracted from Evodiae fructus (Chinese herb), and it ex-
hibits myriad biological activities, such as antitumor, anti-inflammatory, and anti-Alzheimer
properties [56–59]. Thus, Hu et al. hybridized it with nitrogen-mustard and used four
human cancer cells (HL-60, PC-3, THP-1, and HepG2) to evaluate a series of novel hy-
brids’ (including Chlorambucil) anticancer activity. The synthesized compounds were
also tested against normal human cells (PBMC) in vitro [60]. Against all the cancer cells,
Chlorambucil–evodiamine derivatives 31a–d exhibited lower antiproliferative activity than
the parent drugs (Figure 24). In contrast, against HL-60 cancer cells, compound 31c ex-
hibited more significant anticancer activity than the parent drugs, with an IC50 value of
1.29 µM in vitro [60]. Therefore, combining nitrogen-mustard derivatives and evodiamine
is a promising approach to developing potent chemotherapeutics. The type of the linker and
the length influenced the anticancer activity of the synthesized derivatives, as compounds
with (CH2)3-O-(CH2)3 and (CH2)3 between the two parent moieties exhibited stronger
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activity than compounds with (CH2)6 and (CH2)2 between the moieties [60]. Therefore, the
nature and length of linkers must be considered when developing hybrid compounds.
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5.16. Chlorambucil–Brefeldin Hybrids

Another natural product, brefeldin, was coupled with Chlorambucil by Han et al. in a
study of nitrogen-mustard derivatives, and compounds 32a–c were obtained (Figure 25) [61].
Brefeldin is extracted from Penicillium decumbens, displaying several biological activ-
ities such as antiviral, antifungal, anticancer, and antimitotic properties [61–64]. The
synthesized compounds were evaluated in vitro against multidrug-resistant cancer cells
(Bel-7402/5-FU) and three human cancer cell lines (Bel-7402, HL-60, and PC-3) [61]. The
compounds were selective against cancer cell lines and multidrug-resistant strains in vitro.
Compounds 32a (IC50 = 1.93 and 1.37 µM) and 32b (IC50 = 4.86 and 6.84 µM) exhibited
remarkable cytotoxicity activity against Bel-7402 cells and PC-3, respectively. Additionally,
32c (IC50 = 7.25 µM) showed significant antitumor activity against Bel-7402 [61]. Further-
more, against Bel-7402/5-FU, all hybrids displayed significant activity, with IC50 ranging
from 8.35 to 15.63 µM. Overall, all the hybrids exhibited higher antitumor activity than the
parent molecules in vitro. Compounds substituted at the hydroxyl group at position 4 (32a)
exhibited stronger antitumor activity than compounds substituted at the hydroxyl group
at positions 7 (32b) and 4, 7 (32c). Therefore, the substitution position is essential and can
influence the cytotoxicity of the molecules [61].
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6. Future Perspectives and Conclusions

Many researchers have indicated that the number of cases of cancer may increase
significantly in the next few years. The currently available anticancer drugs suffer from
limitations, such as toxicity and multidrug resistance. The slow progress in discovering
and developing new and effective chemotherapeutics is further hampering effective cancer
treatment. Chlorambucil is an anticancer drug that is limited by a lack of specificity. Several
hybrid drugs have been developed to minimize the limitations mentioned above.

Several strategies have been reported and found to be effective in improving chloram-
bucil’s anticancer activity (Figure 26). Hybrid drugs are promising agents to treat cancer,
as most Chlorambucil hybrid compounds reported in this review displayed improved
biological activity. However, the hybrids were selective towards human cancer cell lines.
Therefore, evaluating the hybrid derivatives on several cancer cell lines is recommended.
Notably, to synthesize Chlorambucil hybrid drugs, the position of modification, type of
linker, and functional groups must be considered, as these features influence the anticancer
activity of the hybrids. One important factor is that the chain length of the linker between
Chlorambucil and some pharmacophores did not induce a significant trend in the cytotoxic
effects of the hybrid molecules. However, in some cases, the type of linker between Chlo-
rambucil and other moieties influenced the anticancer activity of hybrid compounds. Thus,
cleavable linkers such as esters and amide bonds are preferable (shown in Figure 26).
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Figure 26. Possible linkers to develop hybrid drugs.

The modification of Chlorambucil’s di-chloro moiety is not recommended because it
is responsible for the anticancer activity of the drug. Thus, modifying the moiety mostly
resulted in hybrid compounds with poor anticancer activity. On the other hand, hybrid
compounds combined using the carboxylic moiety of Chlorambucil resulted in improved
and effective hybrid compounds with the formation of ester and amide bonds which are
biologically friendly and easily cleaved in an enzymatic environment (demonstrated in
Figure 27). Furthermore, the synthetic route used for the modification of Chlorambucil
also affected the yield of the product. For instance, using synthetic modification routes
consisting of steps is not recommended as they result in low yields as compared to routes
with fewer steps. Additionally, nanotechnology is one promising alternative to improve
drug transport and overcome the pharmacological limitations of conventional drugs.
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Figure 27. Possible solutions to improve Chlorambucil’s efficacy.

Chlorambucil is associated with challenges such as bioavailability and severe side
effects on normal tissues. The incorporation of Chlorambucil-based hybrid molecules
into nanocarriers, such as liposomes, dendrimers, micelles, etc., can improve their uptake
and therapeutic outcomes with the potential to result in potent anticancer agents. Most
of the Chlorambucil hybrid drugs were evaluated in vitro. In vivo studies are needed to
validate the findings obtained from the in vitro analyses. The mode of action of these hybrid
compounds is not fully understood. The highlighted limitations of Chlorambucil include
poor cellular uptake, resulting in poor specificity and toxic effects on healthy tissues and
organs. Therefore, it is important to study the introduction of these hybrid molecules into
nanocarriers to further improve their drug biodistribution, pharmacokinetics, and stability
properties (See Figure 28). There is no doubt that continuous studies of Chlorambucil-based
hybrid compounds will result in potent chemotherapeutic agents.
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