Simultaneously Determined Antioxidant and Pro-Oxidant Activity of Randomly Selected Plant Secondary Metabolites and Plant Extracts
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Solvents
3.2. Preparation of the Extract Samples
3.3. Principles of Microplate Methods
3.4. Definition of the Conversion Intervals
3.5. Application of Tested Sample on Microplate
3.6. Application of Tested Sample on Microplate
3.7. Preparation of the Microplate
- adding 50 μL of a 0.4-mM solution of 2,2-diphenyl-1-picrylhydrazine in ethanol into the wells A1–C1;
- adding 50 μL of a 1.2-mM water solution of FeCl2·4H2O into the wells D1–F1;
- adding 50 μL of a 0.4-mM solution of DPPH● into the wells A12–C12;
- adding 50 μL of a 1.2-mM water solution of FeCl3·6H2O into the wells D12–F12.
- adding 50 μL of a 1.2-mM solution of FeCl3·6H2O into the field of three rows D2–F11,
- adding 150 μL of 50% (v/v) ethanol into the “background” wells in rows G and H (G2–H11).
3.8. Preparation of Starting Reagents
3.9. Starting and Adapting the Microplate before Measurement
3.10. Microplate Incubation and Measurement
3.11. Statistical Analysis of Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Njoya, E.M. Chapter 31—Medicinal plants, antioxidant potential, and cancer. In Cancer, 2nd ed.; Preedy, V.R., Patel, V.B., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 349–357. [Google Scholar]
- Benzie, F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Dragsted, L.O.; Pedersen, A.; Hermetter, A.; Basu, S.; Hansen, M.; Haren, G.R.; Kall, M.; Breinholt, V.; Castenmiller, J.J.M.; Stagsted, J.; et al. The 6-a-day study: Effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers. Am. J. Clin. Nutr. 2004, 79, 1060–1072. [Google Scholar] [CrossRef]
- Maliarová, M.; Maliar, T.; Krošlák, E.; Sokol, J.; Nemeček, P.; Nechvátal, P. Antioxidant and proteinase inhibition activity of main oat avenanthramides. J. Food Nutr. Res. 2017, 54, 346–353. [Google Scholar]
- Krošlák, E.; Maliar, T.; Nemeček, P.; Viskupičová, J.; Maliarová, M.; Havrlentová, M.; Kraic, J. Antioxidant and proteinase inhibitory activities of selected poppy (Papaver somniferum L.) genotypes. Chem. Biodivers. 2017, 14, e1700176. [Google Scholar] [CrossRef]
- Maliar, T.; Nemeček, P.; Ürgeová, E.; Maliarová, M.; Nesvadba, V.; Krofta, K.; Vulganová, K.; Krošlák, E.; Kraic, J. Secondary metabolites, antioxidant and anti-proteinase activities of methanolic extracts from cones of hop (Humulus lupulus L.) cultivars. Chem. Pap. 2016, 71, 41–48. [Google Scholar] [CrossRef]
- Vulganová, K.; Maliar, T.; Maliarová, M.; Nemeček, P.; Viskupičová, J.; Balážová, A.; Sokol, J. Biologically valuable components, antioxidant activity and proteinase inhibition activity of leaf and callus extracts of Salvia sp. Nova Biotechnol. Et. Chim. 2019, 18, 25–36. [Google Scholar] [CrossRef]
- Kulichová, K.; Sokol, J.; Nemeček, P.; Maliarová, M.; Maliar, T.; Havrlentová, M.; Kraic, J. Phenolic compounds and biological activities of rye (Secale cereale L.) grains. Open Chem. 2019, 7, 988–999. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A. Approach to Optimization of FRAP Methodology for Studies Based on Selected Monoterpenes. Molecules 2020, 12, 5267. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidants and antioxidant methods. An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.W.; Reichel, T.L. High molecular weight plant phenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 1998, 46, 1887–1892. [Google Scholar] [CrossRef]
- Ronald, L.; Prior; Cao, G. In vivo total antioxidant capacity: Comparison of different analytical methods. Free Radic. Biol. Med. 1999, 27, 1173–1181. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar]
- Shaobin, W. A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigment. 2008, 76, 714–720. [Google Scholar]
- Gallard, H.; De Laat, J. Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Res. 2000, 34, 3107–3116. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Macáková, K.; Mladenka, P.; Filipsky, T.; Říha, M.; Jahodár, L.; Trejtnar, F.; Bovicelli, P.; Silvestri, I.P.; Hrdina, R.; Saso, L. Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chem. 2012, 135, 2584–2592. [Google Scholar] [CrossRef]
- Seck, I.; Hosu, A.; Cimpoiu, C.; Ndoye, S.F.; Ba, L.A.; Sall, C.; Seck, M. Phytochemicals content, screening, and antioxidant/pro-oxidant activities of Carapa procera (barks) (Meliaceae). S. Afr. J. Bot. 2021, 137, 369–376. [Google Scholar] [CrossRef]
- Berker, K.I.; Güçlü, K.; Demirata, B.; Apa, R. A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Anal. Methods 2010, 2, 1770–1778. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, G.; Demirata, B.; Ozyürek, M.; Celik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Ozyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- Rufian-Henares, J.A.; Delgado-Andrade, C.; Morales, F.J. Assessing the antioxidant and pro-oxidant activity of phenolic compounds by means of their copper reducing activity. Eur. Food Res. Technol. 2006, 223, 225–231. [Google Scholar] [CrossRef]
- Damien Dorman, H.J.; Hiltunen, R. Antioxidant and pro-oxidant in vitro evaluation of water-soluble food-related botanical extracts. Food Chem. 2011, 129, 1612–1618. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Beatriz, M.; Oliveira, P.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef]
- An, J.; Liu, J.; Liang, Y.; Ma, Y.; Chen, C.; Cheng, Y.; Peng, P.; Zhou, N.; Zhang, R.; Addy, M.; et al. Characterization, bioavailability, and protective effects of phenolic-rich extracts from almond hulls against pro-oxidant induced toxicity in Caco-2 cells. Food Chem. 2020, 322, 126742. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.A.; Rodríguez-Amado, I.; Vázquez, J.A.; Murado, M.A. β-Carotene Assay Revisited. Application to characterize and quantify antioxidant and prooxidant activities in a microplate. J. Agric. Food Chem. 2012, 60, 8983–8993. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.A.; Vázquez, J.A.; Murado, M.A. Crocin bleaching antioxidant assay revisited: Application to microplate to analyse antioxidant and pro-oxidant activities. Food Chem. 2015, 167, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Sotler, R.; Poljšak, B.; Dahmane, R.; Jukić, T.; Jukić, D.P.; Rotim, C.; Trebše, P.; Starc, A. Prooxidant activities of antioxidants and their impact on health. Acta Clin. Croat. 2019, 58, 726–736. [Google Scholar] [CrossRef]
- Urbański, N.K.; Beresewicz, A. Generation of *OH initiated by interaction of Fe2+ and Cu+ with dioxygen; comparison with the Fenton chemistry. Acta Biochim. Pol. 2000, 47, 951–962. [Google Scholar] [CrossRef]
- Asplund, K.U.; Jansson, P.J.; Lindqvist, C.; Nordström, T. Measurement of ascorbic acid (vitamin C) induced hydroxyl radical generation in household drinking water. Free Radic. Res. 2002, 36, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Carlisle, D.L.; Pritchard, D.E.; Singh, J.; Owens, B.M.; Blankenship, L.J.; Orenstein, J.M.; Patierno, S.R. Apoptosis and P53 induction in human lung fibroblasts exposed to chromium (VI): Effect of ascorbate and tocopherol. Toxicol. Sci. 2000, 55, 60–68. [Google Scholar] [CrossRef]
- Blumberg, J.; Block, G. The alpha-tocopherol beta-carotene cancer prevention in Finland. Nutr. Rev. 1994, 52, 242–245. [Google Scholar] [CrossRef]
- Halliwell, B. Are polyphenols antioxidants or pro-oxidants? What we learn from cells culture and in vivo studies? Arch. Biochem. Biophys. 2008, 476, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Amić, D.; Davidovič-Amić, D.; Bešlo, D.; Rastija, V.; Lučić, B.; Trinajstić, N. SAR and QSAR of the antioxidant activity of flavonoids. Curr. Med. Chem. 2007, 14, 827–845. [Google Scholar] [CrossRef]
- Hodnick, W.F.; Duval, D.L.; Pardini, R.S. Inhibition of mitochondrial respiration and cyanide-stimulated generation of reactive oxygen species by selected flavonoids. Biochem. Pharmacol. 1994, 47, 573–580. [Google Scholar] [CrossRef]
- Goldman, R.; Claycamp, R.; Sweetland, G.H.; Sedlov, M.A.; Tyurin, A.V.; Kisin, E.R.; Tyurina, Y.Y.; Ritov, V.B.; Wenger, S.L.; Grant, S.G.; et al. Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells. Free Radic. Biol. Med. 1999, 27, 1050–1063. [Google Scholar] [CrossRef] [PubMed]
- Galati, G.; Chan, T.; Wu, B.; O’Brien, P.J. Glutathione-dependent generation of reactive oxygen species by the peroxidase-catalyzed redox cycling of flavonoids. Chem. Res. Toxicol. 1999, 12, 521–525. [Google Scholar] [CrossRef]
- Terpinc, P.; Polak, T.; Šegatin, N.; Hanzlowsky, A.; Ulrih, N.P.; Abramovic, H. Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chem. 2011, 128, 62–68. [Google Scholar] [CrossRef]
- Yordi, E.G.; Pérez, E.M.; Matos, M.J.; Villares, E.U. Antioxidant and Pro-Oxidant Effects of Polyphenolic Compounds and Structure-Activity Relationship Evidence. In Nutrition, Well-Being and Health; Bouayed, J., Bohm, T., Eds.; InTech: Rijeka, Croatia, 2012; Volume 2, pp. 23–48. [Google Scholar]
- Laughton, M.J.; Barry Halliwell, B.; Evans, P.J.; Robin, J.; Hoult, S. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin: Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem. Pharm. 1989, 38, 2859–2865. [Google Scholar] [CrossRef] [PubMed]
- Utrera, M.; Estévez, M. Impact of trolox, quercetin, genistein and gallic acid on the oxidative damage to myofibrillar proteins: The carbonylation pathway. Food Chem. 2013, 141, 4000–4009. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Thanki, K.; Jain, S. Novel self-nanoemulsifying formulation of quercetin: Implications of pro-oxidant activity on the anticancer efficacy. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 959–969. [Google Scholar] [CrossRef]
- Vieira do Carmo, M.A.; Granato, D.; Azevedo, L. Chapter Seven—Antioxidant/pro-oxidant and antiproliferative activities of phenolic-rich foods and extracts: A cell-based point of view. In Advances in Food and Nutrition Research; Granato, D., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 98, pp. 253–280. [Google Scholar]
- Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 2010, 501, 65–72. [Google Scholar] [CrossRef]
- Naihao Lu, N.; Puqing Chen, P.; Qin Yang, Q.; Peng, Y.-Y. Anti- and pro-oxidant effects of (+)-catechin on hemoglobin-induced protein oxidative damage. Toxicol. Vitr. 2011, 25, 833–838. [Google Scholar]
- Yen, G.C.; Duh, P.D.; Tsai, H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002, 79, 307–313. [Google Scholar] [CrossRef]
- De Haan, L.; Lee-Hilz, Y.; Wemmenhoven, E.; Aarts, J.; Reitjens, I. EpRE-mediated gene induction by the pro-oxidant mechanism of polyphenolic anti-oxidants from rosemary and sage. Toxicol. Lett. 2007, 172, S42. [Google Scholar] [CrossRef]
- Laggner, H.; Hermann, M.; Sturm, B.; Gmeiner, B.M.K.; Kapiotis, S. Sulfite facilitates LDL lipid oxidation by transition metal ions: A pro-oxidant in wine? FEBS Lett. 2005, 579, 6486–6492. [Google Scholar] [CrossRef] [PubMed]
STANDARD/ Compound | CAS | DPPH50 (μM) | r2 | FRAP50 (μM) | r2 | PABI |
---|---|---|---|---|---|---|
TROLOX | 53188-07-1 | 115.01 ± 1.5 | 0.9895 | 171.14 ± 7.9 | 0.906 | 1.49 |
Quercetin | 117-39-5 | 356.03 ± 1.8 | 0.954 | 156.26 ± 4.1 | 0.963 | 0.44 |
Rutin | 153-18-4 | 400.81 ± 7.9 | 0.970 | >4086 | - | - |
Baicalein | 491-67-8 | 49.16 ± 1.4 | 0.958 | 186.19 ± 4.9 | 0.945 | 3.79 |
Morin | 480-16-0 | 78.87 ± 2.2 | 0.915 | 176.85 ± 3.4 | 0.956 | 2.24 |
7,8-Dihydroxyflavone | 38183-03-8 | 63.17 ± 1.4 | 0.939 | 253.91 ± 2.9 | 0.952 | 4.02 |
Hesperidin | 520-26-3 | 523.24 ± 14.5 | 0.976 | >4086 | - | - |
Diosmin | 520-27-4 | >4086 | - | >4086 | - | - |
Apigenin-7-glucoside | 578-74-5 | >4086 | - | >4086 | - | - |
(−)-Epicatechin | 490-46-0 | 22.49 ± 0.5 | 0.950 | 279 ± 0.9 | 0.997 | 12.40 |
(+)-Catechin | 154-23-4 | 192.63 ± 5.5 | 0.997 | 4479.36 ± 10.8 | 0.944 | 23.25 |
l-Ascorbic acid | 50-81-7 | 164.06 ± 9.9 | 0.938 | 337.2 ± 0.8 | 0.938 | 2.06 |
Tannic acid | 1401-55-4 | 111.82 ± 2.3 | 0.982 | 49.51 ± 0.5 | 0.974 | 0.44 |
Crocin | 42553-65-1 | 771.1 ± 9.4 | 0.975 | 884.32 ± 17.2 | 0.960 | 1.15 |
β-Carotene | 7235-40-7 | 2086 ± 29.5 | 0.971 | >4086 | - | - |
Purpurin | 81-54-9 | 941.3 ± 28.6 | 0.993 | 2504.61 ± 30.8 | 0.955 | 2.66 |
Silibinin | 22888-70-6 | 3336.48 ± 107.1 | 0.974 | 1365.1 ± 22.7 | 0.929 | 0.41 |
Olivetol | 500-66-3 | >4086 | 0.939 | >4086 | - | - |
Gallic acid | 149-91-7 | 50.72 ± 0.8 | 0.931 | 408.97 ± 10.07 | 0.978 | 8.06 |
Caffeic acid | 331-39-5 | 177.25 ± 8.8 | 0.937 | 500.39 ± 8.6 | 0.969 | 2.82 |
Protocatechuic acid | 99-50-3 | 166.31 ± 8.1 | 0.982 | >4086 | - | - |
Avenanthramide A | 108605-70-5 | 448.6 ± 11.4 | 0.968 | 1730.67 ± 16.8 | 0.965 | 3.86 |
Avenanthramide B | 108605-69-2 | 1566.2 ± 60.5 | 0.863 | 2778.45 ± 43.3 | 0.946 | 1.77 |
Avenanthramide C | 116764-15-9 | 431.14 ± 20.6 | 0.989 | 1468.64 ± 14.3 | 0.971 | 3.41 |
Plant Species, Latin Name and Bot. Classifier | Plant Part | DPPH50 (mg dm/mL) | r2 | FRAP50 (mg dm/mL) | r2 | PABI |
---|---|---|---|---|---|---|
Sessile oak, Quercus petraea, (Matt.) Liebl. | leaves | 2.54 ± 0.2 | 0.949 | 1.81 ± 0.22 | 0.980 | 0.71 |
Silver birch, Betula pendula, Roth. | leaves | 1.6 ± 0.2 | 0.998 | 2.37 ± 0.3 | 0.986 | 1.48 |
Horse chestnut, Aesculus hippocastanum, L. | leaves | 1.82 ± 0.1 | 0.979 | 9.09 ± 0.04 | 0.934 | 4.98 |
Old man’s beard, Clematis vitalba, L. | bark | 7.72 ± 0.3 | 0.913 | 32.33 ± 0.2 | 0.944 | 4.18 |
Rapeseed, Brassica napus, L. | grains | 145.15 ± 0.1 | 0.962 | 11.64 ± 0.3 | 0.961 | 0.08 |
Rhubarb, Rheum rhabarbarum, L. | root | 1.39 ± 0.2 | 0.962 | 0.58 ± 0.1 | 0.933 | 0.42 |
Pedunculate oak, Quercus robur, L. | bark | 0.5 ± 0.1 | 0.973 | 0.3 ± 0.1 | 0.939 | 0.61 |
Black elderberry, Sambuicus nigra, L. | flower | 1.09 ± 0.1 | 0.968 | 1.61 ± 0.2 | 0.966 | 1.47 |
Woundwort, Prunella vulgaris, L. | flower | 1.57 ± 0.1 | 0.965 | 1.27 ± 0. 1 | 0.962 | 0.81 |
Green tea, Camelia sinensis, (L.) Kuntze. | flower | 1.93 ± 0.1 | 0.923 | 0.21 ± 0.1 | 0.993 | 0.11 |
Liquorice, Glycyrrhiza glabra, L. | root | 5.62 ± 0.2 | 0.955 | 3.41 ± 0.2 | 0.967 | 0.61 |
Common wormwood, Artemisia absinthium, L. | leaves | 1.73 ± 0.1 | 0.984 | 1.25 ± 0.1 | 0.963 | 0.73 |
Thistle, Silybum marianum, (L.) Gaertn. | grain | 7.22 ± 0.4 | 0.991 | 1.61 ± 0.1 | 0.970 | 0.22 |
Chamomile, Matricaria chamomilla, L. | flower | 5.06 ± 0.3 | 0.984 | 5.03 ± 0.2 | 0.981 | 0.99 |
Ginger, Zingiber officinale, Roscoe. | root | 4.62 ± 0.2 | 0.994 | 5.43 ± 0.3 | 0.991 | 1.18 |
Turmeric, Curcuma longa, L. | root | 17.52 ± 0.5 | 0.988 | 11.44 ± 0.4 | 0.982 | 0.65 |
Sage, Salvia officinalis, L. | leaves | 0.27 ± 0.1 | 0.975 | 1.73 ± 0.1 | 0.959 | 6.27 |
Grape wine, Vitis vinifera, L. | frost dried grapes | 3.52 ± 0.1 | 0.976 | 40.63 ± 1.8 | 0.961 | 11.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maliar, T.; Maliarová, M.; Blažková, M.; Kunštek, M.; Uváčková, Ľ.; Viskupičová, J.; Purdešová, A.; Beňovič, P. Simultaneously Determined Antioxidant and Pro-Oxidant Activity of Randomly Selected Plant Secondary Metabolites and Plant Extracts. Molecules 2023, 28, 6890. https://doi.org/10.3390/molecules28196890
Maliar T, Maliarová M, Blažková M, Kunštek M, Uváčková Ľ, Viskupičová J, Purdešová A, Beňovič P. Simultaneously Determined Antioxidant and Pro-Oxidant Activity of Randomly Selected Plant Secondary Metabolites and Plant Extracts. Molecules. 2023; 28(19):6890. https://doi.org/10.3390/molecules28196890
Chicago/Turabian StyleMaliar, Tibor, Mária Maliarová, Marcela Blažková, Marek Kunštek, Ľubica Uváčková, Jana Viskupičová, Andrea Purdešová, and Patrik Beňovič. 2023. "Simultaneously Determined Antioxidant and Pro-Oxidant Activity of Randomly Selected Plant Secondary Metabolites and Plant Extracts" Molecules 28, no. 19: 6890. https://doi.org/10.3390/molecules28196890
APA StyleMaliar, T., Maliarová, M., Blažková, M., Kunštek, M., Uváčková, Ľ., Viskupičová, J., Purdešová, A., & Beňovič, P. (2023). Simultaneously Determined Antioxidant and Pro-Oxidant Activity of Randomly Selected Plant Secondary Metabolites and Plant Extracts. Molecules, 28(19), 6890. https://doi.org/10.3390/molecules28196890