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Abstract: The rational design of the heterogeneous interfaces enables precise adjustment of the elec-
tronic structure and optimization of the kinetics for electron/ion migration in energy storage materials.
In this work, the built-in electric field is introduced to the iron-based anode material (Fe2O3@TiO2)
through the well-designed heterostructure. This model serves as an ideal platform for comprehend-
ing the atomic-level optimization of electron transfer in advanced lithium-ion batteries (LIBs). As
a result, the core-shell Fe2O3@TiO2 delivers a remarkable discharge capacity of 1342 mAh g−1 and
an extraordinary capacity retention of 82.7% at 0.1 A g−1 after 300 cycles. Fe2O3@TiO2 shows an
excellent rate performance from 0.1 A g−1 to 4.0 A g−1. Further, the discharge capacity of Fe2O3@TiO2

reached 736 mAh g−1 at 1.0 A g−1 after 2000 cycles, and the corresponding capacity retention is
83.62%. The heterostructure forms a conventional p-n junction, successfully constructing the built-in
electric field and lithium-ion reservoir. The kinetic analysis demonstrates that Fe2O3@TiO2 displays
high pseudocapacitance behavior (77.8%) and fast lithium-ion reaction kinetics. The capability of
heterointerface engineering to optimize electrochemical reaction kinetics offers novel insights for
constructing high-performance iron-based anodes for LIBs.

Keywords: lithium-ion storage; iron-based anode; heterointerface engineering; built-in electric field;
electrochemical kinetics

1. Introduction

The increasing popularity of new-energy trams and the growing market demand for
new-energy electronic devices have rendered electrochemistry and its related fields indis-
pensable to the advancement of energy technology [1–3]. The advantages of no memory
effect, extended lifespan, high energy density, and superior safety make lithium-ion batter-
ies (LIBs) a prospective technology choice for future large-scale applications [4–8]. However,
the limited theoretical capacity (372 mAh g−1) and inadequate rate performance of commer-
cial graphite anodes impede the advancement of LIBs [9–11]. By identifying suitable anode
materials to enhance capacity and kinetics, LIBs could offer superior energy/power density
and broader application prospects. Transition metal oxides (TMOs), especially Fe2O3 with
its high theoretical capacity (1007 mAh g−1) [12], abundance, strong chemical stability, and
eco-friendliness, have attracted considerable interest [13–18]. However, the high lithiation
potential, significant volume expansion, and side reaction tendencies diminish the feasi-
bility of Fe2O3 as an LIB anode [19]. The use of frame support or core-shell structures to
limit the volume expansion of Fe2O3 has proven to be an effective strategy. For example,
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Qi et al. synthesized Fe2O3/graphene nanocomposites by the high-pressure hydrothermal
method, achieving a capacity of 1100.5 mAh g−1 at 0.2 A g−1 after 350 cycles [20]. Wang
et al. developed C@Fe2O3/SWCNT nanocomposites, demonstrating favorable lithium-ion
storage capacity with a reversible capacity of 1294.7 mAh g−1 at 0.05A g−1 [21]. He et al.
prepared Fe2O3/C/rGO nanomaterials by the physical crosslinking method, attaining a
reversible capacity of 609 mAh g−1 at 1.0 A g−1 while exhibiting excellent power den-
sity [22]. Although the strategy of composite or hybrid with carbon-based materials has
proven effective in stabilizing electrochemical reactions and preventing physical crushing
of Fe2O3 during lithiation/delithiation, some effective electron transfer is still sacrificed
due to poor kinetics. Furthermore, the inadequate conductivity of Fe2O3 results in the
significant polarization and degradation of lithium-ion storage performance at high current
densities [23,24]. Therefore, the structure design and interface effect of Fe2O3 anodes are
essential for high lithium-ion storage capacity.

Recognized for its remarkable structural stability, TiO2 has been dubbed a “zero-stress
material” [25]. Compared to carbon-based materials, TiO2 possesses a higher lithium-ion
inserting potential (1.5 V–1.8 V) and is less susceptible to the electroplating effect [25],
thus TiO2 is often regarded as a safer choice for anode materials in LIBs. However, the
low theoretical capacity of merely 167.5 mAh g−1 and inferior rate performance have
impeded the research advancement of TiO2 [26]. Guan et al. designed S-doped TiO2@C
nanosheets, achieving a capacity of 550 mAh g−1 at 0.3 C and a stable cycling life of
85.8% after 1000 cycles [27]. Hao et al. constructed O-deficient TiO2 with abundant active
lithium-ion storage sites, offering a reversible capacity of 50 mAh g−1 at 100 C [28]. Xia et al.
reported black TiO2 with a disordered surface could reach a remarkable reversible capacity
of ~120 mAh g−1 at 0.04 C after 500 cycles [26]. Despite these advances, the sluggish
lithium-ion diffusion kinetic remains a primary impediment constraining the lithium-ion
storage capacity of TiO2. Constructing a heterostructure by coupling Fe2O3 and TiO2
represents an efficacious strategy for enhancing individual anode performance in lithium-
ion storage. Fe2O3, an exemplary n-type semiconductor, and TiO2, a p-type semiconductor,
form a heterostructure that triggers spontaneous electron movement towards the n-type
semiconductor due to an electron concentration difference, leading to the creation of a built-
in electric field at the heterointerface [29]. This built-in electric field can effectively improve
the lithium-ion reaction kinetics, maintain long-term cycle stability, and maximize the
synergistic effect of the heterostructure [30]. Therefore, the construction of a heterostructure
signifies an optimal solution for augmenting the lithium-ion storage capacity of individual
anodes (Fe2O3 or TiO2).

In this work, we propose feasible heterointerface engineering to fabricate a core-shell
Fe2O3@TiO2 heterostructure as an advanced anode for LIBs through solvothermal and
sol-gel progress. As expected, the well-designed Fe2O3@TiO2 heterostructure demonstrates
remarkable lithium-ion storage performance, achieving an ultrahigh rate capacity, extraordi-
nary cycling performance (1342 mAh g−1 at 0.1A g−1 after 300 cycles), and superior cycling
durability (capacity retention of 83.6% at 1.0 A g−1 after 2000 cycles). The improvement
of electrochemical kinetics for the Fe2O3@TiO2 heterostructure is confirmed by pseudoca-
pacitance and electrochemical impedance spectroscopy (EIS). Our work fully exploits the
synergistic effects of heterogeneous interfaces to enhance lithium-ion reaction kinetics and
improve cycle durability, thereby providing valuable ideas for designing rational interface
engineering and manufacturing advanced energy storage devices.

2. Results

The detailed process route of the Fe2O3@TiO2 heterostructure is illustrated in Figure
S1. The Fe2O3@TiO2 heterostructure is qualitatively examined by X-ray powder diffraction
(XRD), initially. As shown in Figure 1a, the diffraction peaks located at 24.2◦, 33.2◦, 35.6◦,
40.9◦, 49.5◦, 54.1◦, 56.2◦, 57.7◦, 62.6◦, and 64.1◦ can be indexed to (012), (104), (110), (113),
(024), (116), (211), (018), (214), and (300) crystal planes of α-Fe2O3, respectively (PDF#89-
0599). The diffraction peaks of the Fe2O3@TiO2 heterostructure and Fe2O3 particles exhibit
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negligible deviation from the standard cards, thereby confirming the successful synthesis of
high-purity α-Fe2O3. Additionally, the diffraction peaks located at 25.3◦, 36.9◦, 37.9◦, 38.6◦,
48.1◦, 55.1◦, 62.7◦, 68.8◦, 70.4◦, and 75.1◦ can correspond to (101), (103), (004), (112), (200),
(211), (204), (220), and (215) crystal planes of anatase-TiO2 (PDF#71-1166), respectively. XRD
results indicate that the Fe2O3@TiO2 heterostructure, Fe2O3 particles, and TiO2 particles
have good crystallinity. Furthermore, the structure of the Fe2O3@TiO2 heterostructure is
analyzed by transmission electron microscopy (TEM). The core-shell structure, as illus-
trated in Figure 1b, is distinguishable, with Fe2O3 particles completely wrapped by TiO2
(Figure 1c,d). Further, the selected area electron diffraction (SAED) of the Fe2O3@TiO2
heterostructure is shown in Figure 1e, revealing the Fe2O3@TiO2 heterostructure to be
comprised of multiple nanocrystals and exhibiting excellent crystallinity, which aligns
with the XRD results. A particle with a small shell thickness is selected to analyze the
outer TiO2 shell, as shown in Figure 1f. The corresponding HRTEM image is presented in
Figure 1g, exhibiting well-defined lattice fringes characteristic of the (101) crystal plane of
anatase-TiO2, with a measured lattice spacing of 0.35 nm. In Figure 1h, distinct nanocrystals
are observed, with the left lattice spacing of 0.35 nm corresponding to the (101) crystal plane
of anatase-TiO2 and the right lattice spacing of 0.23 nm corresponding to the (004) crystal
plane of anatase-TiO2, indicating that the outer shell comprises multiple anatase-TiO2
nanocrystals. In addition, a substantial abundance of disordered structures is observed
within the outermost layer (Figure 1i), exhibiting similarities to previously reported black
TiO2 [26]. The disordered surface facilitates the transition of Ti 2p orbital electrons to 3d
orbitals, making it easier to capture charge carriers and improve the overall conductivity of
TiO2 [31]. Furthermore, the presence of a significant quantity of disordered nanocrystals
in TiO2 generates an intermediate energy state within the band gap, exhibiting a distinct
energy distribution compared to the defect of crystals [32]. The contribution lies in the
narrowing of the band-gap width and the enhancement of electrochemical kinetics [26].
Additionally, the elemental mapping results in Figure S2 reveal the homogeneous distribu-
tion of Fe, Ti, and O elements in Fe2O3@TiO2, whereby the Fe element is mainly provided
by internal Fe2O3, Ti comes from the shell of TiO2, and O is derived from the Fe2O3, TiO2,
and adsorbed oxygen. The surface element composition and valence state of Fe2O3@TiO2
heterostructure are analyzed by X-ray photoelectron spectroscopy (XPS). The presence of
Ti, O, and Fe elements in Figure 1j can be determined based on the precise localization of
characteristic peaks, without any indication of the existence of other impurity elements.
The high-resolution XPS spectrum of the Fe 2p orbit is further presented in Figure 1k, the
peak located at 722.9 eV corresponds to Fe 2p1/2, the peak located at 709.3 eV corresponds
to Fe 2p3/2, and the small characteristic peak between Fe 2p1/2 and Fe 2p3/2 can be indexed
to the satellite peak of Fe3+ [33]. The high-resolution XPS spectrum of the Ti 2p orbit is
presented in Figure 1l. The peaks observed at 463.2 eV and 457.6 eV are attributed to the
2p1/2 and 2p3/2 orbitals of Ti, respectively [33]. Moreover, the high-resolution XPS spec-
trum of the O 1s orbit in Figure 1m exhibits well-defined peaks at 529.8 eV and 528.7 eV,
corresponding to the Fe-O and Ti-O bonds, respectively [33]. These XPS results provide
compelling evidence for the successful synthesis of both Fe2O3 and TiO2.

The crystal structure of α-Fe2O3, corresponding to a rhomboidal crystal system, is
depicted in Figure 2a. The standard half-cell test procedure is employed to conduct the
testing of Fe2O3. To elucidate the underlying mechanism of lithium-ion storage, an initial
cyclic voltammetry (CV) test is performed (Figure 2b). The significant reduction reaction
occurs at 0.61 V during the initial discharge process, which can be interpreted as the
formation mechanism of the solid electrolyte interphase (SEI) film [34]. During the initial
charge process, a distinct oxidation peak is observed between 1.4 V to 2.26 V, indicating a
continuous Fe0 to Fe3+ oxidation process, consistent with previous reports [34]. The CV
curves of the second and third cycles exhibit a remarkable alteration compared to that of
the first cycle. During the discharge process, a novel reduction peak emerges at 0.92 V,
indicating an electrochemical reaction described by Equation (1) [35].

Fe2O3 + 6Li+ + 6e− → 2Fe0 + 3Li2O (1)
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Figure 2. (a) Crystal structure image of α-Fe2O3. Electrochemical properties of Fe2O3 as anode
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density of 0.1 A g−1, (d) GCD curves, (e) capacity retention and linear fit curve; (f) rate performance
from 0.1 A g−1 to 4.0 A g−1.
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Additionally, compared to the charging process of the initial cycle, a discernible shift
toward higher voltage is observed in the oxidation. This shift may be attributed to a
polarization phenomenon caused by surface-insulating lithium compounds [36]. The half-
cell is tested at 0.1 A g−1 for the cycle performance (Figure 2c). The discharge capacity
reaches 1844.6 mAh g−1, while the charge capacity amounts to 1095.1 mAh g−1 in the
first cycle, resulting in an initial Coulombic efficiency (ICE) of 59%. The ultra-high ICE
indicates a substantial conversion of lithium-ion into irreversible Li-containing compounds
during the initial charge/discharge process [37]. Indeed, the capacity exhibits a declining
trend over 300 cycles, with the capacity dropping to only 146.8 mAh g−1 at the 300th
cycle. To explore the reason for the capacity decrease, the GCD curves are analyzed in
Figure 2d. The voltage platform exhibits a pronounced decline and eventually diminishes
during the repeated charge/discharge process, indicating the deactivation of the initial
electrochemical reaction. The capacity retention exhibits a significant decline in Figure 2e,
with a mere 14.66% remaining at the 300th cycle, indicating the gradual failure of Fe3+ and
a corresponding decrease in effective electron transfer. The results of the capacity retention
are consistent with the GCD curves. Furthermore, the rate performance of the Fe2O3 anode
is examined in Figure 2f, ranging from 0.1 A g−1 to 4.0 A g−1. Remarkably, at the 20th
cycle, the discharge capacity reaches an impressive value of 1108 mAh g−1. Upon reaching
a current density of 0.1 A g−1, the discharge capacity reverts to 1049 mAh g−1, leading
to a significant decrease. Ultimately, the discharge capacity only reaches 731 mAh g−1

after the 100th cycle, indicating a suboptimal rate capacity of Fe2O3. Moreover, the Fe2O3
anode is tested in a long-term cycle at 1.0 Ag−1, as shown in Figure S3a. The initial
discharge capacity stands at 1479.5 mAh g−1, while the first charge capacity reaches
981.5 mAh g−1, with an ICE of 66%. The discharge capacity exhibits a continuous decline
with repeated charge/discharge, ultimately reaching only 99 mAh g−1 after 2000 cycles.
The capacity retention depicted in Figure S3b accurately represents the electrochemical
behavior of the Fe2O3 anode. The capacity retention gradually decreases to 32% until the
35th cycle, followed by a relatively stable retention from the 35th cycle to the 1200th cycle.
Eventually, the capacity retention drops to 12.23% at the 2000th cycle. Combined with the
electrochemical test results, the Fe2O3 anode can deliver extremely high capacity, but it
cannot be maintained. The primary cause lies in the gradual deactivation of Fe3+ during
repeated charge/discharge cycles, which arises from the pronounced volume expansion
during repeated lithiation/delithiation.

The crystal structure of anatase-TiO2 is shown in Figure 3a. The electrochemical
performances of the TiO2 anode are analyzed by a standard half-cell test process. Figure 3b
shows the CV curves of TiO2 anode at a scan rate of 0.1 mV s−1. The reduction peak
observed at 1.52 V in the initial discharge process can be regarded as the lithium-ion
insertion, as exemplified by Equation (2) [28].

TiO2 + xLi+xe− → LixTiO2 (2)

The emergence of the second reduction peak at 0.7 V can be attributed to the formation
of the SEI film on the surface [38]. During the charge process, the oxidation peak located
at 1.6 V corresponds to the process of lithium-ion desertion [38]. The CV curves of the
second and third cycles exhibit a remarkable fit, thereby indicating the inherent stability
of the electrochemical reaction. Figure 3c shows the cycling performance of the TiO2
anode at 0.1 A g−1. In the first charge/discharge process, the discharge capacity reaches
605.3 mAh g−1, the charge capacity reaches 450.7 mAh g−1, and the corresponding ICE is
74%. The exceptional discharge capacity can be ascribed to the disordered surface, offering
an abundance of active lithium-ion storage sites [26]. The discharge capacity exhibits a
continuous decline from the initial cycle to the 50th cycle, which could be related to the
activation process of TiO2. The discharge capacity exhibits minimal fluctuations over the
subsequent 250 cycles and eventually maintains 205 mAh g−1 at the 300th cycle. The
extraordinary cycle durability can be attributed to the enhanced structural adaptability of
the disordered surface during charge/discharge processes [26]. Further, the GCD curves
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of TiO2 are shown in Figure 3d. The excellent degree of curve fitting indicates minimal
polarization. The electrochemical stability of TiO2 is demonstrated by the maintenance of a
distinct voltage plateau over more than 300 cycles. Figure 3e shows the capacity retention
at 0.1 A g−1, which remains stable at 50% after 100 cycles. The rate performance of the
TiO2 anode is shown in Figure 3f. The discharge capacity reaches 281 mAh g−1 at the 20th
cycle at 0.1 A g−1. Upon restoring the current density to 0.1 A g−1, the discharge capacity
returns to 315 mAh g−1 and exhibits sustained stability. The stability demonstrated by
the rate capacity is consistent with the capacity retention, which can be attributed to the
reduction in the energy barrier of lithium-ion transport in the disordered surface of the
TiO2 [39]. Moreover, the long-term cycle test is shown in Figure S4a. The discharge capacity
of 172.3 mAh g−1 can still be achieved after 2000 cycles at 1.0 A g−1, and the Coulomb
efficiency is always maintained at ~100%. In Figure S4b, the cycle durability of TiO2 is
further observed by calculating the capacity retention. The capacity retention of the 10th
cycle is 83.63%. The capacity retention exhibits a slight decline from the 10th to the 200th
cycle, followed by an increase to approximately 85%. Finally, the capacity retention is
still maintained at 82.63% in the 2000th cycle. In conjunction with the findings from the
aforementioned electrochemical tests, the TiO2 anode exhibits exceptional cycling durability,
a stable electrochemical reaction process, and minimal polarization phenomenon, thereby
effectively mitigating volume expansion and enhancing electrical conductivity.
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The working Image of the half-cell with the Fe2O3@TiO2 heterostructure as the anode
is shown in Figure 4a. Firstly, the electrochemical reactions of the Fe2O3@TiO2 heterostruc-
ture are explored by the CV test, with the CV curves from the first to third cycles shown
in Figure 4b. During the initial discharge process, a prominent reduction peak at 1.72 V
indicates the lithium-ion insertion into the TiO2 shell, as described by Equation (2). Fur-
ther, the second reduction peak at 0.77 V corresponds to the SEI film generation of TiO2,
echoing the reduction peak of SEI film generation in Figure 3b. During the first oxidation
process, the oxidation peak ranging from 1.41 V to 2.42 V corresponds to the continuous
transformation of Fe0 to Fe3+. In addition, the oxidation peak located at 2.1 V indicates the
lithium-ion deinsertion from TiO2, which is consistent with previous results. The positions
of the oxidation/reduction peaks of the second cycle remain unchanged, indicating the
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excellent electrical conductivity of the Fe2O3@TiO2 heterostructure. The emergence of
a new reduction peak at 0.92V in the second and third CV curves, a process shown in
Equation (1), further substantiates the lithiation of Fe2O3. The broader reduction peak of
Fe2O3 in the third CV curve compared to the second suggests a progressive and complete
lithiation of Fe2O3. The CV test results imply that the Fe2O3@TiO2 heterostructure engages
in both lithium-ion insertion/deinsertion and reduction/oxidation, thereby demonstrating
superior electrochemical stability. Figure 4c shows the short-term cycle performance of the
Fe2O3@TiO2 heterostructure at 0.1 A g−1. During the initial insertion/desertion process,
the discharge and charge capacities are recorded as 1869 mAh g−1 and 1697 mAh g−1,
respectively, resulting in an impressive ICE of 90.9%. The high discharge capacity is as-
cribed to the abundance of active lithium-ion storage sites on the disordered surface of TiO2
and the enhanced charge transfer characteristics of Fe2O3. The high Coulomb efficiency is
attributed to the synergistic effect after hybridization, which enhances the electrochemical
reaction stability. The cycle curve reveals a gradual decrease in discharge capacity from
the 1st cycle to the 50th cycle. Subsequently, the Fe2O3@TiO2 heterostructure exhibits
fluctuating discharge capacity around 1300 mAh g−1 after 30 cycles, ultimately reaching
1342 mAh g−1 at the 300th cycle. Furthermore, the electrochemical process is further ex-
plored through the GCD curves in Figure 4d. The GCD curve of the fifth cycle fits well with
the 10th cycle and exhibits a large discharge platform from 1 V to 0.6 V, implying excellent
electrical conductivity and structural stability of the Fe2O3@TiO2 heterostructure. When
compared with the GCD curves of Fe2O3, the Fe2O3@TiO2 heterostructure shows better
electrochemical stability and maintains a highly reversible electrochemical reaction during
300 cycles. The cycle durability of Fe2O3@TiO2 heterostructure is verified by the capacity
retention in Figure 4e. Compared with the first cycle, the capacity retention can exhibit
92.79% at 10 cycles, and it is stable at approximately 80% after the 50th cycle. Comparing
the capacity retention of Fe2O3 and TiO2, it can be observed that the capacity retention of
the Fe2O3@TiO2 heterostructure is significantly higher than both individual anodes due to
their synergistic effect. Moreover, the TiO2 shell effectively alleviates the volume expansion
and successfully maintains the electrochemical activity of Fe2O3. The rate performance
of the Fe2O3@TiO2 heterostructure is exhibited in Figure 4f. The discharge capacity of the
Fe2O3@TiO2 heterostructure is 1297 mAh g−1 after 20 cycles at 0.1 A g−1. Upon restoring
the current density to 0.1 A g−1, the discharge capacity can be reinstated to 1217 mAh g−1.
This result suggests that the built-in electric field can improve the lithium-ion reaction
kinetics and the heterogeneous interface can provide more active sites for lithium-ion
insertion. Figure S5a shows the cycle curve of the Fe2O3@TiO2 heterostructure during
2000 cycles at 1.0 A g−1. The initial cycle exhibits a remarkable discharge capacity of
1555 mAh g−1 and an impressive charge capacity of 1274 mAh g−1 for the Fe2O3@TiO2
heterostructure. Compared with Fe2O3 and TiO2, the ICE of the Fe2O3@TiO2 heterostruc-
ture shows a great improvement of 82%. The enhanced electrochemical stability can be
attributed to the protective effect of the core-shell structure, which effectively mitigates
volume expansion. The discharge capacity reaches 736 mAh g−1, while maintaining a
consistent Coulomb efficiency of ~100% even after the 2000th cycle at 1.0 A g−1. Compared
with the long-term cycle properties shown in Figures 2a and 3, Fe2O3@TiO2 heterostructure
exhibits better capacity and more stable Coulomb efficiency. The capacity retention of the
Fe2O3@TiO2 heterostructure is calculated in Figure S5b. Compared to the first discharge
capacity, the capacity retention of the 10th cycle is 80.73%, exhibiting a slight decrease in
capacity retention before the 150th cycle. It is worth noting that between the 200th cycle
and the 1600th cycle, the capacity retention rises and stabilizes at around 95%. Eventually,
the capacity retention can still be maintained at 83.62% in the 2000th cycle. In summary,
after a series of electrochemical tests, the Fe2O3@TiO2 heterostructure has better lithium-ion
storage capacity than Fe2O3 and TiO2. Further, in order to comprehensively evaluate the
lithium-ion storage performance of the Fe2O3@TiO2 heterostructure, both the discharge
capacity and cycle life for the iron-based anodes are collected in Table S1. Obviously, the
Fe2O3@TiO2 heterostructure achieves superior discharge capacity and cycle life compared
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to other reported iron-based anodes, indicating its extensive application potential as an
anode for LIBs. The higher discharge capacity is provided by the synergistic effect of
the heterogeneous interface and abundant active lithium-ion storage sites. The smaller
polarization phenomenon could be related to the improved electron/ion migration kinetics
of the built-in electric field. The enhanced durability of the longer cycle contributes to effec-
tively mitigating the volume expansion during repeated lithium-ion insertion/desertion,
thereby showing the remarkable efficacy of the TiO2 shell.
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Figure 4. (a) Model image of half-cell. Electrochemical properties of Fe2O3@TiO2 heterostructure
as anode material for LIBs: (b) CV curves at a scan rate of 0.1 mV s−1; (c) cycling performance at a
current density of 0.1 A g−1, (d) GCD curves, (e) capacity retention and fitted linear curve; (f) rate
performance from 0.1 A g−1 to 4.0 A g−1.

The pseudocapacitance behavior of the Fe2O3@TiO2 heterostructure is investigated
through CV testing at various scan rates. The CV curves of the Fe2O3@TiO2 heterostructure
at different scan rates are shown in Figure 5a. The observed trend suggests that, as the scan
rate increases, the shape of the CV curves remains consistent. This observation provides
strong evidence for high electrochemical stability and minimal polarization [40], which is
consistent with the result of rate capacity.

i = avb (3)

The b-value can be determined by the relationship between the current (i) and the scan
rate (v), as depicted in Equation (3). a is a constant, thus the b-value can be calculated from
the slope of log(i) and log(v) [41]. The b-value is a critical parameter for evaluating diffusion-
controlled and surface capacitive-controlled processes. When the b-value is less than 0.5,
the electrochemical reaction is diffusion progress; and when the b-value is higher than 1, the
electrochemical reaction is completely capacitive behaviors [42]. For the oxidation peaks
and reduction peaks belonging to the Fe2O3@TiO2 heterostructure, b-values are calculated
and linearly fitted, and the results are shown in Figure 5b. All b-values are between 0.5 and
1, indicating that pseudocapacitance behavior exists in the electrochemical process of the
Fe2O3@TiO2 heterostructure.

i = k1v + k2v1/2 (4)
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Figure 5. (a) CV curves of Fe2O3@TiO2 heterostructure at different scan rates from 0.1 to 1.0 mV
s−1; (b) the b-values of corresponding oxidation peaks and reduction peaks; (c) area ratio image of
pseudocapacitance at 1.0 mV s−1; (d) ratio image of pseudocapacitance contribution at different scan
rates from 0.1 to 1.0 mV s−1.

The behavior of pseudocapacitance can be quantitatively analyzed according to
Equation (4) [43], where i is the current, and v is the scan rate. At a particular voltage,
k1 and k2 can be treated as constants. According to the calculated results, Figure 5c shows
the pseudocapacitance behavior ratio at 1.0 mV s−1. In fact, the results demonstrate the
proportion of pseudocapacitance behavior is as high as 77.8%, and high pseudocapacitance
behavior can improve the lithium-ion reaction kinetics, which is consistent with the previ-
ous electrochemical analysis. Further, according to Figure 5d, pseudocapacitance behavior
dominates the electrochemical process of Fe2O3@TiO2 heterostructure. In addition, EIS
analysis is further performed to investigate the electrical conductivity, shown in Figure S6.
The fitted charge-transfer resistance of Fe2O3@TiO2 (99.3 Ω) is much smaller than that of
Fe2O3 (342.1 Ω) or TiO2 (160.8 Ω), and the slope of Fe2O3@TiO2 in the low-frequency region
is larger, showing higher electronic conductivity. The reason for the high pseudocapaci-
tance behavior and high electronic conductivity can be attributed to the disordered surface
providing more active lithium-ion storage sites and the built-in electric field bringing more
powerful electron/ion mobility.

3. Conclusions

In conclusion, the core-shell Fe2O3@TiO2 heterostructure has been successfully pre-
pared through heterointerface engineering. The well-designed heterogeneous interface
between Fe2O3 and TiO2 forms conventional p-n junctions, forming a built-in electric field
that enhances electrochemical kinetics. The meticulously engineered core-shell structure
effectively mitigates volumetric expansion and imparts exceptional cycling durability to
the Fe2O3@TiO2 heterostructure (capacity retention of 83.62% after 2000 cycles). The disor-
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dered surface provides abundant active sites for lithium-ion storage (discharge capacity of
1342 mAh g−1 at 0.1 A g−1), reducing the lithium-ion diffusion barrier and increasing the
capacity. This study underscores the pivotal role of designing semiconducting heterostruc-
tures in enhancing electrochemical activity, thereby paving the way for novel applications
of heterogeneous electrode materials.
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