Effect of Oyster Mushroom Addition on Improving the Sensory Properties, Nutritional Value and Increasing the Antioxidant Potential of Carp Meat Burgers
Abstract
:1. Introduction
2. Results and Discussions
2.1. Raw Materials
2.1.1. Basic Characteristic of Oyster Mushroom and Carp Meat
2.1.2. Antioxidant Properties and Total Polyphenols Content of Oyster Mushroom and Carp Meat
2.1.3. Determination of Lipid Quality Parameters of Oyster Mushroom and Carp Meat
2.2. Fish Burgers
2.2.1. Basic Characteristic of Carp Burgers
2.2.2. Antioxidant Properties and Total Polyphenols Content of Carp Burgers
2.2.3. Determination of Lipid Quality Parameters of Carp Burgers
- Oxidative changes
- Hydrolytic changes
2.2.4. Sensory Analysis of Carp Burgers
2.2.5. Objective Method of Color Parameters of Carp Burgers
2.2.6. Comparative Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of Fish Burgers
3.3. Methods
3.3.1. Preparation of Extracts for Analyses
3.3.2. Analysis of General Composition
3.3.3. Total Phenolic Compounds Content
3.3.4. Antioxidant Properties
3.3.5. Extraction of Active Compounds (polyphenols) from Fish Burgers and Oyster Mushrooms and Identification by Liquid Chromatography (HPLC)
3.3.6. Determination of Lipid Quality Parameters of Raw Materials and Carp Meat
3.3.7. Sensory Analysis of Carp Burgers
3.3.8. Objective Method of Color Parameters of Carp Burgers
3.3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Elkanah, F.A.; Oke, M.A.; Adebayo, E.A. Substrate composition effect on the nutritional quality of Pleurotus ostreatus (MK751847) fruiting body. Heliyon 2022, 8, e11841. [Google Scholar] [CrossRef] [PubMed]
- Irshad, A.; Tahir, A.; Sharif, S.; Khalid, A.; Ali, S.; Naz, A.; Sadia, H.; Ameen, A. Determination of nutritional and biochemical composition of selected Pleurotus spps. BioMed Res. Int. 2023, 2023, 8150909. [Google Scholar] [CrossRef]
- Tolera, K.D.; Abera, S. Nutritional quality of oyster mushroom (Pleurotus ostreatus) as affected by osmotic pretreatments and drying methods. Food Sci. Nutr. 2017, 5, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Kuziemska, B.; Wysokiński, A.; Pakuła, K.; Jaremko, D.; Czapliński, K. Zawartość makroelementów w wybranych gatunkach grzybów jadalnych. Ecol. Eng. 2019, 20, 1–4. [Google Scholar] [CrossRef]
- Augustin, J.; Jaworska, G.; Dandár, A.; Cejpek, K. Boczniak ostrygowaty (Pleurotus ostreatus) jako źródło β-D-glukanów. Żywność Nauka Technol. Jakość 2007, 6, 170–176. [Google Scholar]
- Manzi, P.; Marconi, S.; Aguzzi, A.; Pizzoferrato, L. Commercial mushrooms: Nutritional quality and effect of cooking. Food Chem. 2004, 84, 201–206. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Rimm, E.B. Fish intake, contaminants, and human health: Evaluating the risks and the benefits. AMA 2006, 296, 1885–1899. [Google Scholar] [CrossRef]
- Kriton, G.; Dimitra, K.; Corraze, G.; Jaume, P.S.; Adorjan, A.; Zsuzsanna, J.S. Impact of diets containing plant raw materials as fish meal and fish oil replacement on rainbow trout (Oncorhynchus mykiss), gilthead sea bream (Sparus aurata), and common carp (Cyprinus carpio) freshness. J. Food Qual. 2018, 2018, 1–14. [Google Scholar] [CrossRef]
- Hryszko, K. XLVII Training. In Proceedings of the Conference of Salmon Breeders, Gdynia, Poland, 13–14 October 2022. [Google Scholar]
- Neira, L.M.; Agustinelli, S.P.; Ruseckaite, R.A.; Martucci, J.F. Shelf life extension of refrigerated breaded hake medallions packed into active edible fish gelatin films. Packag. Technol. Sci. 2019, 32, 471–480. [Google Scholar] [CrossRef]
- Sałata, A.; Lemieszek, M.; Parzymies, M. The nutritional and health properties of an oyster mushroom (Pleurotus ostreatus (Jacq. Fr) P. Kumm.). Acta Sci. Pol. Hortotum Cultus. 2018, 17, 185–197. [Google Scholar] [CrossRef]
- Galappaththi, M.C.A.; Dauner, L.; Madawala, S.; Karunarathna, S.C. Nutritional and medicinal benefits of Oyster (Pleurotus) mushrooms: A review. Fungal Biotec. 2021, 1, 65–87. [Google Scholar] [CrossRef]
- Lu, H.; Lou, H.; Hu, J.; Liu, Z.; Chen, Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2333–2356. [Google Scholar] [CrossRef] [PubMed]
- Cerón-Guevara, M.I.; Rangel-Vargas, E.; Lorenzo, J.M.; Bermúdez, R.; Pateiro, M.; Rodríguez, J.A.; Sánchez-Ortega, I.; Santos, E.M. Reduction of salt and fat in frankfurter sausages by addition of Agaricus bisporus and Pleurotus ostreatus flour. Foods 2020, 9, 760. [Google Scholar] [CrossRef] [PubMed]
- Patinho, I.; Saldaña, E.; Selani, M.M.; de Camargo, A.C.; Merlo, T.C.; Menegali, B.S.; de Souza Silva, A.P.; Contreras-Castillo, C.J. Use of Agaricus bisporus mushroom in beef burgers: Antioxidant, flavor enhancer and fat replacing potential. Food Prod. Process. Nutr. 2019, 1, 7. [Google Scholar] [CrossRef]
- Patinho, I.; Selani, M.M.; Saldaña, E.; Bortoluzzi, A.C.T.; Rios-Mera, J.D.; da Silva, C.M.; Kushida, M.M.; Contreras-Castillo, C.J. Agaricus bisporus mushroom as partial replacer improves the sensory quality maintaining the instrumental characteristics of beef burger. Meat Sci. 2021, 172, 108307. [Google Scholar] [CrossRef]
- Muyanja, C.; Kyambadde, D.; Namugumya, B. Effect of pretreatments and drying methods on chemical composition and sensory evaluation of oyster mushroom (Pluerotus ostreatus) powder and soup. J. Food Process. Preserv. 2012, 38, 457–465. [Google Scholar] [CrossRef]
- Czarniecka-Skubina, E. Proces Gotowania i Duszenia. In Technologia Gastronomiczna; Wydawnictwo SGGW: Warsaw, Poland, 2016; ISBN 9788375836653. [Google Scholar]
- Yang, J.-H.; Lin, H.-C.; Mau, J.L. Antioxidant properties of several commercial mushrooms. Food Chem. 2002, 77, 229–235. [Google Scholar] [CrossRef]
- Turfan, N.; Pekşen, A.; Kibar, B.; Ünal, S. Determination of nutritional and bioactive properties in some selected wild growing and cultivated mushrooms from Turkey. Acta Sci. Pol. Hortorum Cultus 2017, 17, 57–72. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, L.; Kong, X.; Chen, L. Characterization and in vitro antioxidant activities of polysaccharides from Pleurotus ostreatus. Int. J. Biol. Macromol. 2012, 51, 259–265. [Google Scholar] [CrossRef]
- Florczak, J.; Karmanska, A.; Karwowski, B. Badanie zawartości związków polifenolowych oraz aktywności przeciwutleniającej niektórych jadalnych gatunków grzybów wielkoowocnikowych. Bromatol. Chem. 2016, 49, 719–724. [Google Scholar]
- González-Palma, I.; Escalona-Buendía, H.B.; Ponce-Alquicira, E.; Téllez-Téllez, M.; Gupta, V.K.; Díaz-Godínez, G.; Soriano-Santos, J. Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Front. Microbiol. 2016, 7, 1099. [Google Scholar] [CrossRef]
- Lam, Y.S.; Okello, E.J. Determination of lovastatin, β-glucan, total polyphenols, and antioxidant activity in raw and processed oyster culinary-medicinal mushroom, Pleurotus ostreatus (higher Basidiomycetes). Int. J. Med. Mushrooms 2015, 17, 117–128. [Google Scholar] [CrossRef]
- Borawska, J.; Darewicz, M.; Vegarud, G.E.; Minkiewicz, P. Antioxidant properties of carp (Cyprinus carpio L.) protein ex vivo and in vitro hydrolysates. Food Chem. 2016, 194, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Wal, P.; Dwivedi, J.; Kushwaha, S.; Yaday, A.; Slingh, S.P.; Hanumanthachar, K.J. A Comprehensive Review on Nutritional and Medicinal Properties of Pleurotus ostreatus: An Oyster Mushroom. Curr. Nutr. Food Sci. 2023, 19, 386–393. [Google Scholar] [CrossRef]
- Lavelli, V.; Proserpio, C.; Gallotti, F.; Laureati, M.; Pagliarini, E. Circular reuse of bio-resources: The role of Pleurotus spp. in the development of functional foods. Food Funct. 2018, 9, 1353–1372. [Google Scholar]
- Piska, K.; Sułkowska-Ziaja, K.; Muszyńska, B. Edible mushroom Pleurotus ostreatus (Oyster mushroom)—Its dietary significance and biological activity. Acta Sci. Pol. Hortorum Cultus 2017, 16, 151–161. [Google Scholar]
- Fogarasi, M.; Socaci, S.A.; Dulf, F.V.; Diaconeasa, Z.M.; Fărcaș, A.C.; Tofană, M.; Semeniuc, C.A. Bioactive compounds and volatile profiles of five transylvanian wild edible mushrooms. Molecules 2018, 23, 3272. [Google Scholar] [CrossRef]
- Alam, N.; Yoon, K.N.; Lee, K.R.; Shin, P.G.; Cheong, J.C.; Yoo, Y.B.; Shim, J.M.; Lee, M.W.; Lee, U.Y.; Lee, T.S. Antioxidant activities and tyrosinase inhibitory effects of different extracts from Pleurotus ostreatus fruiting bodies. Mycobiology 2010, 38, 295–301. [Google Scholar] [CrossRef]
- Butkhup, L.; Samappito, W.; Jorjong, S. Evaluation of bioactivities and phenolic contents of wild edible mushrooms from northeastern Thailand. Food Sci. Biotechnol. 2018, 27, 193–202. [Google Scholar] [CrossRef]
- Lončarić, A.; Pablo Lamas, J.; Guerra, E.; Kopjar, M.; Lores, M. Thermal stability of catechin and epicatechin upon disaccharides addition. Int. J. Food Sci. Technol. 2018, 53, 1195–1202. [Google Scholar] [CrossRef]
- Różańska, D.; Regulska-Ilow, B.; Ilow, R. Wpływ wybranych procesów kulinarnych na potencjał antyoksydacyjny i zawartość polifenoli w żywności. Probl. Hig. Epidemiol. 2014, 95, 215–222. [Google Scholar]
- Hamrouni-Sallami, I.; Rahali, F.Z.; Rebey, I.B.; Bourgou, S.; Lomam, F.; Marzouk, B. Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying method. Food Bioprocess. Technol. 2013, 6, 806–817. [Google Scholar] [CrossRef]
- Murniati, A.; Buchari, B.; Gandasasmita, S.; Nurachman, Z.; Nurhanifah, N. Characterization of polyphenol oxidase application as phenol removal in extracts of rejected white oyster mushrooms (Pleurotus ostreatus). Orient. J. Chem. 2018, 34, 1457–1468. [Google Scholar] [CrossRef]
- Haman, N.; Bodner, M.; Ferrentino, G.; Scampicchio, M. Lipid autoxidation of fish, lard, corn and linseed oils by isothermal calorimetry. Ital. J. Food Sci. 2019, 2, 323–331. [Google Scholar]
- Gang, K.-Q.; Wu, Z.-X.; Zhao, Q.; Zhou, X.; Lv, D.-D.; Rakariyatham, K.; Liu, X.-Y.; Shahidi, F. Effects of hot air drying process on lipid quality of whelks Neptunea arthritica cumingi Crosse and Neverita didyma. J. Food Sci. Technol. 2019, 56, 4166–4176. [Google Scholar] [CrossRef]
- Lesa, K.N.; Khandaker, M.U.; Iqbal, F.M.R.; Sharma, R.; Islam, F.; Mitra, S.; Emran, T.B. Nutritional value, medicinal importance, and health-promoting effects of dietary mushroom (Pleurotus ostreatus). J. Food Qual. 2022, 2022, 2454180. [Google Scholar] [CrossRef]
- Cerón-Guevara, M.I.; Rangel-Vargas, E.; Lorenzo, J.M.; Bermúdez, R.; Pateiro, M.; Rodriguez, J.A.; Sanchez-Ortega, I.; Santos, E.M. Effect of the addition of edible mushroom flours (Agaricus bisporus and Pleurotus ostreatus) on physicochemical and sensory properties of cold-stored beef patties. J. Food Process. Preserv. 2019, 44, E14351. [Google Scholar] [CrossRef]
- Cerón-Guevara, M.I.; Santos, E.M.; Lorenzo, J.M.; Pateiro, M.; Bermúdez-Piedra, R.; Rodríguez, J.A.; Castro-Rosas, J.; Rangel-Vargas, E. Partial replacement of fat and salt in liver Pâté by addition of Agaricus bisporus and Pleurotus ostreatus flour. Int. J. Food Sci. Technol. 2021, 56, 6171–6181. [Google Scholar] [CrossRef]
- Yahya, F.; Yusof, N.N.M.; Chen, C.K. Effect of varying ratios of oyster mushroom powder to tapioca flour on the physicochemial properties and sensory acceptability of fried mushroom crackers. Malays. Appl. Biol. 2017, 46, 57–62. [Google Scholar]
- Ng, S.H.; Robert, S.D.; Wan Ahmad, W.A.; Wan Ishak, W.R. Incorporation of dietary fibre-rich oyster mushroom (Pleurotus sajor-caju) powder improves postprandial glycaemic response by interfering with starch granule structure and starch digestibility of biscuit. Food Chem. 2017, 227, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Kołakowska, A.; Bartosz, G. Antioxidants. In Chemical, Biological and Functional Aspects of Food Lipids; Sikorski, Z.E., Kołakowski, A.E., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 185–210. ISBN 9780367383442. [Google Scholar]
- Kołakowski, E. Analysis of Proteins, Peptides, and Amino Acids in Foods. In Methods of Analysis of Food Components and Additives; Ötles, S., Ed.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 59–96. ISBN 9781138199149. [Google Scholar]
- De Oliveira Ferreira, N.S.; Rosset, M.; Lima, G.; Campelo, P.M.S.; De Macedo, R.E.F. Effect of adding Brosimum gaudichaudii and Pyrostegia venusta hydroalcoholic extracts on the oxidative stability of beef burgers. LWT 2019, 8, 145–152. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Standard for fish oils. Codex Stan. 2017, 329, 329–2017. [Google Scholar]
- Nayak, P.C.H.; Raju, C.V.; Lakshmisha, I.P.; Singh, R.R.; Sofi, F.R. Influence of Button mushroom (Agaricus bisporus) on quality and refrigerated storage stability of patties prepared from sutchi catfish (Pangasius hypophthalmus). J. Food Sci. Technol. 2014, 52, 3529–3538. [Google Scholar] [CrossRef] [PubMed]
- Dermiki, M.; Phanphensophon, N.; Mottram, D.S.; Methven, L. Contributions of non-volatile and volatile compounds to the umami taste and overall flavour of shiitake mushroom extracts and their application as flavour enhancers in cooked minced meat. Food Chem. 2013, 141, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Jo Feeney, M.; Miller, A.M.; Roupas, P. Mushrooms-biologically distinct and nutritionally unique: Exploring a “third food kingdom”. Nutr. Today 2014, 49, 301–307. [Google Scholar] [CrossRef]
- Misharina, T.A.; Mukhutdinova, S.M.; Zharikova, G.G.; Terenina, M.B.; Krikunova, N.I.; Medvedeva, I.B. The Composition of volatile components of dry cepe and oyster mushroom. Appl. Biochem. Microbiol. 2009, 45, 606–611. [Google Scholar] [CrossRef]
- Afshari, R.; Hosseini, H.; Mousavi Khaneghah, A.; Khaksar, R. Physico-chemical properties of functional low-fat beef burgers: Fatty acid profile modification. LWT 2017, 78, 325–331. [Google Scholar] [CrossRef]
- Moghtadaei, M.; Soltanizadeh, N.; Goli, S.A.H. Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Res. Int. 2018, 108, 368–377. [Google Scholar] [CrossRef]
- Alakali, J.S.; Irtwange, S.V.; Mzer, M.T. Quality evaluation of beef patties formulated with bambara groundnut (Vigna subterranean L.) seed flour. Meat Sci. 2010, 85, 215–223. [Google Scholar] [CrossRef]
- Wong, K.M.; Corradini, M.G.; Autio, W.; Kinchla, A.J. Sodium reduction strategies through use of meat extenders (white button mushrooms vs. textured soy) in beef patties. Food Sci. Nutr. 2019, 7, 506–518. [Google Scholar] [CrossRef]
- Kurt, A.; Gençcelep, H. Enrichment of meat emulsion with mushroom (Agaricus bisporus) powder: Impact on rheological and structural characteristics. J. Food Eng. 2018, 237, 128–136. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 18th ed.; Association of Officiating Analytical Chemists: Washington, DC, USA, 2015. [Google Scholar]
- Pope, C.G.; Stevens, M.F. The determination of amino-nitrogen using, a cooper method. Biochem. J. 1939, 33, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Pomeranz, Y.; Meloan, C.E. Food Analysis, Theory and Practice, 3rd ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Smedes, F. Determination of total lipid using non-chlorinated solvents. Analyst 1999, 11, 1711–1718. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 2005, 93, 713–718. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘Antioxidant Power’: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Khantaphant, S.; Benjakul, S.; Ghomi, M.R. The effects of pretreatments on antioxidative activities of protein hydrolysate from the muscle of brownstripe red snapper (Lutjanus vitta). LWT 2011, 44, 1139–1148. [Google Scholar] [CrossRef]
- Reich, E.; Schibli, A.; DeBatt, A. Validation of high-performance thin-layer chromatographic methods for the identification of botanicals in a cGMP environment. J. AOAC Int. 2008, 91, 13–20. [Google Scholar] [CrossRef]
- Hrebień-Filisińska, A.M.; Bartkowiak, A. Antioxidative effect of sage (Salvia officinalis L.) macerate as “Green extract” in inhibiting the oxidation of fish oil. Antioxidant. 2022, 11, 100. [Google Scholar] [CrossRef]
- Pietrzyk, C. Kolorymetryczne oznaczanie nadtlenków w tłuszczach za pomocą rodanków żelaza. Rocznik PZH 1958, 9, 75–84. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American OilsChemists’ Society, 4th ed.; AOCS: Urbana, IL, USA, 1993. [Google Scholar]
- PN-EN ISO.2009; Polish Standards Method. Vegetable and Animal Oils and Fats-Determination of the Acid Value and Acidity. ISO: Geneva, Switzerland, 2009; p. 660.
- Baryłko-Pikielna, N.; Matuszewska, I. Sensoryczne Badania Żywności: Podstawy, Metody, Zastosowania; Wyd. Naukowe PTTŻ: Cracow, Poland, 2009. [Google Scholar]
- PN-ISO 3972:2016-07; Norm. Sensory Analysis-Methodology—A Method of Checking Taste Sensitivity. Polish Committee for Standardization: Warsaw, Poland, 2016.
- Samotyja, U.; Sielicka-Różyńska, M.; Klimczak, I. Badania Sensoryczne w Ocenie Jakości Produktów; Wydawnictwo Uniwersytetu Ekonomicznego: Poznań, Poland, 2020; ISBN 978-83-66199-31-6. [Google Scholar]
- ISO 4121:2003; Sensory Analysis—Guidelines for the Use of Quantitative Response Scale. ISO: Geneva, Switzerland, 2003.
- Pathare, P.B.; Opara, U.L.; Al-Said, F.J. Colour measurement and analysis in fresh and processed foods: A Review. Food Bioprocess. Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- TIBCO. Available online: https://www.scribd.com/document/321061529/STATISTICA-Electronic-Manual (accessed on 1 June 2023).
Oyster Mushroom | Meat | ||
---|---|---|---|
Fresh | Steamed | ||
Water [g/100 g] | 91.26 ± 0.06 b | 89.45 ± 0.05 a | 73.98 ± 0.35 |
Proteins [g/100 g] | 2.49 ± 0.083 a | 3.09 ± 0.104 b | 19.60 ± 0.60 |
Lipids [g/100 g] | 1.35 ± 0.28 a | 1.15 ± 0.09 a | 4.89 ± 0.54 |
Ash [g/100 g] | 1.159 ± 0.141 b | 0.693 ± 0.150 a | 0.907 ± 0.098 |
Oyster Mushroom | Meat | ||
---|---|---|---|
Fresh | Steamed | ||
Non-protein N [mg/100 g] | 0.175 ± 0.038 a | 0.301 ± 0.006 b | 0.542 ± 0.002 |
α-amino N [mg/100 g] | 54.6 ± 2.69 a | 98.3 ± 1.08 b | 95.7 ± 1.62 |
amino N [mg/100 g] | 74.6 ± 1.4 a | 122.3 ± 1.5 b | 128.6 ± 1.8 |
PHP-Peptides [mg/100 g] | 147.30 ± 5.30 b | 106.6 ± 7.3 a | 34.1 ± 0.7 |
PHP-Tyrosine [mg/100 g] | 101.60 ± 0.80 a | 114.1 ± 3.2 b | 20.6 ± 0.2 |
TPC [mg GAE/g] | 0.753 ± 0.001 b | 0.632 ± 0.001 a | 0.475 ± 0.005 |
ABTS [µmol TE/g] | 4.68 ± 0.54 a | 4.11 ± 0.15 a | 1.97 ± 0.13 |
FRAP [µmol TE/g] | 29.8 ± 1.1 a | 31.0 ± 2.1 a | 18.9 ± 1.2 |
DPPH [µmol TE/g] | 0.607 ± 0.007 a | 0.604 ± 0.001 a | 0.290 ± 0.009 |
FCA [µmol EDTA/g] | 0.537 ± 0.006 a | 0.618 ± 0.004 b | 2.227 ± 0.007 |
Oyster Mushroom | ||
---|---|---|
Fresh | Steamed | |
Epicatechin [mg/100 g] | 100.61 ± 3.18 b | 61.29 ± 1.7 a |
Gallic acid [mg/100 g] | 34.24 ± 1.5 b | 5.53 ± 0.30 a |
Oyster Mushroom | Meat | ||
---|---|---|---|
Fresh | Steamed | ||
PV (meqO2/kg fat) | 4.116 ± 0.044 a | 5.020 ± 0.115 b | 6.433 ± 0.062 |
AsV | 3.441 ± 0.100 a | 4.096 ± 0.108 b | 5.129 ± 0.151 |
AV (mg KOH/g fat) | 0.308 ± 0.009 a | 0.392± 0.018 b | 0.574 ± 0.000 |
Sample | Weight before Frying [g] | Weight after Frying [g] | Losses [g] | Losses [%] |
---|---|---|---|---|
P0 | 74.45 ± 0.50 a | 67.52 ± 0.30 a | 6.93 ± 0.60 a | 9.31 ± 0.80 a |
P5 | 74.43 ± 0.60 a | 67.60 ± 1.10 a | 6.83 ± 0.30 a | 9.18 ± 0.40 a |
P10 | 75.18 ± 0.80 a | 68.35 ± 0.70 a | 6.83 ± 0.10 a | 9.08 ± 0.10 a |
P15 | 74.48 ± 0.60 a | 67.91 ± 1.40 a | 6.83 ± 0.90 a | 8.76 ± 1.20 a |
P20 | 75.25 ± 0.70 a | 68.57 ± 0.80 a | 6.68 ± 0.30 a | 8.88 ± 0.40 a |
P0 | Burgers with Different Oyster Mushroom Addition | ||||
---|---|---|---|---|---|
P5 | P10 | P15 | P20 | ||
Water [g/100 g] | 66.72 ± 0.26 a | 66.45 ± 0.22 a | 67.86 ± 0.03 b | 68.94 ± 0.17 c | 70.16 ± 0.17 d |
Proteins [g/100 g] | 18.52 ± 0.09 c | 18.14 ± 0.23 c | 17.32 ± 0.074 b | 16.05 ± 0.05 a | 15.52 ± 0.39 a |
Lipids [g/100 g] | 9.86 ± 0.22 b | 10.61 ± 0.14 c | 9.54 ± 0.19 b | 9.80 ± 0.16 b | 8.48 ± 0.09 a |
Ash [g/100 g] | 2.092 ± 0.041 a | 2.094 ± 0.069 a | 2.296 ± 0.487 a | 2.015 ± 0.039 a | 2.072 ± 0.067 a |
P0 | Burgers with Different Oyster Mushroom Addition | ||||
---|---|---|---|---|---|
P5 | P10 | P15 | P20 | ||
Non-protein N [mg/100 g] | 0.344 ± 0.020 a | 0.351 ±0.027 a | 0.348 ± 0.06 a | 0.353 ± 0.010 a | 0.295 ± 0.056 a |
α-amino N [mg/100 g] | 126.9 ± 1.7 d | 195.7 ± 3.3 a | 207.8 ± 2.3 ab | 223.7 ± 1.4 bc | 236.6 ± 5.1 c |
amino N [mg/100 g] | 405.3 ± 19.6 a | 402.0 ± 3.8 a | 396.2 ± 2.7 a | 395.9 ± 3.8 a | 385.8 ± 4.8 a |
PHP-Peptides [mg/100 g] | 201.0 ± 5.8 b | 218.5 ± 0.0 b | 157.2 ± 3.2 b | 240.3 ± 3.4 d | 220.6 ± 23.8 b |
PHP-Tyrosine [mg/100 g] | 62.9 ± 2.6 a | 66.9 ± 1.7 b | 70.3 ± 1.7 c | 64.6 ± 1.0 ab | 71.4 ± 2.0 c |
TPC [mg GAE/g] | 0.610 ± 0.005 a | 0.621 ± 0.004 b | 0.627 ± 0.007 b | 0.650 ± 0.003 c | 0.654 ± 0.003 c |
ABTS [µmol TE/g] | 2.24 ± 0.30 a | 2.54 ± 0.22 ab | 2.75 ± 0.18 bc | 2.93 ± 0.08 c | 3.14 ± 0.14 d |
FRAP [µmol TE/g] | 33.9 ± 0.6 a | 35.4 ± 0.9 b | 35.8 ± 0.4 b | 35.7 ± 0.7 b | 35.0 ± 0.5 b |
DPPH [µmol TE/g] | 0.475 ± 0.014 a | 0.479 ± 0.005 a | 0.472 ± 0.006 a | 0.477 ± 0.006 a | 0.507 ± 0.008 b |
FCA [µmol EDTA/g] | 1.465 ± 0.001 c | 1.347 ± 0.002 b | 1.345 ± 0.003 b | 1.211 ± 0.002 a | 1.204 ± 0.004 a |
P0 | Burgers with Different Oyster Mushroom Addition | ||||
---|---|---|---|---|---|
P5 | P10 | P15 | P20 | ||
Epicatechin [mg/100 g] | Not identified | 3.05 ± 0.12 a | 6.11± 0.18 b | 9.15 ± 1.1 c | 12.89 ± 1.2 d |
Gallic acid [mg/100 g] | Not identified | 0.24 ± 0.1 a | 0.51 ± 0.11 b | 0.77 ± 0.14 c | 1.44 ± 0.18 d |
P0 | Burgers with Different Oyster Mushroom Addition | ||||
---|---|---|---|---|---|
P5 | P10 | P15 | P20 | ||
TOTOX | 25.35 ± 0.43 d | 24.08 ± 0.17 d | 22.37 ± 0.22 c | 20.50 ± 0.03 b | 18.53 ± 0.11 a |
P0 | Burgers with Different Oyster Mushroom Addition | ||||
---|---|---|---|---|---|
P5 | P10 | P15 | P20 | ||
General appearance | 4.00 ± 0.82 a | 4.57 ± 0.53 b | 4.86 ± 0.38 c | 5.00 ± 0.00 c | 4.14 ± 0.90 a |
Color | 4.00 ± 0.82 a | 3.86 ± 0.69 a | 4.57 ± 0.53 b | 5.00 ± 0.00 c | 3.86 ± 0.90 a |
Taste | 4.14 ± 0.38 b | 4.28 ± 0.65 b | 4.71 ± 0.49 c | 4.86 ± 0.38 c | 3.86 ± 0.69 a |
Smell | 4.28 ± 0.49 a | 4.57 ± 0.53 a | 5.00 ± 0.00 b | 5.00 ± 0.00 b | 4.43 ± 0.53 a |
Texture | 3.86 ± 0.69 a | 4.07 ± 0.61 a | 4.71 ± 0.42 b | 4.86 ± 0.38 b | 3.85 ± 0.69 a |
Overall acceptability | 4.00 ± 0.58 b | 4.14 ± 0.38 b | 4.86 ± 0.38 c | 5.00 ± 0.00 c | 3.57 ± 0.53 a |
P0 | Burgers with Different Oyster Mushroom Addition | ||||
---|---|---|---|---|---|
P5 | P10 | P15 | P20 | ||
L* | 54.35 ± 0.76 a | 55.36 ± 0.39 b | 55.84 ± 0.07 b | 56.56 ± 0.32 c | 57.49 ± 0.21 d |
a* | 10.38 ± 0.20 e | 10.06 ± 0.07 d | 9.61 ± 0.20 c | 8.63 ± 0.28 b | 8.12 ± 0.34 a |
b* | 17.50 ± 0.87 e | 16.82 ± 0.16 d | 16.21 ± 0.23 c | 15.40 ± 0.50 b | 14.51 ± 0.50 a |
C* | 20.74 ± 0.50 e | 19.27 ± 0.48 d | 18.59 ± 0.40 c | 17.84 ± 0.66 b | 16.97 ± 0.76 a |
H* | 60.23 ± 0.29 e | 58.77 ± 0.17 d | 57.43 ± 0.19 c | 55.89 ± 0.32 b | 54.12 ± 0.20 a |
ΔE | ……….. | 2.68 ± 0.48 a | 2.83 ± 0.10 a | 3.50 ± 0.20 b | 4.08 ± 0.09 c |
Ingredients | P0 85:0 | P5 80:5 | P10 75:10 | P15 70:15 | P20 65:20 |
---|---|---|---|---|---|
Fish comminuted meat (%) | 85 | 80 | 75 | 70 | 65 |
Oyster mushroom (%) | 0 | 5 | 10 | 15 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokarczyk, G.; Felisiak, K.; Adamska, I.; Przybylska, S.; Hrebień-Filisińska, A.; Biernacka, P.; Bienkiewicz, G.; Tabaszewska, M. Effect of Oyster Mushroom Addition on Improving the Sensory Properties, Nutritional Value and Increasing the Antioxidant Potential of Carp Meat Burgers. Molecules 2023, 28, 6975. https://doi.org/10.3390/molecules28196975
Tokarczyk G, Felisiak K, Adamska I, Przybylska S, Hrebień-Filisińska A, Biernacka P, Bienkiewicz G, Tabaszewska M. Effect of Oyster Mushroom Addition on Improving the Sensory Properties, Nutritional Value and Increasing the Antioxidant Potential of Carp Meat Burgers. Molecules. 2023; 28(19):6975. https://doi.org/10.3390/molecules28196975
Chicago/Turabian StyleTokarczyk, Grzegorz, Katarzyna Felisiak, Iwona Adamska, Sylwia Przybylska, Agnieszka Hrebień-Filisińska, Patrycja Biernacka, Grzegorz Bienkiewicz, and Małgorzata Tabaszewska. 2023. "Effect of Oyster Mushroom Addition on Improving the Sensory Properties, Nutritional Value and Increasing the Antioxidant Potential of Carp Meat Burgers" Molecules 28, no. 19: 6975. https://doi.org/10.3390/molecules28196975
APA StyleTokarczyk, G., Felisiak, K., Adamska, I., Przybylska, S., Hrebień-Filisińska, A., Biernacka, P., Bienkiewicz, G., & Tabaszewska, M. (2023). Effect of Oyster Mushroom Addition on Improving the Sensory Properties, Nutritional Value and Increasing the Antioxidant Potential of Carp Meat Burgers. Molecules, 28(19), 6975. https://doi.org/10.3390/molecules28196975