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Abstract: In the present scenario, the research is now being focused on the naturally occurring poly-
mers that can gradually replace the existing synthetic polymers for the development of bio composites
having applications in medical surgeries and human implants. With promising mechanical properties
and bio compatibility with human tissues, poly lactic acid (PLA) is now being viewed as a future bio
material. In order to examine the applicability of PLA in human implants, the current article sheds
light on the synthesis of PLA and its various copolymers used to alter its physical and mechanical
properties. In the latter half, various processes used for the fabrication of biomaterials are discussed
in detail. Finally, biomaterials that are currently in use in the field of biomedical (Scaffolding, drug
delivery, tissue engineering, medical implants, derma, cosmetics, medical surgeries, and human
implants) are represented with respective advantages in the sphere of biomaterials.

Keywords: poly lactic acid; human implant; biomaterial; drug delivery; implantation; tissue engineering

1. Introduction

Poly lactic acid (PLA) is a thermoplastic polymer derived from various natural re-
sources such as corn starch, sugarcane, biomass, and other vegetable wastes by the process
of fermentation. It was first discovered in the 1920s by Wallace Carothers and commer-
cialized in the 1990s at a larger scale owing to its better physical, mechanical, and thermal
characteristics. Today, it has made a decent place in various food processing, textile, agri-
culture, and cosmetic sectors [1–3]. Apart from these sectors, its presence can also be felt
in mechanically driven plastic equipment used on daily basis. The scope of PLA further
widens due to its biodegradable nature particularly, in the field of medicine and in in-
struments and surgery [4,5]. The medical devices made of PLA are increasing rapidly in
numbers due to their desired physical and mechanical properties and will hopefully rise in
near future. The most important role which is currently being played by PLA is in medical
surgeries and is also the topic of discussion in the present articles. Due to many unfortunate
reasons, medical surgeries are performed. These medical surgeries require pre-surgery
medications and implant material or devices [6,7]. Due to its desirable characteristics such
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as compatibility with human tissues, biodegradability, stiffness, non-toxicity, durability, and
ease to resorb, PLA is now being considered one of the best-suited biomaterials. However,
its applications are restrained due to its low strength, low heat resistance, and difficulty
in machining. These characteristics can be improved by bringing various physical and
chemical changes in the PLA. For example, blending PLA with other copolymers can bring
significant changes in the structure of PLA with improved strength, toughness, and thermal
properties, which can be used as a bone implantable material [8]. The strength of PLA can
also be improved by reinforcing it with carbon fiber or other synthetic fiber but at the cost
of biodegradability and resorbability. Using natural fiber in place of synthetic fiber, the
biodegradable nature of PLA can be maintained but decreases the mechanical performance
when compared with synthetic fiber. Several research works have been carried out in the
past dealing with the physical, mechanical, and compatibility nature of PLA to make it
better and better over a period of time for its implementation in medical surgeries and
implants [9].

Poly lactic acid in medical implants is being used in many forms such as film, sphere,
hydrogels, foam, blends, fiber, particulates, capsules, etc. Its composite offers the ability
to embrace surgical applications such as the malfunctioning of tissue or cell in in vitro or
in vivo surgeries like the malfunctioning of tissue or cell in in vitro or in vivo surgeries.
However, work is still to be done for its improved functioning, longevity, and durability,
which cannot be accomplished without past background information and suggestive
measures that need to be taken care of [10,11]. The present article, therefore, provides
a detailed review of the synthesis of PLA, its behavior with copolymers upon blending,
its fabrication for medical devices, and its current application in the medical field. The
discussion carried out in this article will not only provide valuable evidence about PLA but
also frame a comprehensive background to project PLA as a promising biomaterial. The
article also discusses several issues regarding its compatibility with other polymers and
with human tissues as a medical implant.

2. Poly Lactic Acid and Its Synthesis

The starting substrate to produce PLA is lactic acid (LA), which is basically acidic
in nature and at its core structure, the carbon atoms are present in an asymmetrical form.
Lactic acid exists in two isomers viz: (i) levorotatory form (D or R (−) lactic acid) and
(ii) dextrorotatory form (L or S (+) lactic acid) [12]. D-Lactic acid is extracted from the
muscles of animals while L-LA is produced by the fermentation of sugar through the
action of bacteria. Beans, peas, corn, sugar beet, soymilk, and potato are some of the chief
sources of L-LA. In biomedical applications, L-LA is preferred over D-LA due to several
disadvantages such as metabolism rate, synthesis, and lack of optical purity [13]. Apart
from PLA, several chemicals, e.g., propylene glycol, acrylic acid, and acetaldehyde are also
synthesized from LA [14]. Lactic acid does not possess any charge and, it is very small in
molecular size which enables it to infuse in the lipid membranes of cells [15]. It can serve
as an energy source and provide antioxidant characteristics that protect from cell damage
upon reaching the core of the cell via a monocarboxylate transporter. A large portion of
Lactic acid is processed chemically by fermentation in the presence of bacteria whereas
a small part of LA is obtained by the process of hydrolysis [16]. Usually, the process of
fermentation yields a racemic mixture of LA, L-LA, and D-LA with optical purity [17]. The
percentage of L and D in the LA depends upon the strain selected for the process. The
biological advantage of lactic acid is not one but many. It is biocompatible with human
tissue, provides support to cell tissues, allows accelerating growth of cell generation, and
gets absorbs easily if the need arises [18].

The production of LA is carried out either by hetero fermentation or homo fermenta-
tion in the presence of various catalysts. The isomers formed during the process depend
on the enzymes used [19] as shown in Figure 1. The input sources such as glucose, sugar,
carbohydrates, etc. used in the production are very costly but can be brought down by
using alternate sources such as agriculture waste, biomass residue, and waste collected
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from the food industry provided the chemical process and the enzymes used are different
from the conventional ones [20].
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Figure 1. Fermentation of lactic acid.

Formation of Poly lactic acid is a follow-up process performed after the formation
of lactic acid. It is carried out via three processes namely (i) direct poly condensation,
(ii) azeotropic dehydrative condensation, and (iii) ring opening polymerization. In direct
poly condensation, as depicted in Figure 2, LA is dehydrated into oligomers. These
oligomers are further dehydrated in the presence of chain coupling agents to form PLA.
The whole process is executed without any delay since the chances of degradation of
polymer compounds are higher [21]. This process is quite easy to perform but rarely
preferred due to the entrapment of moisture in the viscous polymer melt leading to a
decrease in the overall molecular weight of the polymer.
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In order to produce PLA of high molecular weight, azeotropic dehydrative condensa-
tion is performed. It is a time-consuming process and requires solvents of higher boiling
points for the removal of dissociative molecules of water from the PLA compound. Longer
reaction times and the use of inorganic solvents make this process very unsuitable and
uneconomical for large production [22]. Another way of converting LA into PLA is ring-
opening polymerization (ROP). In this process, the dehydrated and condensed LA is
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converted to oligomers under high temperature and low pressure thus releasing excess
moisture from the small chain molecule of PLA. These small chains of PLA are termed
meso-lactides. Thereafter, depolymerization of meso-lactides at a temperature higher
than the melting point of lactides but lower than the degradation temperature of PLA is
performed, resulting in the yield of poly lactic acid of high optical purity [23]. The PLA
extracted in ROP is converted into pallets after the crystallization of the liquid resin.

2.1. Copolymerization of PLA

Despite being the most influential polymer for biomedical devices, a large scope for
improvement still exists in various properties of PLA such as degradation characteris-
tics, improved biocompatibility, rheological characteristics, crystallinity, and mechanical
strength. These properties can be enhanced by the copolymerization of PLA with several
other biocompatible polymers. With the help of copolymerization, PLA can be used in a
wider range of biomedical applications. The advantages of various copolymerizations of
PLA have been tabulated in Table 1.

Table 1. Various copolymers with PLA and their properties.

Copolymer Architecture Copolymerization
Technique Enhanced Properties Applications References

Poly(D,L-lactide-
co-glycolide)

(PLGA)

Linear
polymer

Solution poly
condensation, ROP,
segmer assembly
polymerization

Shortens the degradation
time, higher molecular
weight of copolymer

Drug delivery
system [24–26]

Metal-Centered
Star-Shaped PLA

(Co)Polymers
Star polymer atom transfer radical

polymerization
Hydrophobicity at core and

hydrophilicity at corona

Drug delivery of
optical imaging,

biomedicine
[27–29]

Poly ethylene
glycol-PLA Star polymer Michael-type

addition reaction

Lower degradation time
from few days to month,

enhanced mechanical
strength, and imparts

thermal responsive behavior

Scaffolds, tissue
engineering,

biocompatible
hydrogels, and
drug delivery

[30–32]

Polycarbonate-
PLA

Linear
polymer

Formed by the
addition of

hexamethylene
diisocyanate in the
chemical reaction

Improve crystallinity,
rheological behavior,

mechanical properties, and
higher elongation at break

Medicine, tough
membrane for

stimuli drug delivery
system, and

tubular scaffolds

[33–35]

Polyhedral
oligomeric

silsesquioxane-
PLA

Star polymer

ROP, solution casting,
reversible addition

fragmentation
transfer (RAFT)
polymerization

Enhanced ductility,
improved toughness, and

elongation at break

Nerve engineering,
serve as basis
for collagen

[36–38]

Poly vinyl
alcohol-g-PLA

Graft
polymer Graft polymerization

Crystallinity and
biodegradability enhance,

melting point increases and
glass transition temperature

improves

Agriculture and food
packaging and
drug delivery

[39,40]

PLA-Glycidol Branch
polymer

Terminal ring opening
polymerization

Thermal behavior improved;
hydrophilicity enhanced.

Biomedical and
industrial

applications
[41–43]

PLA-Co-
Polyesters

Graft comb
polymer Graft polymerization

Increase in hydrophilic
characteristics and
biodegradability

Scaffolding and
tissue engineering [44]
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2.2. Fabrication of PLA Composites for Biomedical Applications

Manufacturing of PLA-based composite particularly for medical implants has picked
up a noticeable pace due to a continuous increase in demand [45]. Various techniques have
evolved over the period such as freeze drying, melt blending, solvent casting, bioprinting,
electrospinning, Supercritical fluid (SCF) technology, etc. with respective merits and
demerits and have shown their potential of manufacturing bio material efficiently [46].
These processes work at different temperatures and pressures. In some, an organic solvent
is used to achieve the required pattern at the surface while in others, composites are soaked
in a solution to obtain a uniform structure throughout the volume [47]. The changes
brought in the PLA matrix for the making of biomaterials are discussed for the following
processes: freeze drying, electrospinning, SFC, and solvent casting.

(a) PLA scaffolds for tissue engineering can be efficiently prepared by the method
of freeze drying. Liquid PLA is dissolved in water and undergoes stirring to achieve a
homogeneous polymeric solution. This solution is cast in a mold along with cooling at
freezing temperature. Ice crystal is then formed at the interstitial sites, which leads to the
aggregation of polymeric molecules. A vacuum desiccator is used to evaporate the solvent
through sublimation forming the porous hydrogel having interconnected pores as shown
in Figure 3. The hydrogel obtained in the process is highly porous, which can be altered by
controlling parameters such as freezing temperature, concentration of solution, size of ice
crystal, and Ph value of solution. This hydrogel is readily applied for cell seeding in tissue
engineering. The degradation rate and solubility of the hydrogel can also be modified by
its cross-linking with ultraviolet radiation and treatment with citric acid, carbodiimide,
and glutaraldehyde [48]. This process limits its application for scaffold fabrication due
to the presence of harmful residue, consumption of high energy, and very long hours of
dehydration [49].
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(b) To produce fibers ranging from tens of micrometers to nanometers, electrospinning
is used as depicted in Figure 4. A highly concentrated solution of PLA in melt form under
the influence of a strong electric field is pushed through a fine needle and collected at the
rotating cylinder for the production of continuous fiber [50]. The fiber characteristics such
as strength, porosity, texture, surface area, etc. are controlled by maintaining the rate of flow
through the syringe and applied voltage. Nano fibers produced in this process exhibit exclu-
sive characteristics such as a large surface-to-volume ratio, high porosity, and light weight.
The native collagen fibrils found in the extracellular matrix are remarkably intimated by
the morphology of nanofiber produced by electrospinning. In addition, exchanging of
nutrients and gaseous are also possible provided the macropores at the scaffolds should be
maintained. For the purpose of regenerative medicine, electrospinning is mostly preferred
over other processes due to its ease of fabrication and flexibility. Electrospun fibers have
the capability to mimic the characteristics of the extracellular matrix but the use of toxic
solvents limits the horizon of this process. Insufficient cell infiltration and inhomogeneous
cell distribution are other demerits of this process. Apart from PLA, various other poly-
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mers such as polyurethane, polycaprolactone, nylon-6 poly (glycolic acid), etc. can also be
electrospun [51].
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(c) Another way of making bio material (3-D scaffolds) for tissue engineering without
using solvents is Super critical fluid (SFC) as represented in Figure 5. The advantage of
using supercritical fluid is its control over architectural activities of internal porosity, elimi-
nation of solvent, and mimicking the growth of bioactive material at the surface [52]. The
coexistence of liquid and gas makes it an exclusive method as compared to other methods
that exist in either liquid or gas form at normal temperature and pressure. Till now, the most
widely used supercritical fluid is carbon dioxide due to its favorable characteristics such
as availability, user-friendliness, low cost, and non-toxic behavior. Due to its low critical
conditions, CO2 is extensively used to process thermal sensitive/biological compounds.
This technique is highly versatile that various biopolymers like PLLA, PGLA, forms of poly
saccharides, and proteins can be easily processed for the fabrication of very highly porous
scaffolds [53]. In an experimental analysis, it was observed that 95% seeding efficiency
with a viability of 40% was obtained in a single day of culturing in the rats [54]. Apart from
the above-said advantages, the control of particle size and morphology is very difficult in
this process, which happens due to polymer solubility in super critical fluid.

(d) One of the simplest techniques of processing scaffolds for tissue engineering is
solvent casting as shown in Figure 6, which does not require any specific equipment. Here,
the liquid PLA is dissolved in a solvent followed by the addition of salt of a specific size
in the solution to make it homogenous. The mixture obtained is molded in a 3-D through
casting. The solvent is made to evaporate from the solution leading to the formation of
a matrix with uniform distribution of particles of salt. Afterward, water is added to the
polymer matrix to filter out the salt particles from the matrix resulting in the formation
of a porous structure capable of seeding cells [55]. The selection of solvent is the crucial
parameter that decides the final surface texture of the matrix such as heterogeneity, the
orientation of crystals, swelling parameter, and physical characteristics like deformation
rate. These characteristics will decide the specific domain where the produced scaffold
is used. This process has several advantages such as short processing time and low
maintenance cost, and it can produce scaffolds of different porosity by varying the size of
the porogens [56]. Various biopolymers such as PLLA and PGLA can be easily processed
by this technique. The chief advantage of this method is pore size and its porosity can
be easily modulated. In addition, drug incorporation becomes easier within the scaffolds.
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Besides having such attractive characteristics, solvent casting is very often used for making
scaffolds due to the use of harmful solvents in the solution [57].
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3. Scope of PLA in Biomedical Applications

Polylactic acid has a notable reputation in many biomedical applications due to its
bioresorbability and biocompatibility with human tissues. Scaffolding, drug delivery, med-
ical implants, suturing, membrane covering, derma, cosmetics, etc., are some of the major
fields of biomedical, as depicted in Figure 7, where the role of PLA has been appreciable
in the last decade [58]. Physical and chemical modification of PLA is required to render
its service in a diversified form in medical applications. Sometimes, surface modifications
of PLA, such as plasma treatment, radiation-induced technique, etc., are carried out for
enhancing the biocompatibility of PLA. Blending of PLA with copolymer is also performed
to achieve the desired behavior. Polydioxanone (PDS), Polyglycolide (PGA), and PLA are
the most common biopolymers used extensively in biomedical applications [59], but due to
favorable properties, more attention is being given to PLA as a biomaterial.
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3.1. Polylactic Acid in Drug Delivery

Developing a drug delivery system (DDS) to address new challenges is only possible
through innovative approaches. Supplying the drug to various parts of the human body
at a specific quantity with maximum therapeutic potential and minimum side effects has
always been a longstanding desire of medical practitioners [60]. Various systems have
been evolved as drug carriers, for example, nano capsules (NC), nanospheres (NS), liquid
crystal, multifunctional dendritic polymers, vesicles, micelles, etc., but still, the oral route
is restricted to small molecules like NC or NS [61]. Some typical DDS based on PLA are
represented in Figure 8. Drug delivery based on PLA is showing promising results for
diagnosis, therapy, and imaging. For instance, micro and nano particles (NPs) delivery
systems produced by the blends of methoxypoly (ethylene glycol)/PLA (mPEG/PLA) are
being considered as a good replacement for conventional Kolliphor EL [62]. A range of
properties of the blend, like drug loading, particle size, release profile, etc., can be easily
controlled by varying the percentage of mPEG/PLA in the blend [63].
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PLA can be transformed into micro capsules (MCs), dosage, pallets, and NPs due
to its biodegradability, biocompatibility, strength, and solubility in various solvents [65].
Several sustainable drugs like protein/peptide and DNA/RNA for delivery purposes
can be made from modified and unmodified microparticles (MPs) and NPs of PLA [66].
MPs and NPs are very small particles that enable them to permeate through biological
barriers, especially blood barriers of the brain. Polylactic acid-based MCs are extensively
applied in the delivery of drugs for prolonged administration in a large variety of medical
agents [67–69], such as local anesthetics and vaccines, contraceptives, and antagonists.

Peptides and proteins-based PLA DDS are designed for specific purposes and receive
significant attention due to their effectiveness even at comparatively lower dosages [70].
Reconstructive surgery of the face can be carried out by temporary filling of the micro-
sphere of PLLA. Transcatheter arterial embolization, an efficient procedure for managing
hemorrhages, tumors, and fistula malformation, can be healed with embolic material com-
posed of microsphere of PLLA [71]. It has been seen that PLA-based bio materials lack
cell interaction due to the deficiency in chemical functionality, which also restricts the
continuous release of hydrophilic molecules, especially proteins [72–74]. These limitations
can be overcome by introducing an amine functional group in the PLA-based DDS and
additives fabricated by direct conjugation. PLA-based nanomaterials are also used for
stimuli response. These stimuli responses effectively target delivery where DDS acts as an
active member rather than a passive carrier [75–77].

Nanofibers of PLA-poly butylene adipate (PBA) blends are very effective for the
transdermal delivery of teriflunomide (an antirheumatic agent). These nanofibers quickly
degrade and dissolve in the cells [78]. The PLA particulate system is important for stim-
uli and targeted DDS because it can target decayed cells [79]. The synchronization of
stimuli-responsive PLA nanocarriers with pathology by in vivo hydrogelation is helpful
in the healing of diseases such as tumors by maintaining the pH value of extracellular
tissues [80–82]. PLA can also be synthesized to design dendritic core shells for enhanced
transport capacity by mixing Polyethylene glycol (PEG) monomethyl ether shells in PLA
blend through imine bonding [16].

Films based on PLA have been extensively explored for drug delivery systems [83].
Paclitaxel-eluting stents were developed by blending ethylene-vinyl acetate copolymer
(EVA) with PLA and examined the effect of varying the ratio of EVA and PLA in the blend
on the rate of drug release [84]. It was reported that the ratio of EVA and PLA in the blend
has a significant effect on the rate of drug release. Films for wound dressing applications
for the drug release of metronidazole and gentamicin sulfate are also being developed
by the blend of PLA and PEG. Nanoparticles based on PLA with monoclonal anti-bodies
(mAb) characteristics are being developed for the drug delivery of specific antigens on
breast epithelial cancer cell lines [85]. Both small and large molecules can be efficiently
targeted to the cell or tissue of interest.

3.2. Polylactic Acid in Implants

Several metals such as titanium and its alloys, stainless steel, cobalt, and chromium
have been implanted in the human body in the forms of plates, pins, screws, and wires for
operating bone fixation [86]. These metals have shown incredible potential in bone fixation
surgery in the last 3 to 4 decades. However, a few disadvantages related to metal implants,
such as low corrosion, high density, and low biocompatibility, make way for biodegradable
polymers, particularly PLA, to replace metal implants [87]. Polylactic acid has sufficient
mechanical strength that it can serve as bone implants satisfactorily. Furthermore, it is
biodegradable; thus, the chances of side effects in human bones are negligible. The current
state of PLA as a bone fixation material has uncovered many possibilities for development
in bone implants [88]. By synthesizing the PLA with L-PLA and D-PLA, plates and
screws for fracture fixation can be made. For orthopedic applications, films of PLA have
been fabricated that showed good compatibility with fibroblast, nasal septum cells, and
osteosarcoma cells [89,90].
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A blend of PLA and polyvinylpyrrolidone (PVP) for ocular implants is being prepared
for the enhanced release rate of fluorometholone delivery [91]. By adding surfactants such
as ethylene oxide or propylene oxide in the blend of PDLLA/PLLA, a potential implant for
orthopedic and dental applications can be prepared [92]. The commercialization of drug-
eluting stents prepared from the blend of PLA is under consideration by several pharma
companies [93]. Nanofibers produced from PLA/PCL embedded by 5-fluoro uracil are also
used as drug-eluting stents to treat cancer [94–96]. The release of cancerous drugs is higher
for hybrid nanofibers than pure polymers because of the combined effect of immiscible
polymers due to their superior potential in therapeutic implants [97].

The biodegradability of polymer within the human body is one of the most important
characteristics a polymer should demonstrate. As far as PLA is concerned, it is used to re-
construct ligaments and tendons due to its high retention characteristics [98]. Stents are also
prepared from PLA for urological and vascular surgery [99]. Three-dimensional scaffolds
of PLA are extensively made for the gene therapy of diseases like cardiovascular, bone,
and cartilage regeneration and to cultivate different types of cells during orthopedic and
neurological treatment [100]. Therapeutic implants like bone formation, intramembrane,
endochondral ossification, etc., can be performed with the biomaterial prepared by seeding
osteogenic stem cells on PLA scaffolds [101].

Plates and screws used in maxillofacial osteosynthetic surgery are made from platinum,
but with several disadvantages such as mutagenetic effects, problems in removal and
palpability, etc., their extensive implementation is restricted. To resolve these problems,
PLA is being put forward as an alternative to performing maxillofacial osteosynthetic
surgery in the near future [102].

3.3. Polylactic Acid in Tissue Engineering

With recent developments in biomedical engineering, PLA-based biomaterials are
gradually making their place in tissue engineering as demonstrated in Figure 9. Although
numerous promising results were obtained with few metal implants due to the non-
biodegradability of metal, biopolymers are now being projected as a potential scaffolds
application [103]. In addition, due to their flexibility and tailorable properties, biopolymers
find greater scope in tissue engineering than metals. The most common biopolymers used
for scaffoldings are PLA, PGA, and PLGA, having approval from the Food and drugs
administration [104]. At the same time, constructing scaffolds is the most important thing
to be taken care of for the adhesion of cells with polymer. Polylactic acid is hydrophobic
and has a slow rate of degradation in the environment of water. Using PLA in scaffolding
in its pure form will not be a good idea; therefore, its copolymerization through blending
and forming with other biopolymers is usually carried out to enhance its degradability and
biocompatibility [105]. In recent years, several techniques have evolved for making porous
PLA scaffolds. These are particles leaching, foaming, and electrospinning.

Till now, many PLA-based composites for tissue engineering and scaffolding have
been prepared. For instance, PLA-based octadecyl amine composites fabricated via solution
preparation technique in the presence of chloroform and nanodiamond showed improved
mechanical properties [106]. The basic requirements for the scaffolding and grafting of vas-
cular tissues are antithrombogenicity, application-oriented, sufficient mechanical strength,
and bio compatibility to match with the tissue or blood vessels [107]. Presently, matrices
based on collagen and hyaluronan are the most prevalent scaffolds applied in clinical
applications because they deliver substrates, a necessary element in articular cartilage [108].
Under the trade name of BioSeed-B and BioSeed-C (Bio Tissue Technologies AG, Freiburg,
Germany), scaffolds of PGA/PLA, polydioxanone, and polyglactin are also used for the
reparation of cartilage.
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For the regeneration of bone, three-dimensional (3D) fibrous scaffolds are mostly
recommended. A 3D micro fibrous scaffold prepared via electrospinning technique fol-
lowed by mechanical expansion showed huge potential in the proliferation of osteoblast
by offering a suitable substrate for bone formation and cell infiltration. For this, an experi-
ment on rabbits was carried out which showed noticeable changes in 2 to 4 weeks [109].
To modulate biodegradability and enhance the compatibility of PLA for tissue growth,
recovery, and scaffolds, it can be synthesized with various copolymers. A novel technique
for creating tissue scaffolds for bone tissue is 3D printing [110]. Several types of scaffolds
made of PLA, such as porous cages, solid disc PLA-filled and coated scaffolds, can be
created by 3D printing [111]. PLA-coated scaffolds filled with collagen were tested for
biocompatibility and endotoxin production. It was found that the scaffold showed en-
hanced compatibility with tissue, and the endotoxin level was far below the permissible
limit [112]. Printed discs based on PLA have shown rapid growth and expansion of differ-
ent cells such as endothelial cells, osteoblasts, and osteoblast-like cells. The steady release
of stromal-derived factors that helps in the growth of endothelial cells and encourages
the formation of neo-vessel can be achieved by cages made of PLA, thus verifying the
potential of 3D PLA scaffolds [113]. To increase the rate of vascularization and healthy
bioactivity of osteoinductive cells in bone tissue engineering, the biodegradability of 3D
scaffolds plays a crucial role. Because of the favorable properties like flexibility, practicality,
bioresorbability, and biocompatibility, 3D-printed PLA scaffolds can be used to control the
release of deferoxamine necessary for osteogenesis and angiogenesis for the construction
and development of fractured bone [114]. Poly hydroxyapatite (PHA)/PLA 3D composite
scaffolds have also been explored for inflammation and bone repair. It was observed that
PHA/PLA 3D scaffolds showed better compatibility, bioactivity, and osteoinductivity with
a low chance of inflammation [115]. To further enhance osteogenic activity in bone tissue
engineering, PHA/PLA scaffolds functionalized with citric acid and polyethyleneimine
have been developed in the recent past [116]. The successful development of 3D printed
PLA/PHA/silk scaffolds clip for the bone support showed improved strength and biocom-
patibility as compared to conventional clip [117–119] is another indication of the potential
of PLA in bone tissue engineering. Recently, more attention has been given to regenerative
treatments using stem cell therapies. The available reports suggest that Mesenchymal
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stem/stromal cells are the best-fitting materials in tissue replacement [120]. Poly lactic
acid-based bio dental implants are under development. The latest report suggests that
silica nano filler reinforced PLA bio material can serve the purpose of dental filling in the
tooth cavity. Moreover, the biodegradability and compatibility of the prepared amalgam
showed satisfactory results [121]. However, research and development need to be carried
out continuously to obtain the best-fitting PLA-based dental implant. Poly lactic acid can
efficiently host the ZnO particle to activate the antimicrobial activity for the regeneration
of tissue or cell [122]. Figure 10 illustrates the biological activity of PLA-filled ZnO nano
particles in which Gram-negative and Gram-positive bacteria are reduced by 99% due to
the high interfacial interaction between nano filler and PLA.
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Table 2 summarizes some typical composites based on PLA, which are commonly
adapted in the form of organs, implants, and scaffolds.

Table 2. PLA-based composites for medical.

Manufacturing
Technique

Biopolymer
Composition Influencing Properties Domain of

Application References

Electrospinning

Tricalcium
phosphate-Poly(L-lactic-

co-glycoside)

Excellent moldability and absorbance
ability are enhanced.

Repairs bone defects

[123–126]

Gelatin-PLLA
New calcified bone formed within
84 days of induction, improves cell

proliferation and adhesion.

Silk fiber-PLLA Enables uniform distribution of cells in
the matrix and improves cell adhesion.

Engineer cartilage
tissues

Collagen-PLL-co-
glycolide)

Matrix becomes hydrophobic and
enables easy induction of myogenesis.

Regenerate skeletal
tissues

Collagen1-PDLLA Hydrophobicity increase, higher rate of
cell proliferation, and improves stability. Bone- reconstruction

Collagen-PLLA

Plays significant role in invitro
osteogenesis, large bone aggregates are
obtained due to the even distribution of
minerals, the expressions of osteoblastic

genes obtained are comparable
and higher.

Bone -regeneration
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Table 2. Cont.

Manufacturing
Technique

Biopolymer
Composition Influencing Properties Domain of

Application References

Freeze drying Gelatin-PLA Decreases inflammation, cell
proliferation, and attachment enhanced. Repair cartilage [123,124]

SFC Demineralized bone
matrix-PLA Mechanical strength improves Repair bone defects [126]

3D bio printing PC-poly(L-lactide-co-
glycoside)-triphosphate

Capable of forming new bone around
implant, Osseo-integration Bone-reconstruction [127]

Electrochemical Silk fibroin-PLA
Cardiomyocytes functionality improves,

better swelling characteristics and
comprehensive modulus

Application of nursing
and regeneration of

cardiac tissue
[128]

4. Food and Drug Administration Approved PLA Formulations Used in Medicine

The use of PLA in various medical surgeries, implants, and drug deliveries is often
encountered with several physical and biological issues such as poor retention at delivery
sites, poor bio availability, longevity, limited water solubility, etc. [129–131]. To over-
come these problems, PLA is coupled with various other biocompatible polymers for the
fabrication of nano formulations used in medical therapeutic deliveries as approved by
the FDA [132–134]. For instance, a formulation based on PLGA-b-PEG-b-PLGA of size
77–84 nano meter (nm) has the advantage of sustaining oral formulation and therefore
extensively used in oncology [135]. While PLA-PEG nano formulation of size greater than
200 nm has good healing characteristics in healing bacterial infections [136]. Hydrogels of
PLA-based formulation also have a significant role in medicinal therapeutics. It has a vital
role in birth control gene therapy with the formulation of PLGA-b-.

PEG-b-PLGA [137]. Moreover, nano formulation of size ranging between 200 nm
to 300 nm is very much beneficial in the application of oncology [138–140]. In the field
of vesicle therapy, PLA-b-PEG with a formulation size under 200 nm is highly useful in
pH-responsive release systems [23,139,141].

5. Current Limitations

Poly lactic acid is more often avoided due to its high price since it is more expensive
than petrochemicals. Its method of manufacturing is more intense and its yield is not as
good as compared to any other conventional polymer. Its working temperature is very
low due to its low melting point and its coblending with another polymer is very hard to
carry out. It is highly permeable and thus releases oxygen and water molecule very easily.
Moreover, it takes more time to decompose as compared to other bio polymers. Techniques
are under development to enhance its decomposition rate and hoping to see an improved
PLA with a better decomposition rate.

6. Conclusions and Future Scope

The kind of characteristics PLA possesses makes it suitable for bio implants and medi-
cal surgeries with the advantage of being processed at a relatively low cost as compared
to other polymers. Its compatibility with other polymers to obtain improved mechanical
and thermal characteristics widens its scope for the fabrication of medical devices. Poly
lactic acid has proved to be a versatile polymer, which gives it an added advantage of
being tailored into different forms such as nano fiber, micro capsules, nano particles, and
hydrogels. By incorporating various fibers in PLA, a significant improvement in strength
can be achieved that in near future can replace metallic material in bone implants. Various
favorable properties of PLA such as bioresorbable, biocompatible, good endurance, ease of
fabrication, and compostability are signaling toward its higher exploitation in near future
for the development of biomaterial implants. The properties enhancement of PLA by
blending it with various copolymers is playing a crucial part in expanding its scope in
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the biomedical domain (Scaffolding, drug delivery, tissue engineering, medical implants,
membranes covering, derma, cosmetics, medical surgeries, and human implants). As far
as its applications are concerned, PLA is found suitable for drug delivery, implants, and
tissue engineering, which is expected to grow in near future with continuous research and
developments. Although PLA has several limitations such as various attributes of degrad-
ability, strength, ease of processing, etc., it is expected to remain the preferred polymer for
the development of biomaterial. However, as far as the literature is concerned, various
aspects such as interfacial energy, barriers and optical properties, influence of processing
temperature, environment, and storage (aging) on the properties of PLA have not been
fully evaluated yet. Therefore, a lot of work is still to be done to make PLA viable as a
permanent, cost-effective, and safe solution for its implementation as a biomaterial in the
human body.
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