Synthesis and Application of Liquid Metal Based-2D Nanomaterials: A Perspective View for Sustainable Energy
Abstract
:1. Introduction
2. Properties of Liquid Metal Based-2DMOs
2.1. Surface Oxidation
2.2. In-Situ Galvanic Replacement
3. Synthesis of Liquid Metal-2DMOs
3.1. Sticking Method
3.2. Gas Injection Method
3.3. Ultrasound Method
4. Tow-Dimensional LM-Based 2DMOs Applications
4.1. CO2 Reduction
4.2. Battery
4.3. Photodegradation
5. Summary and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, J.; Di, J.; Li, H. Atomically Thin 2D Multinary Nanosheets for Energy-Related Photo, Electrocatalysis. Adv. Sci. 2018, 5, 1800244. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lai, C.; Zeng, G.; Huang, D.; Qin, L.; Zhang, M.; Cheng, M.; Liu, X.; Yi, H.; Zhou, C.; et al. Black Phosphorus, a Rising Star 2D Nanomaterial in the Post-Graphene Era: Synthesis, Properties, Modifications, and Photocatalysis Applications. Small 2019, 15, 1804565. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Sun, Z. Editorial for the special issue “MXenes for energy conversion and storage”. Mater. Rep. Energy 2022, 2, 100085. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Chi, C.; Shan, H.; Zheng, L.; Fang, Z. Plasmonics of 2D Nanomaterials: Properties and Applications. Adv. Sci. 2017, 4, 1600430. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yun, S.; Yeon, J.S.; Bhattacharya, P.; Wang, L.; Lee, S.W.; Hu, X.; Park, H.S. Emergent Pseudocapacitance of 2D Nanomaterials. Adv. Energy Mater. 2018, 8, 1702930. [Google Scholar] [CrossRef]
- Khan, A.H.; Ghosh, S.; Pradhan, B.; Dalui, A.; Shrestha, L.K.; Acharya, S.; Ariga, K. Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bull. Chem. Soc. Jpn. 2017, 90, 627–648. [Google Scholar] [CrossRef]
- Zhang, Y.; Mei, J.; Yan, C.; Liao, T.; Bell, J.; Sun, Z. Bioinspired 2D Nanomaterials for Sustainable Applications. Adv. Mater. 2020, 32, 1902806. [Google Scholar] [CrossRef]
- Kumbhakar, P.; Gowda, C.C.; Mahapatra, P.L.; Mukherjee, M.; Malviya, K.D.; Chaker, M.; Chandra, A.; Lahiri, B.; Ajayan, P.M.; Jariwala, D.; et al. Emerging 2D metal oxides and their applications. Mater. Today 2021, 45, 142–168. [Google Scholar] [CrossRef]
- Su, J.; Li, G.D.; Li, X.H.; Chen, J.S. 2D/2D Heterojunctions for Catalysis. Adv. Sci. 2019, 6, 1801702. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Qi, L. Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries. Adv. Sci. 2016, 3, 1600049. [Google Scholar] [CrossRef]
- Mei, J.; Liao, T.; Kou, L.; Sun, Z. 2D Metal Oxides: Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries. Adv. Mater. 2017, 29, 1770344. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.K.; Tamakloe, W.; Jin, X.; Lim, J.; Patil, S.B.; Kang, Y.M.; Hwang, S.J. Multilayer hybrid nanosheet of mesoporous carbon-layered metal oxide as a highly efficient electrocatalyst for Li-O2 batteries. Appl. Catal. B Environ. 2019, 254, 523–530. [Google Scholar] [CrossRef]
- Luo, Z.-D.; Yang, M.M.; Liu, Y.; Alexe, M. Emerging Opportunities for 2D Semiconductor/Ferroelectric Transistor-Structure Devices. Adv. Mater. 2021, 33, 2005620. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, C.-H.; Nomura, K. Vacuum-Free Liquid-Metal-Printed 2D Indium–Tin Oxide Thin-Film Transistor for Oxide Inverters. ACS Nano. 2022, 16, 3280–3289. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.Q.; Zhang, Q.; Mai, L. Nanostructured Metal Oxides and Sulfides for Lithium–Sulfur Batteries. Adv. Mater. 2017, 29, 1601759. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Liu, Z.; Nam, K.W.; Borkiewicz, O.J.; Cheng, J.; Hua, X.; Dunstan, M.T.; Yu, X.; Wiaderek, K.M.; Du, L.S.; et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 2013, 12, 1130–1136. [Google Scholar] [CrossRef]
- Radfarnia, H.R.; Iliuta, M. Metal oxide-stabilized calcium oxide CO2 sorbent for multicycle operation. Chem. Eng. J. 2013, 232, 280–289. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Liu, P.; Stacchiola, D.J.; Senanayake, S.D.; White, M.G.; Chen, J.G. Hydrogenation of CO2 to Methanol: Importance of Metal–Oxide and Metal–Carbide Interfaces in the Activation of CO2. ACS Catal. 2015, 5, 6696–6706. [Google Scholar] [CrossRef]
- Tanaka, K.; Hisanaga, T. Photodegradation of chlorofluorocarbon alternatives on metal oxide. Sol. Energy 1994, 52, 447–450. [Google Scholar] [CrossRef]
- Goff, A.; Aukarasereenont, P.; Nguyen, C.K.; Grant, R.; Syed, N.; Zavabeti, A.; Elbourne, A.; Daeneke, T. An exploration into two-dimensional metal oxides, and other 2D materials, synthesised via liquid metal printing and transfer techniques. Dalton Trans. 2021, 50, 7513–7526. [Google Scholar] [CrossRef]
- Kang, Y.; Xie, H.; Liu, D.; Gao, M.; Chu, P.K.; Ramakrishna, S.; Yu, X.F. Facile mass production of self-supported two-dimensional transition metal oxides for catalytic applications. Chem. Commun. 2019, 55, 11406–11409. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Li, Z.; Cheng, L.; Haidry, A.A.; Tao, J.; Xu, Y.; Xu, K.; Ou, J.Z. Recent advances in the fabrication of 2D metal oxides. Iscience 2022, 25, 103598. [Google Scholar] [CrossRef] [PubMed]
- Zyulkov, I.; Krishtab, M.; De Gendt, S.; Armini, S. Selective Ru ALD as a Catalyst for Sub-Seven-Nanometer Bottom-Up Metal Interconnects. ACS Appl. Mater. Interfaces 2017, 9, 31031–31041. [Google Scholar] [CrossRef] [PubMed]
- Vallat, R.; Gassilloud, R.; Salicio, O.; El Hajjam, K.; Molas, G.; Pelissier, B.; Vallée, C. Area selective deposition of TiO2 by intercalation of plasma etching cycles in PEALD process: A bottom up approach for the simplification of 3D integration scheme. J. Vac. Sci. Technol. A Vac. Surf. Film. 2019, 37, 020918. [Google Scholar] [CrossRef]
- Yao, J.D.; Zheng, Z.Q.; Yang, G.W. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mater. Sci. 2019, 106, 100573. [Google Scholar] [CrossRef]
- Seo, S.; Oh, I.; Park, J.C.; Lee, J.; Jung, Y.; Choi, H.; Ryu, J.; Lee, S. Growth of Transition Metal Dichalcogenide Heterojunctions with Metal Oxides for Metal–Insulator–Semiconductor Capacitors. ACS Appl. Nano Mater. 2021, 4, 12017–12023. [Google Scholar] [CrossRef]
- Semoto, T.; Tsuji, Y.; Yoshizawa, K. Molecular Understanding of the Adhesive Force between a Metal Oxide Surface and an Epoxy Resin. J. Phys. Chem. C 2011, 115, 11701–11708. [Google Scholar] [CrossRef]
- Kim, M.-G.; Kanatzidis, M.G.; Facchetti, A.; Marks, T.J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 2011, 10, 382–388. [Google Scholar] [CrossRef]
- Mallakpour, S.; Khadem, E. Carbon nanotube–metal oxide nanocomposites: Fabrication, properties and applications. Chem. Eng. J. 2016, 302, 344–367. [Google Scholar] [CrossRef]
- Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; De Castro, I.A.; Esrafilzadeh, D.; Barrow, S.J.; Dickey, M.D.; Kalantar-Zadeh, K. Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev. 2018, 47, 4073–4111. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Lekner, J. Structure and Resistivity of Liquid Metals. Phys. Rev. 1966, 145, 83–90. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Tang, J.; Daeneke, T.; O’Mullane, A.P.; Stewart, L.A.; Liu, J.; Majidi, C.; Ruoff, R.S.; Weiss, P.S.; Dickey, M.D. Emergence of Liquid Metals in Nanotechnology. ACS Nano. 2019, 13, 7388–7395. [Google Scholar] [CrossRef]
- Yan, J.; Lu, Y.; Chen, G.; Yang, M.; Gu, Z. Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 2018, 47, 2518–2533. [Google Scholar] [CrossRef]
- Dickey, M.D. Emerging Applications of Liquid Metals Featuring Surface Oxides. ACS Adv. Mater. Interfaces 2014, 6, 18369–18379. [Google Scholar] [CrossRef] [Green Version]
- Zuraiqi, K.; Zavabeti, A.; Allioux, F.M.; Tang, J.; Nguyen, C.K.; Tafazolymotie, P.; Mayyas, M.; Ramarao, A.V.; Spencer, M.; Shah, K.; et al. Liquid Metals in Catalysis for Energy Applications. Joule 2020, 4, 2290–2321. [Google Scholar] [CrossRef]
- Zouvelou, N.; Mantzouris, X.; Nikolopoulos, P. Interfacial energies in oxide/liquid metal systems with limited solubility. Int. J. Adhesi. Adhes. 2007, 27, 380–386. [Google Scholar] [CrossRef]
- Castilla-Amorós, L.; Stoian, D.; Pankhurst, J.R.; Varandili, S.B.; Buonsanti, R. Exploring the Chemical Reactivity of Gallium Liquid Metal Nanoparticles in Galvanic Replacement. J. Am. Chem. Soc. 2020, 142, 19283–19290. [Google Scholar] [CrossRef]
- Lou, Y.; Liu, H.; Zhang, J. Liquid metals in plastics for super-toughness and high-performance force sensors. Chem. Eng. J. 2020, 399, 125732. [Google Scholar] [CrossRef]
- Kolasinski, K.W. Solid structure formation during the liquid/solid phase transition. Curr. Opin. Solid State Mater. Sci. 2007, 11, 76–85. [Google Scholar] [CrossRef]
- Kazem, N.; Hellebrekers, T.; Majidi, C. Soft Multifunctional Composites and Emulsions with Liquid Metals. Adv. Mater. 2017, 29, 1605985. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, X.; Li, J.; Liu, J. Thin, Porous, and Conductive Networks of Metal Nanoparticles through Electrochemical Welding on a Liquid Metal Template. Adv. Mater. Interfaces 2018, 5, 1800406. [Google Scholar] [CrossRef]
- Zhou, X.B.; De Hosson, J.T.M. Reactive wetting of liquid metals on ceramic substrates. Acta Mater. 1996, 44, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Chiang, T.; Chang, Y. The activity coefficient of oxygen in binary liquid metal alloys. Metall. Trans. B 1976, 7, 453–467. [Google Scholar] [CrossRef]
- Creighton, M.A.; Yuen, M.C.; Susner, M.A.; Farrell, Z.; Maruyama, B.; Tabor, C.E. Oxidation of Gallium-based Liquid Metal Alloys by Water. Langmuir 2020, 36, 12933–12941. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Daniels, K.E.; Kiani, A.; Rashid-Nadimi, S.; Dickey, M.D. Interfacial Tension Modulation of Liquid Metal via Electrochemical Oxidation. Adv. Intell. Syst. 2021, 3, 2100024. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Wu, W.; Zhu, Y.; Li, K.; Su, X.; Xie, H.; Zhang, X.; Xu, H.; Wang, K.; et al. A novel strategy of fabricated flexible ITO electrode by liquid metal ultra-thin oxide film. J. Mater. 2022, 8, 1205–1212. [Google Scholar] [CrossRef]
- Sindel, M.; Travitzky, N.A.; Claussen, N. Influence of Magnesium-Aluminum Spinel on the Directed Oxidation of Molten Aluminum Alloys. J. Am. Ceram. Soc. 1990, 73, 2615–2618. [Google Scholar] [CrossRef]
- Wang, M.; Lai, Z.; Jin, X.; Sun, T.; Liu, H.; Qi, H. Multifunctional Liquid-Free Ionic Conductive Elastomer Fabricated by Liquid Metal Induced Polymerization. Adv. Funct. Mater. 2021, 31, 2101957. [Google Scholar] [CrossRef]
- Wang, M.; Feng, X.; Wang, X.; Hu, S.; Zhang, C.; Qi, H. Facile gelation of a fully polymeric conductive hydrogel activated by liquid metal nanoparticles. J. Mater. Chem. A 2021, 9, 24539–24547. [Google Scholar] [CrossRef]
- Liang, C.; Shimizu, Y.; Sasaki, T.; Koshizaki, N. Synthesis of Ultrafine SnO2−x Nanocrystals by Pulsed Laser-Induced Reactive Quenching in Liquid Medium. J Phys. Chem. B 2003, 107, 9220–9225. [Google Scholar] [CrossRef]
- Lavanya, N.; Radhakrishnan, S.; Sekar, C.; Navaneethan, M.; Hayakawa, Y. Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals. Analyst 2013, 138, 2061–2067. [Google Scholar] [CrossRef] [Green Version]
- Yuan, T.; Hu, Z.; Zhao, Y.; Fang, J.; Lv, J.; Zhang, Q.; Zhuang, Z.; Gu, L.; Hu, S. Two-Dimensional Amorphous SnOx from Liquid Metal: Mass Production, Phase Transfer, and Electrocatalytic CO2 Reduction toward Formic Acid. Nano Lett. 2020, 20, 2916–2922. [Google Scholar] [CrossRef]
- Belford, T.N.; Alcock, C.B. Thermodynamics and solubility of oxygen in liquid metals from e.m.f. measurements involving solid electrolytes. Part 2.—Tin. Trans. Faraday Soc. 1965, 61, 443–453. [Google Scholar]
- Kim, H.; Boysen, D.A.; Newhouse, J.M.; Spatocco, B.L.; Chung, B.; Burke, P.J.; Bradwell, D.J.; Jiang, K.; Tomaszowska, A.A.; Wang, K.; et al. Liquid Metal Batteries: Past, Present, and Future. Chem. Soc. 2013, 113, 2075–2099. [Google Scholar] [CrossRef]
- Tang, S.-Y.; Mitchell, D.R.; Zhao, Q.; Yuan, D.; Yun, G.; Zhang, Y.; Qiao, R.; Lin, Y.; Dickey, M.D.; Li, W. Phase Separation in Liquid Metal Nanoparticles. Matter 2019, 1, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Zavabeti, A.; Ou, J.Z.; Carey, B.J.; Syed, N.; Orrell-Trigg, R.; Mayes, E.L.; Xu, C.; Kavehei, O.; O’Mullane, A.P.; Kaner, R.B.; et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 2017, 358, 332–335. [Google Scholar] [CrossRef] [Green Version]
- Esrafilzadeh, D.; Zavabeti, A.; Jalili, R.; Atkin, P.; Choi, J.; Carey, B.J.; Brkljača, R.; O’Mullane, A.P.; Dickey, M.D.; Officer, D.L.; et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 2019, 10, 865. [Google Scholar] [CrossRef]
- Hoshyargar, F.; Crawford, J.; O’Mullane, A.P. Galvanic Replacement of the Liquid Metal Galinstan. J. Am. Chem. Soc. 2017, 139, 1464–1471. [Google Scholar] [CrossRef] [Green Version]
- Oloye, O.; Tang, C.; Du, A.; Will, G.; O’Mullane, A.P. Galvanic replacement of liquid metal galinstan with Pt for the synthesis of electrocatalytically active nanomaterials. Nanoscale 2019, 11, 9705–9715. [Google Scholar] [CrossRef]
- Guo, Z.; Lu, J.; Wang, D.; Xie, W.; Chi, Y.; Xu, J.; Takuya, N.; Zhang, J.; Xu, W.; Gao, F.; et al. Galvanic replacement reaction for in situ fabrication of litchi-shaped heterogeneous liquid metal-Au nano-composite for radio-photothermal cancer therapy. Bioact. Mater. 2021, 6, 602–612. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, X.; Qian, Y.; Gao, H.; Weber, D.H.; Zhang, L.; Goodenough, J.B.; Yu, G. In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite-Free Alkali-Metal-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 12170–12177. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Chang, H.; Rao, W. Galvanic Replacement of Liquid Metal/Reduced Graphene Oxide Frameworks. Adv. Mater. Interfaces 2020, 7, 2000626. [Google Scholar] [CrossRef]
- Ma, J.; Lin, Y.; Kim, Y.W.; Ko, Y.; Kim, J.; Oh, K.H.; Sun, J.Y.; Gorman, C.B.; Voinov, M.A.; Smirnov, A.I.; et al. Liquid Metal Nanoparticles as Initiators for Radical Polymerization of Vinyl Monomers. ACS Macro Lett. 2019, 8, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Sun, M.; Wang, Z.; Yan, J.; Yuan, R.; Liu, T.; Majidi, C.; Matyjaszewski, K. Surface Engineering of Liquid Metal Nanodroplets by Attachable Diblock Copolymers. ACS Nano 2020, 14, 9884–9893. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Shang, W.; Handschuh-Wang, S.; Zhou, X. Light-Induced Shape Morphing of Liquid Metal Nanodroplets Enabled by Polydopamine Coating. Small 2019, 15, 1804838. [Google Scholar] [CrossRef] [PubMed]
- Alkathiri, T.; Dhar, N.; Jannat, A.; Syed, N.; Mohiuddin, M.; Alsaif, M.M.; Datta, R.S.; Messalea, K.A.; Zhang, B.Y.; Khan, M.W.; et al. Atomically thin TiO2 nanosheets synthesized using liquid metal chemistry. Chem. Commun. 2020, 56, 4914–4917. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, M.; Zong, L.; Wu, X.; You, J.; Du, P.; Li, C. Liquid Metal Droplets Wrapped with Polysaccharide Microgel as Biocompatible Aqueous Ink for Flexible Conductive Devices. Adv. Funct. Mater. 2018, 28, 1804197. [Google Scholar] [CrossRef]
- Fan, L.; Duan, M.; Xie, Z.; Pan, K.; Wang, X.; Sun, X.; Wang, Q.; Rao, W.; Liu, J. Injectable and Radiopaque Liquid Metal/Calcium Alginate Hydrogels for Endovascular Embolization and Tumor Embolotherapy. Small 2020, 16, 1903421. [Google Scholar] [CrossRef]
- Ren, L.; Zhuang, J.; Casillas, G.; Feng, H.; Liu, Y.; Xu, X.; Liu, Y.; Chen, J.; Du, Y.; Jiang, L.; et al. Nanodroplets for Stretchable Superconducting Circuits. Adv. Funct. Mater. 2016, 26, 8111–8118. [Google Scholar] [CrossRef]
- Ren, L.; Cheng, N.; Man, X.; Qi, D.; Liu, Y.; Xu, G.; Cui, D.; Liu, N.; Zhong, J.; Peleckis, G.; et al. General Programmable Growth of Hybrid Core–Shell Nanostructures with Liquid Metal Nanodroplets. Adv. Mater. 2021, 33, 2008024. [Google Scholar] [CrossRef]
- Alsaif, M.M.Y.A.; Kuriakose, S.; Walia, S.; Syed, N.; Jannat, A.; Zhang, B.Y.; Haque, F.; Mohiuddin, M.; Alkathiri, T.; Pillai, N.; et al. 2D SnO/In2O3 van der Waals Heterostructure Photodetector Based on Printed Oxide Skin of Liquid Metals. Adv. Mater. Interfaces 2019, 6, 1900007. [Google Scholar] [CrossRef]
- Wang, Y.; Mayyas, M.; Yang, J.; Tang, J.; Ghasemian, M.B.; Han, J.; Elbourne, A.; Daeneke, T.; Kaner, R.B.; Kalantar-Zadeh, K. Self-Deposition of 2D Molybdenum Sulfides on Liquid Metals. Adv. Funct. Mater. 2021, 31, 2005866. [Google Scholar] [CrossRef]
- Chidambaram, P.R.; Edwards, G.R.; Olson, D.L. A thermodynamic criterion to predict wettability at metal-alumina interfaces. Metall. Trans. B 1992, 23, 215–222. [Google Scholar] [CrossRef]
- Jones, H.D. Theory of the Thermodynamic Properties of Liquid Metals. Phys. Rev. A 1973, 8, 3215–3226. [Google Scholar] [CrossRef]
- Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B. Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. Chem 2017, 3, 560–587. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, W.; Zhang, D.; Du, Y.; Amal, R.; Qiao, S.; Wu, J.; Yin, Z. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Li, F.; Liu, B.; Kawi, S. Recent progress of electrochemical reduction of CO2 by single atom catalysts. Mater. Rep. Energy 2022, 2, 100140. [Google Scholar] [CrossRef]
- Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. J. CO2 Util. 2018, 26, 98–122. [Google Scholar] [CrossRef]
- Aguirre, M.E.; Zhou, R.; Eugene, A.J.; Guzman, M.I.; Grela, M.A. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Appl. Catal. B Environ. 2017, 217, 485–493. [Google Scholar] [CrossRef]
- Wang, X.-Z.; Hu, Q.; Gao, M.; Liu, S.; Luo, J.L. Tuning the subsurface oxygen of Ag2O-derived Ag nanoparticles to achieve efficient CO2 electroreduction to CO. Electrochim. Acta 2022, 403, 139656. [Google Scholar] [CrossRef]
- Tang, J.; Tang, J.; Mayyas, M.; Ghasemian, M.B.; Sun, J.; Rahim, M.A.; Yang, J.; Han, J.; Lawes, D.J.; Jalili, R.; et al. Liquid-Metal-Enabled Mechanical-Energy-Induced CO2 Conversion. Adv. Mater. 2022, 34, 2105789. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.; Weng, Z.; Wu, Z.; Zhong, Y.; Wu, Y.; Fang, J.; Wang, H. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2017, 9, 28519–28526. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Yuan, T.; Li, H.; Qiu, Y.; Zhou, W.; Zhang, J.; Zhao, Y.; Hu, S. Two-dimensional oxide derived from high-temperature liquid metals via bubble templating. Nano Res. 2021, 14, 4795–4801. [Google Scholar] [CrossRef]
- Guo, X.; Ding, Y.; Yu, G. Design Principles and Applications of Next-Generation High-Energy-Density Batteries Based on Liquid Metals. Adv. Mater. 2021, 33, 2100052. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Bi, S.; Zhang, W.; Zhou, H.; Jiang, X. Water-processable liquid metal nanoparticles by single-step polymer encapsulation. Nanoscale 2020, 12, 13731–13741. [Google Scholar] [CrossRef]
- Jin, D.; Choi, S.; Jang, W.; Soon, A.; Kim, J.; Moon, H.; Lee, W.; Lee, Y.; Son, S.; Park, Y.C.; et al. Bismuth Islands for Low-Temperature Sodium-Beta Alumina Batteries. ACS Appl. Mater. Interfaces 2019, 11, 2917–2924. [Google Scholar] [CrossRef]
- Mo, F.; Ruan, J.; Fu, W.; Fu, B.; Hu, J.; Lian, Z.; Li, S.; Song, Y.; Zhou, Y.N.; Fang, F.; et al. Revealing the Role of Liquid Metals at the Anode–Electrolyte Interface for All Solid-State Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 38232–38240. [Google Scholar] [CrossRef]
- Xiong, X.; Yang, H.; Zhang, J.; Lin, J.; Yang, S.; Chen, C.; Xi, J.; Kong, Z.; Song, L.; Zeng, J. Novel MoSSe/Bi2WO6 S-scheme heterojunction photocatalysts for significantly improved photoelectrochemical and photocatalytic performance. J. Alloys Compd. 2023, 933, 167784. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, J.; Chen, C.; Yang, S.; Lin, J.; Xi, J.; Kong, Z. Novel n-MoSSe/p-Co3O4 Z-scheme heterojunction photocatalyst for highly boosting photoelectrochemical and photocatalytic activity. J. Alloys Compd. 2022, 926, 166863. [Google Scholar] [CrossRef]
- Zhang, W.; Ou, J.Z.; Tang, S.Y.; Sivan, V.; Yao, D.D.; Latham, K.; Khoshmanesh, K.; Mitchell, A.; O’Mullane, A.P.; Kalantar-zadeh, K. Liquid Metal/Metal Oxide Frameworks. Adv. Funct. Mater. 2014, 24, 3799–3807. [Google Scholar] [CrossRef]
- Peedikakkal, A.M.P.; Jimoh, A.A.; Shaikh, M.N.; Ali, B.E. Mixed-Metal Metal-Organic Frameworks as Catalysts for Liquid-Phase Oxidation of Toluene and Cycloalkanes. Arab. J. Sci. Eng. 2017, 42, 4383–4390. [Google Scholar] [CrossRef]
- Syed, N.; Zavabeti, A.; Mohiuddin, M.; Zhang, B.; Wang, Y.; Datta, R.S.; Atkin, P.; Carey, B.J.; Tan, C.; Van Embden, J.; et al. Sonication-Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry. Adv. Funct. Mater. 2017, 27, 1702295. [Google Scholar] [CrossRef]
- Zhang, W.; Naidu, B.S.; Ou, J.Z.; O’Mullane, A.P.; Chrimes, A.F.; Carey, B.J.; Wang, Y.; Tang, S.Y.; Sivan, V.; Mitchell, A.; et al. Liquid Metal/Metal Oxide Frameworks with Incorporated Ga2O3 for Photocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 1943–1948. [Google Scholar] [CrossRef]
Method | Liquid Metal | Oxide Film | Condition | Substrate (Solvent) | ΔG (kJ mol−1) | Crystallization | Thickness (nm) | Ref. |
---|---|---|---|---|---|---|---|---|
Sticking method | EGaInSn | Ga2O3 | Room temperature; containing less than 0.1% of oxygen | Si, SiO2, Pt coated Si wafers, Au coated Si wafers, quartz, glass, ITO | −998.3 | No | 2.78 | [56] |
EGaInSn | HfO2 | −1088.2 | Yes | 0.64 | ||||
EGaInSn | Al2O3 | −1582.3 | Yes | 1.1 | ||||
EGaInSn | Gd2O3 | −1732.3 | Yes | 0.51 | ||||
Sn | SnO | Oxygen Concentration (10–100 ppm) | SiO2/Si SiO2/Si | −251.9 | Yes | 1 | [71] | |
In | In2O3 | −830.7 | Yes | 4.5 | ||||
EGaIn | MoS2 | Room temperature | SiO2/Si/sapphire | n/a | Yes | 0.7 | [72] | |
Gas injection method | EGaInSn | Ga2O3 | Room temperature; | Distilled water | −998.3 | No | 5.2 | [56] |
EGaInSn | HfO2 | −1088.2 | No | 0.46 | ||||
Ga | TiO2 | 80 °C heating | Distilled water | −888.8 | Yes | 3 | [66] | |
Sn | SnOx | Oil bath at 180 °C with the bubbling of oxygen gas at a rate of 100 sccm | Diethylene glycol | −251.9 | No | 5 | [52] | |
Ultrasound method | EGaIn | Ga2O3 | Ice-water bath | Aqueous alginate solution | −998.3 | No | 0.5–3 | [67] |
EGaInSn | Ga2O3 | 60 min at a cold water bath at about 20 °C | ethyl 3-mercaptopropionate | −998.3 | No | 2–3 | [69] | |
EGaInSnZn | MoOx | 10 min at a cold water bath at about 20 °C | Na2MoO4 ·2H2O | −465.1 | No | n/a | [70] | |
WoOx | Na2WO4 ·2H2O | −533.9 | No | n/a | ||||
MnOx | KMnO4 ·2H2O | −533 | No | n/a | ||||
VoOx | Na3VO4 ·2H2O | −1139.3 | No | n/a | ||||
CuOx | Cu(NO3)2 ·2H2O | −129.7 | No | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, G.; Ren, L.; Guo, Z.; Qiao, H.; Huang, Z.; Wang, Z.; Qi, X. Synthesis and Application of Liquid Metal Based-2D Nanomaterials: A Perspective View for Sustainable Energy. Molecules 2023, 28, 524. https://doi.org/10.3390/molecules28020524
Liao G, Ren L, Guo Z, Qiao H, Huang Z, Wang Z, Qi X. Synthesis and Application of Liquid Metal Based-2D Nanomaterials: A Perspective View for Sustainable Energy. Molecules. 2023; 28(2):524. https://doi.org/10.3390/molecules28020524
Chicago/Turabian StyleLiao, Gengcheng, Long Ren, Zixuan Guo, Hui Qiao, Zongyu Huang, Ziyu Wang, and Xiang Qi. 2023. "Synthesis and Application of Liquid Metal Based-2D Nanomaterials: A Perspective View for Sustainable Energy" Molecules 28, no. 2: 524. https://doi.org/10.3390/molecules28020524
APA StyleLiao, G., Ren, L., Guo, Z., Qiao, H., Huang, Z., Wang, Z., & Qi, X. (2023). Synthesis and Application of Liquid Metal Based-2D Nanomaterials: A Perspective View for Sustainable Energy. Molecules, 28(2), 524. https://doi.org/10.3390/molecules28020524