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Abstract: Alzheimer’s disease is a major public brain condition that has resulted in many deaths,
as revealed by the World Health Organization (WHO). Conventional Alzheimer’s treatments such
as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with
several adverse effects. Therefore, it is necessary to find a new therapeutic approach that com-
pletely treats Alzheimer’s disease without many side effects. In this research project, we report
the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1–21) as
potent anti-Alzheimer’s agents. Suitable characterization techniques were employed, and the density
functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been
employed to assess the electronic properties and anti-Alzheimer’s potency of the analogs. All analogs
exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency
(IC50 = 0.10 ± 0.05 µM for AChE) and (IC50 = 0.20 ± 0.050 µM for BuChE) as compared to the refer-
ence drug donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship
was established, and it mainly depends upon the nature, position, number, and electron-donating/-
withdrawing effects of the substituent/s on the phenyl rings.

Keywords: synthesis; thiazole; sulfonamide; anti-Alzheimer’s; DFT; molecular docking

1. Introduction

Alzheimer’s disease (AD) is mainly related to the human brain. Hydrolysis of acetyl-
choline into choline acetic acid is the main activity of acetylcholinesterase (AchE) and
butyrylcholinesterase (BuChE) enzymes [1]. Due to the hydrolysis effects, a shortage of
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acetylcholine products in the hippocampus and cortex of the brain is related to huge psy-
chological functions [2]. Moreover, it is a continuous and irreversible brain disorder in
which the cholinergic system of the brain is constantly imbalanced, often causing many
consequences such as disorientation, difficulty in thinking, cognitive impairment, difficulty
in problem solving, and memory loss [3–5]. For improvement in AD, the main focus is
to target both AchE and BuChE enzymes [6,7]. Moreover, acetylcholinesterase is found
in cholinergic neurons, muscle, and the brain, whereas butyrylcholinesterase is mainly
present in the lungs, the heart, the liver, the kidneys, and the intestine [8–10]. Cleavage of
an ester comprising analogs is due to the action and function of the enzyme AchE, which is
dominant in the brain. Subsequently, when the functions of acetylcholine decrease, BuChE
gradually increases. For this consideration, a potent drug is still required to diminish
enzyme potentials [11]. In addition, the FDA approved various anti-Alzheimer’s drugs
including donepezil, rivastigmine, tacrine, and galanthamine [12]. Furthermore, the limited
use and applicability of drugs with insufficient activity cause gastrointestinal disturbance
and hepatotoxicity [13–16].

Many biologically active compounds possessing a thiazole nucleus show significant
potential and are considered one of the most widely used heterocyclic moieties [17]. The
most important drug, penicillin, also contains a thiazole nucleus and demonstrates this
basic fact and its significance [18]. Likewise, thiazole moiety is a core component of
many bioactive drugs, such as Ravuconazole as an anti-fungal agent [19]; Dasatinib as an
anti-neoplastic agent [20]; meloxicam and fentiazac as anti-inflammatory agents [21]; and
nizatidine as an antiulcer agent [22], as shown in Figure 1.
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Sulfonamide-containing compounds have received substantial attention in the last
few decades and have emerged as potent inhibitors against various diseases, including
diabetes [23], psychosis [24], central nervous system (CNS) disorders [25], tumors [26], and
different cancer treatments [27].

Our research group had identified several heterocyclic compounds as potent therapeu-
tics [28–42] and previously published thiazole and sulfonamide derivatives with various
biological potentials [43–46] (see Figure 2). Keeping in view the biological importance of
thiazole and sulfonamide derivatives, we have planned to design and synthesize a new
hybrid class of thiazole-based sulfonamide analogs as acetylcholinesterase and butyryl-
cholinesterase inhibitors in search of lead candidates.
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2. Results and Discussion
2.1. Chemistry

Different substituted sulfonyl chloride (I) was mixed with an excess of hydrazine
hydrate in ethyl alcohol and refluxed for 5 h to give sulfonohydrazides (II) as the first inter-
mediate product. The intermediate (II) was then treated with ammonium isothiocyanate in
DMF under the refluxed condition to obtain the second intermediate product (III) [47]. The
intermediate (III) was finally treated with different substituted phenacyl bromide in ethyl
alcohol in the presence of triethylamine, and the mixture was refluxed for about 12 h to
obtain thiazole-bearing sulfonamide analogs (1–21) (Scheme 1, Table 1). After completion,
the synthesized compounds were dried and then washed with n-hexane to obtain a pure
product. Primary confirmation of the product was performed with the help of TLC, and
further NMR confirmed the formation of the basic skeleton of the final products.
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Table 1. Different substituents, acetylcholinesterase and butyrylcholinesterase activities of thiazole-
bearing sulfonamide analogs.

S/No R1 R2 AchE IC50 (µM) BuChE IC50 (µM)
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Table 1. Cont.

S/No R1 R2 AchE IC50 (µM) BuChE IC50 (µM)
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Table 1. Different substituents, acetylcholinesterase and butyrylcholinesterase activities of thiazole-
bearing sulfonamide analogs. 
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Scheme 1. Synthesis of thiazole-bearing sulfonamide analogs (1–21): (a) N2H4.H2O, EtOH, Reflux,
5 h; (b) NH4SCN, DMF, 8 h; and (c) different substituted phenacyl bromide, Et3N, EtOH, reflux, 12 h.

A synthesized compound containing several heteroatoms along with carbon atoms has
been described. These atoms are nitrogen, sulfur, oxygen, etc. Due to the presence of these
atoms, protons (1H) and carbons (13C) were found with varied positions in ppm ranges.
All the synthesized compounds (1–21) bearing different substituents on the varied position
of the ring showed different peaks from one another. This might be due to the presence of
electron-withdrawing and electron-donating groups. With the use of 1H NMR (500 MHz,
DMSO), all the compounds having two protons directly attached with both the nitrogen
atoms were found in the ranges between 11.0 and 11.80. Likewise, an aromatic singlet
appeared at 11.67, and another singlet of a –OH proton appeared at 9.75. Similarly, the
aromatic proton appeared at 8.29 showing doublet of doublet (dd) with coupling constant
(J) = 7.4, 1.6 Hz. Furthermore, all other aromatic protons appeared with varied ranges, such
as 7.60 showing dd with J = 1.2, 7.0 Hz; 7.59 showing dd with J = 1.8, 7.0 Hz; 7.22 showing
singlet; 7.11 showing singlet; and 3.05 showing singlet, 1H, thiazole. Similarly, in the case of
13C NMR (125 MHz, DMSO): δ, all carbon appeared at varied ranges in descending order
due to attached different substituents. The carbon appeared at 157.7, 148.4, 139.9, 132.9,
132.5, 131.4, 131.1, 130.4, 130.2, 129.2, 128.6, 128.5, 127.7, 125.2, and 122.0.

2.2. Biological Activities

All the synthesized analogs of thiazole-bearing sulfonamide (1–21) were tested to
explore their acetylcholinesterase (AchE) and butyrylcholinesterase inhibitory activities
(see Figure 3).

Molecules 2023, 28, x FOR PEER REVIEW 7 of 28 
 

 

20 

  

3.50 ± 0.10 5.50 ± 0.10 

21 

 
 

3.20 ± 0.10 5.40 ± 0.10 

Standard drug donepezil 2.16 ± 0.12 4.5 ± 0.11 

2.2. Biological Activities 
All the synthesized analogs of thiazole-bearing sulfonamide (1–21) were tested to ex-

plore their acetylcholinesterase (AchE) and butyrylcholinesterase inhibitory activities (see 
Figure 3). 

 
Figure 3. The general structure of thiazole-bearing sulfonamide analogs (1–21). 

2.2.1. In Vitro Acetylcholinesterase (AchE) Inhibitory Activity  
All synthesized analogs showed good AchE inhibitory potentials with IC50 values 

ranging between 0.10 ± 0.05 and 11.40 ± 0.20 µM, as compared to the standard drug 
donepezil (IC50 = 2.16 ± 0.12 µM) (Table 1). The structure–activity relationship was carried 
out for all the analogs, which mainly depend upon the nature, number, and position of 
the substituent/s on the phenyl ring.  

If we compare analog 3 (IC50 = 2.90 ± 0.10 µM) with analog 18 (IC50 = 0.80 ± 0.050 µM) 
and 20 (IC50 = 3.10 ± 0.10µM), all analogs have the same nitro groups on phenyl rings A 
and B. Differences in the activities of the entire analog may be due to the different numbers 
and positions of the nitro group (see Figure 4).  

Figure 3. The general structure of thiazole-bearing sulfonamide analogs (1–21).



Molecules 2023, 28, 559 8 of 27

2.2.1. In Vitro Acetylcholinesterase (AchE) Inhibitory Activity

All synthesized analogs showed good AchE inhibitory potentials with IC50 values
ranging between 0.10 ± 0.05 and 11.40 ± 0.20 µM, as compared to the standard drug
donepezil (IC50 = 2.16 ± 0.12 µM) (Table 1). The structure–activity relationship was carried
out for all the analogs, which mainly depend upon the nature, number, and position of the
substituent/s on the phenyl ring.

If we compare analog 3 (IC50 = 2.90 ± 0.10 µM) with analog 18 (IC50 = 0.80 ± 0.050 µM)
and 20 (IC50 = 3.10 ± 0.10 µM), all analogs have the same nitro groups on phenyl rings A and
B. Differences in the activities of the entire analog may be due to the different numbers and
positions of the nitro group (see Figure 4).
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Similarly, we compare analog 7 (IC50 = 2.60 ± 0.10 µM) with analog 15 (IC50 = 0.40 ±
0.10 µM). Both analogs have chloro groups on phenyl rings A and B. The small difference
in the inhibitory potentials of this analog may be due to the different number and position
of the same chloro substituent on phenyl rings A and B (see Figure 5).
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Figure 5. SAR study for scaffolds 7 and 15.

Comparing analog 8 (IC50 = 7.30 ± 0.10) with analog 16 (IC50 = 0.30 ± 0.050 µM),
19 (IC50 = 3.10 ± 0.10 µM), and 21 (IC50 = 3.20 ± 0.10 µM) reveals that all analogs comprise
a phenyl ring attached to the para-position of ring B, but ring A possesses a different
type of substituents at different positions, i.e., analog 8 contains a chloro group at the
para-position, analog 16 contains nitro at meta and methyl at the ortho-position, analog
19 contains two nitro groups at the ortho- and meta-position, and analog 21 contains a nitro
group at the para-position. The difference in the potentials of this analog may be due to the
presence of different types and positions of the substituents on phenyl ring A (see Figure 6).



Molecules 2023, 28, 559 9 of 27Molecules 2023, 28, x FOR PEER REVIEW 9 of 28 
 

 

 
Figure 6. SAR study for scaffolds 8, 16, 19, and 21. 

2.2.2. In Vitro Butyrylcholinesterase (BchE) Inhibitory Activity 
All synthesized analogs showed good BuChE inhibitory potentials with IC50 values 

ranging between 0.20 ± 0.050 and 14.30 ± 0.30 µM as compared to the standard drug 
donepezil (IC50 = 4.5 ± 0.11 µM) (Table 1). 

Comparing analog 16 (IC50 = 0.20 ± 0.050 µM) with analog 21 (IC50 = 3.20 ± 0.10 µM) 
reveals that both analogs have a phenyl ring attached to the para-position of the ring B, 
and ring A has nitro and methyl groups in analog 16 and only nitro groups in analog 21. 
The difference in the activity may be due to the different nature and position of the group 
attached to ring A (see Figure 7).  

 
Figure 7. SAR study for scaffolds 16 and 21. 

Similarly, if we compare analog 1 (IC50 = 0.10 ± 0.05 µM) with analog 2 (IC50 = 1.90 ± 
0.10 µM) and 10 (IC50 = 0.60 ± 0.050), analogs 1 and 2 both have a nitro group on ring B but 
an analog 10-bearing nitro group on ring A. The difference in their biological potential 
might be due to the position of substituents on the rings. The potential difference of analog 
10 being somewhat lower than analog 1 may be due to the attachment of methyl moiety 
at the ortho-position of ring A, which produces steric hindrance; therefore, the activity of 
the analog was found to be lower (see Figure 8).  

Figure 6. SAR study for scaffolds 8, 16, 19 and 21.

2.2.2. In Vitro Butyrylcholinesterase (BchE) Inhibitory Activity

All synthesized analogs showed good BuChE inhibitory potentials with IC50 values
ranging between 0.20 ± 0.050 and 14.30 ± 0.30 µM as compared to the standard drug
donepezil (IC50 = 4.5 ± 0.11 µM) (Table 1).

Comparing analog 16 (IC50 = 0.20 ± 0.050 µM) with analog 21 (IC50 = 3.20 ± 0.10 µM)
reveals that both analogs have a phenyl ring attached to the para-position of the ring B,
and ring A has nitro and methyl groups in analog 16 and only nitro groups in analog 21.
The difference in the activity may be due to the different nature and position of the group
attached to ring A (see Figure 7).
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Similarly, if we compare analog 1 (IC50 = 0.10 ± 0.05 µM) with analog 2 (IC50 = 1.90 ±
0.10 µM) and 10 (IC50 = 0.60 ± 0.050), analogs 1 and 2 both have a nitro group on ring B
but an analog 10-bearing nitro group on ring A. The difference in their biological potential
might be due to the position of substituents on the rings. The potential difference of analog
10 being somewhat lower than analog 1 may be due to the attachment of methyl moiety at
the ortho-position of ring A, which produces steric hindrance; therefore, the activity of the
analog was found to be lower (see Figure 8).

The nature of substituents, the number of substituents, and the position at which
substituents are attached might increase or decrease the biological potential of the analog.
The nature of attached substituents such as an electron donating group (EDG) increases the
biological potential due to the transfer of an electron, which causes a negative charge in the
ring as well as the formation of a hydrogen bond with enzyme active sites. However, in
the case of an electron-withdrawing group (EWG), the nature of the attached substituents
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decreases the biological potential. In this consideration, it was concluded that the number,
position, and nature of the substituents can increase or decrease the biological potentials of
the analog. The binding interaction of most analogs with the active site of enzymes was
determined with the help of molecular docking.

Molecules 2023, 28, x FOR PEER REVIEW 10 of 28 
 

 

 
Figure 8. SAR study for scaffolds 1, 2, and 10. 

The nature of substituents, the number of substituents, and the position at which 
substituents are attached might increase or decrease the biological potential of the analog. 
The nature of attached substituents such as an electron donating group (EDG) increases 
the biological potential due to the transfer of an electron, which causes a negative charge 
in the ring as well as the formation of a hydrogen bond with enzyme active sites. How-
ever, in the case of an electron-withdrawing group (EWG), the nature of the attached sub-
stituents decreases the biological potential. In this consideration, it was concluded that the 
number, position, and nature of the substituents can increase or decrease the biological 
potentials of the analog. The binding interaction of most analogs with the active site of 
enzymes was determined with the help of molecular docking.  

2.3. Docking Study 
The molecular docking study was carried out to gain insight into the binding mode 

of synthesized compounds against both the targeted enzyme. The optimized compounds 
were docked into the active site of targeted enzymes based on the co-crystal of each crys-
tallographic structure. A total of nine poses were obtained for each ligand molecule in 
which the top-ranked was selected to explore the binding sites using the discovery studio 
visualizer (DSV). The docking results revealed that all the compounds were found in a 
good orientation in the active site of both enzymes. Generally, we have noticed that all the 
compounds hold different substituting groups, i.e., electron-withdrawing (also known as 
deactivated) and electron-donating groups at different positions. Interestingly, the pro-
tein–ligand interaction (PLI) profile with the in vitro results revealed that analogs 1 and 
10 showed the best potential against both compounds and had been ranked 1st and 2nd 
in the series of all compounds. Both of the compounds bear a strong magnitude of acti-
vated and deactivated groups over the rings. The detailed PLI profile of both compounds 
against both targets revealed numerous key interactions with catalytic residues, which 
might have a potential role in the enhancement of the enzymatic activity of both enzymes.  

For the molecular docking study, both proteins (1Acl and 1PoP) were retrieved from 
the RCSD protein data bank (PDB) and performed using different software such as Auto 
Dock Vina (1.5.7) and DSV (2021). Initially, proteins were prepared in DSV by removing 
water and transferring data in the PDB format to Auto Dock Vina, where polar hydrogen 
and charges were added. Next, ligand molecules were added, and X, Y, and Z coordinates 
were saved in text format; however, both protein and ligand were also saved in PDBQT 
format. The location was set in the command prompt through which all the docking pro-
cedure was carried out. All the results were decoded in DSV, and the interactions were 
visualized in both 2D and 3D structures (see Figures 9–12). Their protein–ligand interac-
tions with distance are summarized in Table 2. 

Figure 8. SAR study for scaffolds 1, 2, and 10.

2.3. Docking Study

The molecular docking study was carried out to gain insight into the binding mode
of synthesized compounds against both the targeted enzyme. The optimized compounds
were docked into the active site of targeted enzymes based on the co-crystal of each
crystallographic structure. A total of nine poses were obtained for each ligand molecule
in which the top-ranked was selected to explore the binding sites using the discovery
studio visualizer (DSV). The docking results revealed that all the compounds were found in
a good orientation in the active site of both enzymes. Generally, we have noticed that all the
compounds hold different substituting groups, i.e., electron-withdrawing (also known as
deactivated) and electron-donating groups at different positions. Interestingly, the protein–
ligand interaction (PLI) profile with the in vitro results revealed that analogs 1 and 10
showed the best potential against both compounds and had been ranked 1st and 2nd in
the series of all compounds. Both of the compounds bear a strong magnitude of activated
and deactivated groups over the rings. The detailed PLI profile of both compounds against
both targets revealed numerous key interactions with catalytic residues, which might have
a potential role in the enhancement of the enzymatic activity of both enzymes.

For the molecular docking study, both proteins (1Acl and 1PoP) were retrieved from
the RCSD protein data bank (PDB) and performed using different software such as Auto
Dock Vina (1.5.7) and DSV (2021). Initially, proteins were prepared in DSV by removing
water and transferring data in the PDB format to Auto Dock Vina, where polar hydrogen
and charges were added. Next, ligand molecules were added, and X, Y, and Z coordinates
were saved in text format; however, both protein and ligand were also saved in PDBQT
format. The location was set in the command prompt through which all the docking
procedure was carried out. All the results were decoded in DSV, and the interactions
were visualized in both 2D and 3D structures (see Figures 9–12). Their protein–ligand
interactions with distance are summarized in Table 2.
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Table 2. Protein–ligand interaction profile for most potent compounds (1 and 10) and standard drug.

Compound Receptor Distance Interaction Binding
Affinity

Compound
Analog 1 (A)
against AchE

TYR-A-334 Pi-Pi Stacked 4.22A◦

−10.9

PHE-A-331 Pi-Sulfur 5.81A◦

PHE-A-331 Pi-Alkyl 4.00A◦

HIS-A-440 Pi-Alkyl 5.57A◦

TRP-A-84 Pi-Alkyl 4.90A◦

GLY-A-117 H-B 3.36A◦

PHE-A-330 Pi-Sigma 4.60A◦

PHE-A-330 Pi-Pi Stacked 6.13A◦

TRP-A-279 Pi-Sigma 5.09A◦

TRP-A-279 Pi-Pi Stacked 8.20A◦

TYR-A-70 Pi-Alkyl 5.84A◦

Analog 1 (B)
against BuChE

GLY-A-116 Pi-Pi Stacked 4.24A◦

−10.3

GLY-A-116 H-B 3.29A◦

PHE-A-329 Pi-Pi T-Shaped 7.02A◦

HIS-A-438 H-B 5.01A◦

HIS-A-438 Pi-Sulfur 3.36A◦

HIS-A-438 Pi-Pi Stacked 5.81A◦

GLY-A-117 H-B 4.52A◦

ALA-A-328 Alkyl 5.12A◦

TRP-A-82 C-HB 4.71A◦

TRP-A-82 Alkyl 5.56A◦

TRP-A-82 Pi-Pi T-shaped 4.35A◦

TRP-A-82 Pi-Sulfur 4.35A◦

TRP-A-231 Pi-Sigma 3.87A◦

LEU-A-286 Alkyl 3.01A◦

Analog 10 (C)
against AchE

SER-A-122 A-A 3.89A◦

−11.8

GLY-A-118 C-HB 4.03A◦

HIS-A-440 C-HB 4.11A◦

TRP-A-84
Amide Pi-Stacked 4.55A◦

PHE-A-330 Pi-Pi Stacked 6.95A◦

GLY-A-117 Pi-Pi T-shaped 5.51A◦

ASP-A-72 P-Anion 4.10A◦

TYR-A-334 Amide
Pi-Stacked 4.65A◦

TYR-A-334 Pi-Alkyl 4.73A◦

TYR-A-334 Pi-Alkyl 4.27A◦

PHE-A-331 Pi-Alkyl 4.08A◦

TRP-A-279 Pi-Pi Stacked 7.73A◦

TRP-A-279 Pi-Alkyl 5.89A◦

Analog 10 (D)
against
BuChE

TRP-A-231 Pi-Alkyl 4.61A◦

−10.1

PHE-A-398 Alkyl 6.19A◦

HIS-A-438 Pi-Alkyl 6.68A◦

PHE-A-334 Pi-Pi T-shaped 6.13A◦

ASP-A-70 H-B 4.82A◦

ASP-A-70 H-B 4.56A◦

TYR-A-332 H-B 6.73A◦

SER-A-79 C-HB 4.11A◦

TRP-A-82 C-HB 5.52A◦

TRP-A-82 Pi-Pi Stacked 4.65A◦

GLY-A-439 C-HB 3.81A◦

VAL-A-288 Alkyl 5.16A◦

LEU-A-286 Pi-Alkyl 4.45A◦
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Table 2. Cont.

Compound Receptor Distance Interaction Binding
Affinity

Donepezil (E)
against AchE

TRP-A 84 3.94A◦ Pi-Pi Stacked

−9.80

TRP-A 279 5.66A◦ Pi-Sigma

TYR-A 70 5.54A◦ Pi-alkyl

SER-A 286 5.5.8A◦ C-H bond

ARG-A289 7.45A◦ C-H bond

TYR-A 334 3.74A◦ Pi-Sigma

PHE-A 330 3.83A◦ Pi-alkyl

Donepezil (F)
against BuChE

TRP-A 82 4.26A◦ Pi-Pi Stacked

−7.30
HIS-A 438 5.58A◦ Pi-Cation

PHE-A 329 5.24A◦ Pi-alkyl

TYR-A 332 4.51A◦ Pi-alkyl

The comparison studies of donepezil (see Figures 13 and 14) with synthesized com-
pounds were obtained through molecular docking studies and their binding interaction
with active sites of protein (PLI). Synthesized compounds showed much better interaction
as compared to the standard drug donepezil; the interaction is summarized in Table 2.

Molecules 2023, 28, x FOR PEER REVIEW 13 of 28 
 

 

with active sites of protein (PLI). Synthesized compounds showed much better interaction 
as compared to the standard drug donepezil; the interaction is summarized in Table 2.  

 
Figure 13. Representation of the PLI profile for donepezil against AChE. 

 
Figure 14. Representation of the PLI profile for donepezil against BuChE. 

Table 2. Protein–ligand interaction profile for most potent compounds (1 and 10) and standard 
drug. 

Compound Receptor Distance Interaction 
Binding Affin-

ity  

Compound 
Analog 1 (A) 
against AchE 

TYR-A-334 Pi-Pi Stacked 4.22A° 

−10.9 
PHE-A-331 Pi-Sulfur 5.81A° 
PHE-A-331 Pi-Alkyl 4.00A° 
HIS-A-440 Pi-Alkyl 5.57A° 

Figure 13. Representation of the PLI profile for donepezil against AChE.



Molecules 2023, 28, 559 15 of 27

Molecules 2023, 28, x FOR PEER REVIEW 13 of 28 
 

 

with active sites of protein (PLI). Synthesized compounds showed much better interaction 
as compared to the standard drug donepezil; the interaction is summarized in Table 2.  

 
Figure 13. Representation of the PLI profile for donepezil against AChE. 

 
Figure 14. Representation of the PLI profile for donepezil against BuChE. 

Table 2. Protein–ligand interaction profile for most potent compounds (1 and 10) and standard 
drug. 

Compound Receptor Distance Interaction 
Binding Affin-

ity  

Compound 
Analog 1 (A) 
against AchE 

TYR-A-334 Pi-Pi Stacked 4.22A° 

−10.9 
PHE-A-331 Pi-Sulfur 5.81A° 
PHE-A-331 Pi-Alkyl 4.00A° 
HIS-A-440 Pi-Alkyl 5.57A° 

Figure 14. Representation of the PLI profile for donepezil against BuChE.

2.4. Computational Details

All the DFT calculations for thiazole-bearing sulfonamide analogs (1–21) are computed
using the Gaussian 09 quantum chemical package [48]. The geometries of considered
thiazole-bearing sulfonamide analogs (1–21) are optimized at ωB97XD/6–31 g (d,p) level
of theory. ωB97XD functional is used due to the associated accuracy and validity of the
results for geometric as well as electronic parameters [49,50]. Additionally, vibrational
frequency analysis is also carried out to confirm the true minimum nature of the optimized
geometries (1–21) on the potential energy surface (PES). Frontier molecular orbital (FMO)
analysis is also performed at the same level of theory to understand the perturbations in
electronic properties. Moreover, molecular electrostatic potential (MESP) is also extracted to
gain insight into the interaction mode of designed analogs with the targeted enzymes. The
Chemcraft package and Gauss View 5.0 are employed for the visualization of geometries
and isodensity [51].

The absence of negative or imaginary frequencies in all the designed thiazole-bearing
sulfonamide analogs (1–21) confirms the true minima nature of the stationary points on PES.
The optimized structures of analogs 1 and 2 are shown in Figure 13, whereas the optimized
geometries of analogs (3–21) are presented in Supporting Information (see Figure S1). Be-
cause all thiazole derivatives are almost similar in structure, the same geometric parameters
are used to characterize their geometries. Slight differences of ±0.01Å in bond lengths
(S—C and S—N) are observed for analogs 1 and 2, which are attributed to different func-
tionalization of ring A (see Figure 15). The angle ∠N—N—S at the sulfonamide moiety is
116o in the case of analog 1, whereas in analog 2, this angle is slightly decreased to 115◦.
The N—S bond is 1.68Å and 1.69Å in analogs 1 and 2, respectively. Similarly, the connecting
bond of sulfonamide moiety and ring A (S—C bond) also differs by 0.01Å in both analogs.
However, the C—C bond between thiazole moiety and ring B is similar in both analogs due
to structural similarity at this end. An almost similar geometric pattern is observed in other
optimized analogs (3–21) given in Figure S1 (Supporting Information). For comparison, the
optimized structure of the standard drug (donepezil) is also added in Figure 15.
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2.5. Molecular Electrostatic Potential

Molecular electrostatic potential (MESP) is a very useful tool that predicts the rela-
tionships of physicochemical properties of designed drug molecules [52]. MESP is also
important for validating the reactivity of the drug molecules toward nucleophilic or elec-
trophilic attacks [53]. Moreover, MESP mapping also provides a valuable reference for the
interaction of drug molecules with the targeted enzyme by evaluating electrostatic interac-
tions [54]. The MESP mapping of thiazole-bearing sulfonamide analogs 1 and 2 is shown in
Figure 16, whereas for analogs (3–21), MESP maps are presented in Figure S2 (Supporting
Information). In the MESP, the higher negative region (red color) is the favorite site for
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electrophilic attack. Therefore, electrophiles will be more likely to attack nucleophilic sites,
and the opposite is true for the blue color regions (positive potential).
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The MESP map of analog 1 reveals that the oxygen atoms of the NO2 group (attached
to ring B) and sulfonamide have a negative potential region (orange color). On the other
hand, hydrogen atoms attached to the nitrogen of sulfonamide and the OH− group of ring
A exhibit the blue color corresponding to a maximum positive charge. The most positive
potential hydrogen atoms ascribe the polar nature of N—H and O—H bonds. However, the
MESP over chlorine atoms seems to have nearly neutral electrostatic potential due to lower
negative potential over them as compared to O atoms. Similar results for the negative
potential of MESP are observed for analog 2; however, positive density (blue region) is
distributed only over hydrogen atoms of sulfonamide attributed to the higher polarity of
the N—H bond. In the remaining studied analogs (3–21), similar positive potential regions
(blue color) are observed in the MESP, and these regions correspond to hydrogen atoms
attached to the nitrogen of sulfonamide. However, the negative potential regions (reddish
color) vary depending on the position of NO2 groups (see Figure S2 for more details).
Similarly, the MESP of the standard drug (donepezil) is also calculated for comparison with
the studied analogs. In the case of the standard drug, the negative potential region (red
color) is distributed over the oxygen atom of cyclopentenone. However, positive density
(blue region) is mainly distributed over hydrogen atoms of the methoxy group.

2.6. Frontier Molecular Orbital Analysis

The frontier molecular orbitals, HOMO and LUMO, help determine the chemical reac-
tivity of a molecule when it interacts with the target enzyme or protein. The HOMO–LUMO
gap helps to characterize the kinetic stability and chemical reactivity of the molecule [55].
Therefore, frontier molecular orbital (FMO) analysis is performed to gain insight into the
electronic properties of the designed thiazole-bearing sulfonamide analogs (1–21). HOMO–
LUMO orbital densities of analogs 1 and 2 and the standard drug are presented in Figure 15,
whereas the HOMO–LUMO isodensity for studied thiazole-bearing sulfonamide analogs
(1–21) are shown in Figure S3 (Supporting Information). Results of HOMO–LUMO energies
and their energy gaps are reported in Table 3. In the case of sulfonamide analogs 1 and 2,
almost similar behavior is observed regarding HOMO–LUMO densities. In both analogs,
the HOMOs are mainly distributed on ring B and the thiazole ring, with some density over
N atoms of sulfonamide as well (see Figure 17). On the other hand, LUMO is distributed
entirely on ring B in both analogs 1 and 2. The distribution pattern of HOMO densities of
analogs (3–21) is consistent with analogs 1 and 2. However, the LUMO densities of analogs
(3–21) are quite different and distributed over ring A (see Figure S3). Thus, the charge
is transferred from ring B and the thiazole ring to ring A. The FMO density distribution
pattern is similar in all remaining analogs (3–21), in which LUMO is mainly distributed
over ring A and HOMO over ring B and the thiazole moiety (see Figure S3).

Table 3. HOMO, LUMO, and energy gap of studied thiazole-bearing sulfonamide analogs 1–21 and
standard drug (all values are in eV).

Analogs HOMO LUMO Egap Analogs HOMO LUMO Egap

1 −8.36 −0.46 −7.91 12 −8.13 −0.92 −7.20
2 −8.41 −0.49 −7.92 13 −8.30 −1.06 −7.24
3 −8.53 −1.10 −7.43 14 −8.14 −1.04 −7.11
4 −8.74 −0.99 −7.75 15 −8.20 0.18 −8.38
5 −7.94 0.27 −8.21 16 −7.81 −0.85 −6.97
6 −8.07 −1.17 −6.90 17 −7.70 0.28 −7.98
7 −8.04 0.22 −8.26 18 −8.58 −0.96 −7.62
8 −7.70 0.28 −7.98 19 −7.74 −1.51 −6.23
9 −7.83 0.05 −7.88 20 −8.54 −1.29 −7.26
10 −8.33 −0.93 −7.40 21 −7.79 −1.17 −6.62
11 −8.18 −0.91 −7.27 Std drug −7.77 0.64 −8.41
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Analog 1 has an energy gap of 7.91 eV, and analog 2 has an energy gap of 7.92 eV.
However, the HOMO and LUMO values of analog 1 are−8.36 eV and−0.46 eV, respectively.
A higher HOMO–LUMO energy gap renders the higher electronic stability of thiazole-
bearing sulfonamide analogs. Overall, the highest energy gap is calculated for analog 15
(−8.38 eV), whereas the lowest HOMO–LUMO gap is seen in analog 21 (−6.62 eV). The
higher HOMO values are associated with the electron-donating ability of the designed
molecules, whereas the lower LUMO energies render good electron-accepting ability [56].
The HOMO–LUMO energy values indicate that the charge transfer occurs within the
thiazole-bearing sulfonamide analogs. Therefore, results in Table 3 reveal that lower LUMO
energy values promote the electron-accepting ability of considered analogs (1–21) and
higher HOMO values correspond to the electron-donating tendency of analogs. FMO
analysis of a standard drug (donepezil) shows almost similar results. HOMO, LUMO,
and the energy gap values of the standard drug are almost consistent with the studied
analogs, especially with analogs 5, 7, and 15 (see Table 3). Moreover, the distribution
of HOMO–LUMO isodensity also confirms that charge transfer occurs within the drug
molecule, which is in good correlation with studied thiazole-bearing sulfonamide analogs.

3. Conclusions

In summary, we have synthesized twenty-one analogs of thiazole-bearing sulfonamide
and evaluated them against acetylcholinesterase and butyrylcholinesterase in the presence
of the standard drug donepezil (IC50 values = 2.16 ± 0.12 and 4.5 ± 0.11 µM, respectively).
All analogs were found with different AchE and BuChE inhibitory activity, having IC50
values ranging between 0.10 ± 0.05 and 11.40 ± 0.20 µM and between 0.20 ± 0.050 and
14.30 ± 0.30 µM, respectively. Analog 1 was found to be the most potent one in both AchE
and BuChE cases with IC50 values = 0.10 ± 0.05 µM and 0.20 ± 0.050 µM, respectively.
A limited structure–activity relationship was carried out to find the effect of different
substituents on phenyl rings A and B. Molecular docking studies were carried out to find
the interaction of the most potent analog with the active site of enzymes. Moreover, DFT
was conducted to determine the chemical reactivity of a molecule when it interacts with
the target enzyme or protein.

4. Experimental
4.1. General Procedure for the Synthesis of Thiazole-Bearing Sulfonamide Analogs (1–21)

Thiazole-bearing sulfonamide derivatives (1–21) were obtained by treating different
substituted sulfonyl chloride (I, 1 mmol) with hydrazine hydrate (15 mL) in ethyl alcohol
(10 mL) and refluxed for 5 h to give sulfonohydrazides (II) as a first intermediate product.
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The intermediate (II) was then treated with equimolar ammonium isothiocyanate in DMF
(10 mL) to obtain the second intermediate product (III) [40]. The intermediate (III) was
finally treated with equimolar different substituted phenacyl bromide in ethyl alcohol
(10 mL) in the presence of triethylamine and refluxed for about 12 h to obtain the desired
product. After completion, the synthesized compound was dried and then washed with
n-hexane to obtain a pure product. Primary confirmation of the product was performed
with the help of TLC, and further NMR confirms the formation of the basic skeleton of the
final products.

4.2. Spectral Analysis
4.2.1. 3,5-Dichlro-2-hydroxy-N′-(4-(3-nitrophenyl)thiazol-2-yl)benzenesulfonohydrazide (1)

Yield: 82%; m.p: 209–211 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.97 (s, 1H, NH), 11.92
(s, 1H, NH), 10.45 (s, 1H, OH), 8.88 (s, 1H, Ar-H), 8.81 (s, 1H, Ar-H), 8.57 (s, 1H, Ar-H), 7.59
(t, J = 6.7 Hz, 1H, Ar-H), 6.78 (dd, J = 7.2, 1.8 Hz, 1H, Ar-H), 6.61 (dd, J = 7.3, 2.0 Hz, 1H,
Ar-H), 3.18 (s, 1H, thiazole-H). 13C NMR (125 MHz, DMSO-d6): δ 162.6, 150.2, 149.8, 149.7,
142.6, 142.4, 127.9, 127.7, 120.8, 118.9, 118.8, 118.7, 117.0, 114.1, 100.9. HR EIMS: m/z calcd
for C15H10Cl2N4O5S2 [M]+ 461.2978; Found: 461.2960.

4.2.2. 4-Chloro-N′-(4-(3-nitrophenyl)thiazol-2-yl)benzenesulfonohydrazide (2)

Yield: 86%.; m.p: 207–210 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 12.15 (s, 1H, NH),
11.92 (s, 1H, NH), 8.79 (d, J = 7.7 Hz, 2H, Ar-H), 8.51 (d, J = 6.7 Hz, 2H, Ar-H), 8.43 (s, 1H,
Ar-H), 7.58 (d, J = 8.5, 2.4 Hz, 1H, Ar-H), 7.35 (t, J = 6.6 Hz, 1H, Ar-H), 6.61 (dd, J = 7.3, 1.4
Hz, 1H, Ar-H), 2.36 (s, 1H, CH). 13C NMR (125 MHz, DMSO-d6): δ 162.0, 161.4, 159.6, 149.6,
146.4, 142.5, 127.7, 127.6, 126.4, 121.0, 120.7, 118.7, 100.9, 99.1, 94.4. HR EIMS: m/z calcd for
C15H11ClN4O4S2 [M]+ 410.8552; Found: 410.8540.

4.2.3. 3-Nitro-N′-(4-(3-nitrophenyl)thiazol-2-yl)benzenesulfonohydrazide (3)

Yield: 80%; m.p: 221–225 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.90 (s, 1H, NH), 11.78
(s, 1H, NH), 8.81 (s, 1H, Ar-H), 8.77 (s, 1H, Ar-H), 8.53 (s, 1H, Ar-H), 7.85 (s, 1H, Ar-H), 7.58
(d, J = 6.8 Hz, 1H, Ar-H), 7.31-7.29 (m, 1H, Ar-H), 6.61 (d, J = 7.4 Hz, 1H, Ar-H), 7.28–7.25
(m, 1H, Ar-H), 2.46 (s, 1H, CH). 13C NMR (125 MHz, DMSO-d6): δ 162.8, 149.7, 149.6, 147.5,
139.7, 131.7, 129.3, 127.6, 126.9, 121.3, 118.7, 100.9. HR EIMS: m/z calcd for C15H11N5O6S2
[M]+ 421.4032; Found: 421.4018.

4.2.4. 2-Methyl-5-nitro-N′-(4-(3-nitrophenyl)thiazol-2-yl)benzenesulfonohydrazide (4)

Yield: 77%; m.p: 203–205 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.40 (s, 1H, NH), 11.27
(s, 1H, NH), 8.64 (d, J = 2.1 Hz, 1H, Ar-H), 8.56 (d, J = 1.9 Hz, 1H, Ar-H), 8.43 (d, J = 1.8 Hz,
1H, Ar-H), 8.29 (dd, J = 7.7, 1.8 Hz, 1H, Ar-H), 8.19 (m, 1H, Ar-H), 7.79 (dd, J = 7.7, 1.9 Hz,
1H, Ar-H), 7.63 (d, J = 1.9 Hz, 1H, Ar-H), 2.12 (s, 1H, CH), 2.60 (s, 3H, CH3). 13C NMR
(125 MHz, DMSO-d6): δ 173.0, 150.0, 148.1, 145.1, 142.3, 139.7, 133.6, 133.6, 130.5, 130.1,
126.9, 123.9, 123.0, 122.5, 105.0, 22.0. HR EIMS: m/z calcd for C16H13N5O6S2 [M]+ 435.4345;
Found: 435.4330.

4.2.5. 4-Bromo-N′-(4-phenylthiazol-2-yl)benzenesulfonohydrazide (5)

Yield: 87%; m.p: 198–201 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.46 (s, 1H, NH),
11.25 (s, 1H, NH), 7.85 (d, J = 2.1 Hz, 2H, Ar-H), 8.82(d, J = 1.9 Hz, 2H, Ar-H), 7.80 (dd,
J = 7.5, 1.8 Hz, 2H, Ar-H), 7.45 (m, 1H, Ar-H), 7.35 (dd, J = 7.1, 1.9 Hz, 2H, Ar-H), 2.09 (s, 1H,
CH), 13C NMR (125 MHz, DMSO-d6): δ 173.1, 150.1, 137.6, 133.0, 131.8, 131.7, 129.4, 129.3,
129.1, 129.0, 128.6, 127.4, 127.3, 126.2, 105.0. HR EIMS: m/z calcd for C15H12BrN3O2S2 [M]+

410.3080; Found: 410.3075, 412.3076.
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4.2.6. 4-Nitro-N′-(4-phenylthiazol-2-yl)benzenesulfonohydrazide (6)

Yield: 85%; m.p: 211–214 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.83 (s, 1H, NH),
11.64 (s, 1H, NH), 8.35 (d, J = 7.9 Hz, 2H, Ar-H), 7.62 (d, J = 7.8 Hz, 2H, Ar-H), 7.80 (dd,
J = 7.7, 1.9 Hz, 2H, Ar-H), 7.45 (m, 1H, Ar-H), 7.35 (dd, J = 7.1 Hz, 2H, Ar-H), 4.12 (s, 1H,
CH), 13C NMR (125 MHz, DMSO-d6): δ 173.0, 151.0, 150.2, 142.7, 133.0, 129.1, 128.9, 128.6,
128.1, 128.0, 127.4, 127.3, 124.1, 124.0, 105.0. HR EIMS: m/z calcd for C15H12N4O4S2 [M]+

376.4180; Found: 376.4155.

4.2.7. 4-Chloro-N′-(4-(4-chlorophenyl)thiazol-2-yl)benzenesulfonohydrazide (7)

Yield: 80%; m.p: 206–208 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.20 (s, 1H, NH), 11.14
(s, 1H, NH), 7.62 (d, J = 6.3 Hz, 2H, Ar-H), 7.59 (d, J = 8.5 Hz, 2H, Ar-H), 7.41 (d, J = 6.3 Hz,
2H, Ar-H), 7.39 (d, J = 6.2 Hz, 2H, Ar-H), 7.29 (s, 1H, CH). 13C NMR (125 MHz, DMSO-d6):
δ 157.6, 154.3, 148.8, 146.6, 144.4, 136.2, 133.2, 131.1, 129.7, 129.6, 129.0, 128.8, 128.2, 127.7,
127.6. HR EIMS: m/z calcd for C15H11Cl2N3O2S2 [M]+ 400.2940; Found: 400.2925.

4.2.8. N′-(4-([1,1′-biphenyl]-4-yl)thiazol-2-yl)-4-chlorobenzenesulfonohydrazide (8)

Yield: 75%; m.p: 168–174 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.65 (s, 1H, NH),
11.41 (s, 1H, NH), 8.22 (d, J = 7.7 Hz, 2H, Ar-H), 7.81 (d, J = 7.5 Hz, 2H, Ar-H), 7.73 (dd,
J = 7.5, 1.9 Hz, 2H, Ar-H), 7.69 (d, J = 7.5 Hz, 2H, Ar-H), 7.56 (d, J = 7.1 Hz, 2H, Ar-H),
7.43 (dd, J = 7.1 Hz, 2H, Ar-H), 7.35 (m, J = 7.1–7.31H, Ar-H), 3.25 (s, 1H, CH). 13C NMR
(125 MHz, DMSO-d6): δ 173.1, 150.2, 140.5, 140.3, 137.1, 134.4, 131.2, 129.1, 128.7, 128.7,
128.4, 128.2, 128.1, 127.5, 127.6, 127.4, 127.3, 127.1, 127.1, 127.0, 105.1. HR EIMS: m/z calcd
for C21H16ClN3O2S2 [M]+ 441.9523; Found: 441.9510.

4.2.9. 3,5-Dichloro-N′-(4-(4-chlorophenyl)thiazol-2-yl)-2-hydroxybenzenesulfonohydrazide (9)

Yield: 78%; m.p: 191–196 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.88 (s, 1H, NH), 11.67
(s, 1H, NH), 9.35 (s, 1H, OH), 8.78 (d, J = 1.8 Hz, 1H, Ar-H), 8.50 (d, J = 1.7 Hz, 1H, Ar-H),
7.57 (d, J = 6.7 Hz, 2H, Ar-H), 6.29 (d, J = 6.7 Hz, 2H, Ar-H), 3.20 (s, 1H, CH). 13C NMR
(125 MHz, DMSO-d6): δ 162.6, 149.7, 146.1, 145.5, 142.6, 142.7, 127.9, 127.8, 120.6, 120.1,
120.0, 119.0, 118.7, 117.3, 101.0. HR EIMS: m/z calcd for C15H10Cl3N3O3S2 [M]+ 450.7385;
Found: 450.7345.

4.2.10. N′-(4-(3,4-dichlorophenyl)thiazol-2-yl)-2-methyl-5-nitrobenzenesulfonohydrazide (10)

Yield: 72%; m.p: 187–191 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.70 (s, 1H, NH), 11.59
(s, 1H, NH), 8.50 (s, 1H, Ar-H), 8.49 (d, 1H, J = 7.8 Hz, Ar-H), 8.07 (dd, J = 8.2, 2.6 Hz, 1H,
Ar-H), 7.98 (d, J = 8.5 Hz, 1H, Ar-H), 7.94 (d, J = 8.5 Hz, 1H, Ar-H), 7.70 (d, J = 6.6 Hz, 1H,
Ar-H), 2.70 (s, 1H, CH), 2.63 (s, 3H, CH3). 13C NMR (125 MHz, DMSO-d6): δ 165.3, 162.8,
160.6, 158.2, 147.1, 144.8, 144.2, 132.8, 132.5, 132.2, 132.1, 132.1, 132.1, 131.8, 131.8. HR EIMS:
m/z calcd for C16H12Cl2N4O4S2 [M]+ 459.3285; Found: 459.3278.

4.2.11. N′-(4-(4-chlorophenyl)thiazol-2-yl)-2-methyl-5-nitrobenzenesulfonohydrazide (11)

Yield: 84%; m.p: 213–216 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.69 (s, 1H, NH), 11.56
(s, 1H, NH), 8.01-8.10 (m, 4H, Ar-H), 7.58-7.60 (m, 7.3–7.51H, Ar-H), 7.47 (d, J = 8.2 Hz, 1H,
Ar-H), 3.11 (s, 1H, CH) 2.65 (s, 3H, CH3). 13C-NMR (125 MHz, DMSO-d6): δ 173.1, 152.1,
145.1, 142.6, 139.7, 134.7, 131.7, 130.2, 129.3, 129.2, 128.5, 128.5, 127.1, 123.2, 104.9, 22.1. HR
EIMS: m/z calcd for C16H13ClN4O4S2 [M]+ 424.8723; Found: 424.8707.

4.2.12. N′-(4-(4-bromophenyl)thiazol-2-yl)-2-methyl-5-nitrobenzenesulfonohydrazide (12)

Yield: 74%; m.p: 195–199 ◦C; 1H NMR (500 MHz, DMSO-d6): δ 11.70 (s, 1H, NH),
11.54 (s, 1H, NH), 8.51 (d, J = 2.5 Hz, 1H, Ar-H), 8.10 (dd, J = 7.4, 2.6 Hz, 1H, Ar-H), 7.95
(d, J = 8.4 Hz, 2H, Ar-H), 7.75 (d, J = 8.6 Hz, 2H, Ar-H), 7.47 (d, J = 8.2 Hz, 1H, Ar-H), 4.06
(s, 1H, CH), 2.65 (s, 3H, CH3). 13C NMR (125 MHz, DMSO-d6): δ 165.4, 158.4, 147.6, 144.8,
144.2, 132.6, 132.2, 132.1, 131.9, 131.6, 131.5, 131.4, 131.3, 131.2, 131.1, 128.5. HR EIMS: m/z
calcd for C16H13BrN4O4S2 [M]+ 469.3398; Found: 469.3385, 471.3384.
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4.2.13. N′-(4-(3,4-dichlorophenyl)thiazol-2-yl)-3-nitrobenzenesulfonohydrazide (13)

Yield: 77%; m.p: 186–189 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.88 (s, 1H, NH), 11.76
(s, 1H, NH), 8.34 (t, 1H, Ar-H), 8.25 (d, J = 1.9 Hz, 1H, Ar-H), 8.03 (dd, J = 7.6, 2.4 Hz, 1H, Ar-
H), 8.00 (dd, J = 7.9, 3.9 Hz, 1H, Ar-H), 7.80 (d, J = 8.3 Hz, 1H, Ar-H), 7.80 (dd, J = 7.4, 1.7 Hz,
1H, Ar-H), 7.6 (t, J = 7.4 Hz, 1H, Ar-H), 4.02 (s, 1H, CH). 13C NMR (125 MHz, DMSO-d6):
δ 164.2, 149.7, 147.1, 135.9, 133.6, 131.3, 131.2, 130.8, 129.7, 129.5, 129.3, 127.7, 123.4, 120.0,
89.9. HR EIMS: m/z calcd for C15H10Cl2N4O4S2 [M]+ 445.2945; Found: 445.2931.

4.2.14. N′-(4-(4-chlorophenyl)thiazol-2-yl)-3-nitrobenzenesulfonohydrazide (14)

Yield: 85; m.p: 166–172 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.90 (s, 1H, NH), 11.80
(s, 1H, NH), 8.79 (d, J = 6.7 Hz, 2H, Ar-H), 8.52 (d, J = 7.7 Hz, 2H, Ar-H), 8.45 (s, 1H, Ar-H),
7.58 (t, J = 6.7 Hz, 1H, Ar-H), 7.02 (dd, J = 7.9, 1.4 Hz, 1H, Ar-H), 6.61 (dd, J = 7.8, 1.4 Hz,
1H, Ar-H), 3.81 (s, 1H, CH). 13C NMR (125 MHz, DMSO-d6): δ 159.6, 149.6, 147.3, 142.7,
135.8, 129.8, 127.6, 126.4, 121.2, 1120.5, 19.9, 118.7, 116.0, 111.3, 100.9. HR EIMS: m/z calcd
for C15H11ClN4O4S2 [M]+ 410.8556; Found: 410.8540.

4.2.15. 4-Chloro-N′-(4-(3,4-dichlorophenyl)thiazol-2-yl)benzenesulfonohydrazide (15)

Yield: 79%; m.p: 193–197 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.90 (s, 1H, NH), 11.51
(s, 1H, NH), 8.51 (s, 1H, Ar-H), 7.58 (dd, J = 7.2, 1.5 Hz, 1H, Ar-H), 7.29 (d, J = 7.0 Hz, 1H,
Ar-H), 6.60 (d, J = 6.8 Hz, 2H, Ar-H), 6.38 (d, J = 6.9 Hz, 2H, Ar-H), 3.18 (s, 1H, CH), 13C
NMR (125 MHz, DMSO-d6): δ 162.3, 160.6, 159.5, 149.7, 149.0, 142.5, 131.3, 127.8, 127.7,
120.8, 118.7, 110.5, 107.6, 102.7, 100.9. HR EIMS: m/z calcd for C15H10Cl3N3O2S2 [M]+

434.7312; Found: 434.7301.

4.2.16. N′-(4-([1,1′-biphenyl]-4-yl)thiazol-2-yl)-2-methyl-5-nitrobenzenesulfonohydrazide (16)

Yield: 72%; m.p: 173–175 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.89 (s, 1H, NH), 11.87
(s, 1H, NH), 8.79 (d, J = 7.6 Hz, 1H, Ar-H), 8.52 (d, J = 6.7 Hz, 1H, Ar-H), 7.89 (s, 1H, Ar-H),
7.57 (d, J = 6.9 Hz, 2H, Ar-H), 7.11 (d, J = 7.9 Hz, 2H, Ar-H), 6.60 (dd, J = 7.3, 1.5 Hz, 2H,
Ar-H), 7.42–7.39 (m, 2H, Ar-H), 7.02 (t, J = 7.2 Hz, 1H, Ar-H), 3.88 (s, 1H, CH), 1.91 (s, 3H,
CH3). 13C NMR (125 MHz, DMSO-d6): δ 157.6, 154.3, 148.8, 146.6, 144.4, 136.2, 133.3, 133.2,
131.1, 129.7, 129.6, 129.0, 128.9, 128.8, 128.2, 127.7, 127.6, 127.4, 127.2, 124.1, 39.9. HR EIMS:
m/z calcd for C22H18N4O4S2 [M]+ 466.5335; Found: 466.5320.

4.2.17. N′-(4-([1,1′-biphenyl]-4-yl)thiazol-2-yl)-4-chlorobenzenesulfonohydrazide (17)

Yield: 70%; m.p: 167-169 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.50 (s, 1H, NH), 11.35
(s, 1H, NH), 8.64 (d, J = 8.2 Hz, 2H, Ar-H), 8.40 (d, J = 7.2 Hz, 2H, Ar-H), 8.16 (d, J = 8.9 Hz,
2H, Ar-H), 8.10 (d, J = 8.5 Hz, 2H, Ar-H), 7.80–7.89 (m, 1H, Ar-H), 7.63 (d, J = 8.4 Hz, 2H,
Ar-H), 7.26 (dd, J = 6.0, 2.3 Hz, 1H, Ar-H), 7.09 (s, 1H, CH). 13C NMR (125 MHz, DMSO-d6):
δ 191.7, 171.9, 169.8, 165.4, 162.9, 148.2, 148.0, 147.8, 147.0, 146.0, 135.3, 135.2, 134.9, 134.0,
132.4, 130.7, 130.7, 130.5, 128.8, 128.5, 128.3. HR EIMS: m/z calcd for C21H16ClN3O2S2 [M]+

441.9578; Found: 441.9561.

4.2.18. 2,5-Dinitro-N′-(4-(3-nitrophenyl)thiazol-2-yl)benzenesulfonohydrazide (18)

Yield: 80%; m.p: 189–193 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.41 (s, 1H, NH), 11.25
(s, 1H, NH), 8.13 (s, 1H, Ar-H), 8.06 (dd, J = 6.0, 1.7 Hz, 1H, Ar-H), 7.94 (dd, J = 8.0, 2.3 Hz,
1H, Ar-H), 7.51 (dd, J = 7.5, 3.9 Hz, 1H, Ar-H), 7.49 (t, J = 7.1 Hz, 1H, Ar-H), 7.10 (m, 1H,
Ar-H), 2.46 (s, 1H, CH). 13C NMR (125 MHz, DMSO-d6): δ 192.3, 172.0, 169.8, 148.2, 146.0,
145.2, 138.7, 135.3, 135.2, 132.6, 130.7, 129.6, 129.1, 129.0, 128.5. HR EIMS: m/z calcd for
C15H10N6O8S2[M]+ 466.4052; Found: 466.4038.

4.2.19. N′-(4-([1,1′-biphenyl]-4-yl)thiazol-2-yl)-2,5-dinitrobenzenesulfonohydrazide (19)

Yield: 76%; m.p: 197–200 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.38 (s, 1H, NH),
11.24 (s, 1H, NH), 8.26 (s, 1H, Ar-H), 8.03 (d, J = 8.2 Hz, 2H, Ar-H), 7.87 (dd, J = 8.2, 2.4 Hz,
1H, Ar-H), 7.67 (d, J = 8.4 Hz, 1H, Ar-H), 7.62 (d, J = 8.5 Hz, 2H, Ar-H), 7.62 (d, J = 7.2 Hz,



Molecules 2023, 28, 559 24 of 27

1H, Ar-H), 7.40–7.49 (m, 1H, Ar-H), 7.34 (dd, J = 7.0, 3.8 Hz, 1H, Ar-H), 2.11 (s, 1H, CH).
13C NMR (125 MHz, DMSO-d6): δ 161.7, 159.3, 158.8, 153.7, 148.0, 147.3, 141.5, 135.3, 134.9,
130.8, 128.9, 128.0, 126.9, 123.7, 123.3, 122.1, 66.5, 48.4, 39.8, 23.2, 20.2. HR EIMS: m/z calcd
for C21H15N5O6S2 [M]+ 497.5078; Found: 497.5065.

4.2.20. 4-Nitro-N′-(4-(3-nitrophenyl)thiazol-2-yl)benzenesulfonohydrazide (20)

Yield: 83%; m.p: 219–222 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.4 (s, 1H, NH), 8.25
(s, 1H, NH), 8.23 (dd, J = 8.7, 1.9 Hz, 1H, Ar-H), 8.04 (dd, J = 6.4, 1.8 Hz, 1H, Ar-H), 7.84
(d, J = 6.4 Hz, 2H, Ar-H), 7.74 (d, J = 7.3 Hz, 2H, Ar-H), 7.41–7.44 (t, 1H, Ar-H), 3.50 (s, 1H,
CH). 13C NMR (125 MHz, DMSO-d6): δ 192.3, 175.3, 169.9, 153.7, 147.3, 145.1, 138.6, 132.6,
129.0, 128.8, 128.5, 128.4, 127.0, 126.9, 123.3. HR EIMS: m/z calcd for C15H11N5O6S2 [M]+

421.4080; Found: 421.4072.

4.2.21. N′-(4-([1,1′-biphenyl]-4-yl)thiazol-2-yl)-4-nitrobenzenesulfonohydrazide (21)

Yield: 74%; m.p: 178–181 ◦C. 1H NMR (500 MHz, DMSO-d6): δ 11.62 (s, 1H, NH), 11.44
(s, 1H, NH), 8.64 (d, J = 8.2 Hz, 2H, Ar-H), 8.40 (d, J = 7.2 Hz, 2H, Ar-H), 8.10 (d, J = 8.5 Hz,
2H, Ar-H), 8.01 (d, J = 8.9 Hz, 2H, Ar-H), 7.80–7.89 (m, 1H, Ar-H), 7.99 (d, J = 8.4 Hz, 2H,
Ar-H), 7.26 (dd, J = 6.0, 2.3 Hz, 1H, Ar-H), 2.89 (s, 1H, CH). 13C NMR (125 MHz, DMSO-d6):
δ 191.6, 171.8, 169.7, 165.3, 162.8, 148.1, 148.2, 147.7, 147.1, 146.3, 135.2, 135.4, 134.8, 134.0,
132.3, 130.6, 130.6, 130.4, 128.7, 128.4, 128.2. HR EIMS: m/z calcd for C21H16N4O4S2 [M]+

452.5045; Found: 452.5028.

4.3. Molecular Docking Study Assay

To understand the binding mode of synthesized compounds against both the targeted
enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), a molecular
docking study was conducted using the Molecular Operating Environment (MOE) software
package to corroborate the in vitro and in silico results well. The PDB codes 1ACL for AChE
and 1P0P for BChE were used to retrieve the crystal structures of both targets from the RCSB
protein databank. The crystallographic structures and all synthesized compounds were
protonated, and energy was minimized using the default MOE-Dock module parameters,
resulting in optimized enzyme and compound structures. These improved enzyme and
chemical structures were then used for the docking study. Our prior investigations [57,58]
include detailed descriptions of the docking protocol.

4.4. Acetylcholinesterase and Butyrylcholinesterase Activity Assay Protocol

The assay for acetylcholinesterase and butyrylcholinesterase inhibitory potential was
carried out according to the Ellman et al., method with slight modification [59]. The
reaction mixture had a total volume of 100 µL. It comprised 60 µL of Na2HPO4 buffer with
a concentration of 50 mM and a pH of 7.7. In total, 10 µL of test compound (well-1) with
a concentration of 0.5 mM was added, followed by the addition of 10 µL (0.005 unit well-1)
of an enzyme. The substances were mixed and pre-read at 405 nm. Then, the substances
were pre-incubated at 37 ◦C for 10 min. The reaction was started by the addition of 10 µL of
0.5 mM well-1 substrate (acetylthiocholine iodide/butyrylthiochloine chloride), followed
by the addition of 10 µL DTNB (0.5 mM well-1). Absorbance was measured at 405 nm after
15 min of incubation at 37 ◦C by using a 96-well plate reader Synergy HT, BioTek, USA. All
experiments were performed with their respective controls in triplicate. Donepezil was
used as a standard drug. The % inhibition was computed using the equation below.

Inhibition (%) = Control − Test/control × 100

Control EZ-Fit Enzyme kinetics software (Perrella Scientific Inc. Amherst, USA) was
used for the calculation of IC50 values.
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4.5. Statistical Analysis

All of the measurements were taken in triplicate, and Microsoft Excel 2003 was used
to conduct the statistical analysis. The results are shown as standard error means (SEM).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020559/s1, Figure S1: Optimized structures of repre-
sentative thiazole bearing sulfonamide analogues (3–21) at theωB97XD/6-31g(d, p) level of theory;
Figure S2: Molecular Electrostatics Potential (MESP) of representative thiazole bearing sulfonamide
analogues (3–21); Figure S3: HOMO-LUMO orbital densities of studies thiazole bearing sulfonamide
analogues (3–21); Figure S4–S24: NMR of analog 1, 2, 3, 9, 14, 15, 16.
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