Purification, Characterization and Bioactivities of Polysaccharides Extracted from Safflower (Carthamus tinctorius L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Characteristic of CSPs
2.2. Isolation and Purification of CSPs
2.3. Chemical Composition
2.4. Structural Characteristics of SSPs
2.4.1. Molecular Weight of SSPs
2.4.2. Monosaccharide Composition of SSPs
2.4.3. FT-IR Spectrum of SSPs
2.4.4. NMR Spectrum of SSPs
2.4.5. SEM of SSPs
2.5. Physiological Activity of SSPs
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals
3.3. Extraction of SPs
3.4. Isolation and Purification of SPs
3.5. Physicochemical Characteristics Analysis
3.5.1. Chemical Composition
3.5.2. Zeta-Potential
3.5.3. Thermal Properties
3.5.4. Molecular Weight
3.5.5. Monosaccharide Composition
3.6. Structural Characteristics
3.6.1. FT-IR Analysis
3.6.2. NMR Analysis
3.6.3. SEM Analysis
3.7. Physiological Activity
3.7.1. DPPH Assay
3.7.2. ABTS Assay
3.7.3. Fe+3-Reduction Activity
3.7.4. Antiproliferative Activity
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, X.D.; Tang, L.Y.; Xu, Y.L.; Zhou, G.H.; Wang, Z.J. Towards a better understanding of medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: A phytochemical and pharmacological review. J. Ethnopharmacol. 2014, 151, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Cai, X.; Ai, J.; Zhang, C.; Liu, N.; Gao, W. Extraction, Structures, Bioactivities and Structure-Function Analysis of the Polysaccharides From Safflower (Carthamus tinctorius L.). Front. Pharmacol. 2021, 12, 2814. [Google Scholar] [CrossRef] [PubMed]
- Mani, V.; Lee, S.K.; Yeo, Y.; Hahn, B.S. A metabolic perspective and opportunities in pharmacologically important Safflower. Metabolites 2020, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Yu, J.; Du, X.S.; Zhang, H.M.; Wang, B.; Guo, H.; Bai, J.; Wang, J.H.; Liu, A.; Wang, Y.L. Safflower polysaccharide induces NSCLC cell apoptosis by inhibition of the Akt pathway. Oncol. Rep. 2016, 36, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Ando, I.; Tsukumo, Y.; Wakabayashi, T.; Akashi, S.; Miyake, K.; Kataoka, T.; Nagai, K. Safflower polysaccharides activate the transcription factor NF-κB via Toll-like receptor 4 and induce cytokine production by macrophages. Int. Immunopharmacol. 2002, 8, 1155–1162. [Google Scholar] [CrossRef]
- Yang, J.; Wang, R.; Feng, Q.; Wang, Y.X.; Zhang, Y.Y.; Wu, W.H.; Ge, P.L.; Qi, J.P. Safflower polysaccharide induces cervical cancer cell apoptosis via inhibition of the PI3K/Akt pathway. South Afr. J. Bot. 2018, 118, 209–215. [Google Scholar] [CrossRef]
- Cui, D.P.; Zhao, D.W.; Huang, S.B. Structural characterization of a safflower polysaccharide and its promotion effect on steroid-induced osteonecrosis in vivo. Carbohyd. Polym. 2020, 233, 115856. [Google Scholar] [CrossRef]
- Liu, X.X.; Yan, Y.Y.; Liu, H.M.; Wang, X.D.; Qin, G.Y. Emulsifying and structural properties of polysaccharides extracted from Chinese yam by an enzyme-assisted method. LWT Food Sci. Technol. 2019, 111, 242–251. [Google Scholar] [CrossRef]
- Fang, C.C.; Chen, G.J.; Kan, J.Q. Comparison on characterization and biological activities of Mentha haplocalyx polysaccharides at different solvent extractions. Int. J. Biol. Macromol. 2020, 154, 916–928. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zeng, J.S.; Wang, B.; Cheng, Z.; Xu, J.; Gao, W.H.; Chen, K.F. Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods. Carbohyd. Polym. 2021, 266, 118149. [Google Scholar] [CrossRef]
- Ji, X.L.; Guo, J.H.; Ding, D.Q.; Gao, J.; Hao, L.R.; Guo, X.D.; Liu, Y.Q. Structural characterization and antioxidant activity of a novel high-molecular-weight polysaccharide from Ziziphus Jujuba cv. Muzao. J. Food Meas. Charact. 2022, 16, 2191–2200. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Li, J.; Yan, L.; Li, S.; Ye, X.; Liu, D.; Ding, T.; Linhardt, R.J.; Orfila, C.; et al. Extraction and characterization of RG-I enriched pectic polysaccharides from mandarin citrus peel. Food Hydrocolloid. 2018, 79, 579–586. [Google Scholar] [CrossRef]
- Zhao, B.T.; Liu, J.; Chen, X.; Zhang, J.; Wang, J.L. Purification, structure, and anti-oxidation of polysaccharides from the fruit of Nitraria tangutorum Bobr. RSC Adv. 2018, 8, 11731–11743. [Google Scholar] [CrossRef] [Green Version]
- Abuduwaili, A.; Mutailifu, P.; Nuerxiati, R.; Gao, Y.H.; Aisa, H.A.; Yili, A. Structure and biological activity of polysaccharides from Nitraria sibirica pall fruit. Food Biosci. 2021, 40, 100903. [Google Scholar] [CrossRef]
- Xiong, G.Y.; Ma, L.S.; Zhang, H.; Li, Y.P.; Zou, W.S.; Wang, X.F.; Xu, Q.S.; Xiong, J.T.; Hu, Y.P.; Wang, X.Y. Physicochemical properties, antioxidant activities, and α-glucosidase inhibitory effects of polysaccharides from Evodiae fructus extracted by different solvents. Int. J. Biol. Macromol. 2022, 194, 484–498. [Google Scholar] [CrossRef]
- Chen, X.H.; Chen, G.J.; Wang, Z.R.; Kan, J.Q. A comparison of a polysaccharide extracted from ginger (Zingiber officinale) stems and leaves using different methods: Preparation, structure characteristics, and biological activities. Int. J. Biol. Macromol. 2020, 151, 635–649. [Google Scholar] [CrossRef]
- Zhao, Z.W.; Wang, L.; Ruan, Y.; Wen, C.N.; Ge, M.H.; Qian, Y.Y.; Ma, B.J. Physicochemical properties and biological activities of polysaccharides from the peel of Dioscorea opposita Thunb. extracted by four different methods. Food Sci. Hum. Well. 2023, 12, 130–139. [Google Scholar] [CrossRef]
- Wang, Y.G.; Liu, J.C.; Liu, X.F.; Zhang, X.; Xu, Y.; Leng, F.F.; Avwenagbiku, M.O. Kinetic modeling of the ultrasonic-assisted extraction of polysaccharide from Nostoc commune and physicochemical properties analysis. Int. J. Biol. Macromol. 2019, 128, 421–428. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, J.Y.; Lv, M.S.; Li, X.Y.; Wang, J.H.; Yue, Z.R.; Shi, J.M.; Zhang, G.C.; Sui, G.C. Comparative study of structural properties and biological activities of polysaccharides extracted from Chroogomphus rutilus by four different approaches. Int. J. Biol. Macromol. 2021, 188, 215–225. [Google Scholar] [CrossRef]
- Meng, H.H.; Wu, J.J.; Shen, L.; Chen, G.W.; Jin, L.; Yan, M.X.; Wan, H.T.; He, Y. Microwave-assisted extraction, characterization of a polysaccharide from Salvia miltiorrhiza Bunge and its antioxidant effects via ferroptosis-mediated activation of the Nrf2/HO-1 pathway. Int. J. Biol. Macromol. 2022, 215, 398–412. [Google Scholar] [CrossRef]
- Rjeibi, I.; Feriani, A.; Hentati, F.; Hfaiedh, N.; Michaud, P.; Pierre, G. Structural characterization of water-soluble polysaccharides from Nitraria retusa fruits and their antioxidant and hypolipidemic activities. Int. J. Biol. Macromol. 2019, 129, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Deji; Zhu, M.X.; Chen, D.F.; Lu, Y. Juniperus pingii var. wilsonii acidic polysaccharide: Extraction, characterization and anticomplement activity. Carbohyd. Polym. 2020, 231, 115728. [Google Scholar] [CrossRef] [PubMed]
- Marovska, G.; Vasileva, I.; Petkova, N.; Ognyanov, M.; Gandova, V.; Stoyanova, A.; Merdzhanov, P.; Simitchiev, A.; Slavov, A. Lavender (Lavandula angustifolia Mill.) industrial by-products as a source of polysaccharides. Ind. Crop. Prod. 2022, 188, 115678. [Google Scholar] [CrossRef]
- Xia, Y.G.; Huang, Y.X.; Liang, J.; Kuang, H.X. Comparable studies of two polysaccharides from leaves of Acanthopanax senticosus: Structure and antioxidation. Int. J. Biol. Macromol. 2020, 147, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, A.; Rodríguez, S.; María, C.; Matulewicz, M.C. NMR spectroscopy for structural elucidation of sulfated polysaccharides from red seaweeds. Int. J. Biol. Macromol. 2022, 199, 386–400. [Google Scholar]
- Yao, H.Y.Y.; Wang, J.Q.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res. Int. 2021, 143, 110290. [Google Scholar] [CrossRef]
- Furevi, A.; Rud, A.; Angles d’Ortoli, T.; Mobarak, H.; Ståhle, J.; Hamark, C.; Fontana, C.; Engstrom, O.; Apostolica, P.; Widmalm, G. Complete 1H and 13C NMR chemical shift assignments of mono-to tetrasaccharides as basis for NMR chemical shift predictions of oligo- and polysaccharides using the computer program CASPER. Carbohyd. Res. 2022, 513, 108528. [Google Scholar] [CrossRef]
- Wang, H.X.; Zhao, J.; Li, D.M.; Song, S.; Song, L.; Fu, Y.H.; Zhang, L.P. Structural investigation of a uronic acid-containing polysaccharide from abalone by graded acid hydrolysis followed by PMP-HPLC–MSn and NMR analysis. Carbohyd. Res. 2015, 402, 95–110. [Google Scholar] [CrossRef]
- Li, J.; Niu, D.B.; Zhang, Y.; Zeng, X.A. Physicochemical properties, antioxidant and antiproliferative activities of polysaccharides from Morinda citrifolia L. (Noni) based on different extraction methods. Int. J. Biol. Macromol. 2020, 150, 114–121. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Cao, Y.; Huang, J.L.; Lin, H.Y.; Zhao, T.T.; Liu, L.; Shen, P.Y.; David Julian, M.; Chen, J.; et al. Extraction and characterization of pectic polysaccharides from Choerospondias axillaris peels Comparison of hot water and ultrasound-assisted extraction methods. Food Chem. 2023, 401, 134156. [Google Scholar] [CrossRef]
- Ji, X.L.; Zhang, F.; Zhang, R.; Liu, F.; Peng, Q.; Wang, M. An acidic polysaccharide from Ziziphus Jujuba cv. Muzao: Purification and structural characterization. Food Chem. 2019, 274, 494–499. [Google Scholar] [CrossRef]
- Chen, F.; Huang, G.L.; Yang, Z.Y.; Hou, Y.P. Antioxidant activtiy of Momordica charantia polysaccharide and its derivatives. Int. J. Biol. Macromol. 2019, 138, 673–680. [Google Scholar] [CrossRef]
- Panda, B.C.; Mondal, S.; Devi, K.S.P.; Maiti, T.K.; Khatua, S.; Acharya, K.; Islam, S.S. Pectic polysaccharide from the green fruits of Momordica charantia (Karela): Structural characterization and study of immunoenhancing and antioxidant properties. Carbohyd. Res. 2015, 401, 24–31. [Google Scholar] [CrossRef]
- Yan, J.K.; Yu, Y.B.; Wang, C.; Cai, W.D.; Wu, L.X.; Yang, Y.; Zhang, H.N. Production, physicochemical characteristics, and in vitro biological activities of polysaccharides obtained from fresh bitter gourd (Momordica charantia L.) via room temperature extraction techniques. Food Chem. 2021, 337, 127798. [Google Scholar] [CrossRef]
- Ji, X.L.; Cheng, Y.Q.; Tian, J.Y.; Zhang, S.Q.; Jing, Y.S.; Shi, M.M. Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit. Chem. Biol. Technol. Ag. 2021, 8, 54. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Song, L.J.; Liu, P.Z.; Yan, Y.Z.; Huang, Y.; Bai, B.Y.; Hou, X.J.; Zhang, L. Supercritical CO2 fluid extraction of flavonoid compounds from Xinjiang jujube (Ziziphus jujuba Mill.) leaves and associated biological activities and flavonoid compositions. Ind. Crop. Prod. 2019, 139, 111508. [Google Scholar] [CrossRef]
CSP | SP1 | SP2 | SP3 | SP4 | |
---|---|---|---|---|---|
Total sugar (%) | 66.62 ± 1.66 a | 62.45 ± 1.66 c | 63.15 ± 1.35 c | 61.77 ± 1.19 d | 63.89 ± 2.03 b |
Protein (%) | 5.42 ± 0.41 b | 5.19 ± 0.34 b | 5.16 ± 0.44 b | 5.31 ± 0.30 b | 5.89 ± 0.36 a |
Uronic acid (%) | 7.92 ± 0.31 a | ND | 6.28 ± 0.36 c | 7.34 ± 0.31 b | 7.21 ± 0.27 b |
Zeta potential | 0.51 ± 0.09 e | 1.20 ± 0.11 d | −2.78 ± 0.11 c | −8.46 ± 0.24 b | −16.10 ± 0.14 a |
Samples | Mw (kDa) | Mn (Da) | Mp (Da) | PDI (Mw/Mn) |
---|---|---|---|---|
SSPs1 | 38.03 | 16.16 | 10.73 | 2.35 |
SSPs2 | 43.17 | 10.87 | 12.97 | 3.97 |
SSPs3 | 54.49 | 17.84 | 83.34 | 3.05 |
SSPs4 | 76.92 | 29.69 | 88.88 | 2.59 |
Mannose | Ribose | Rhamnose | Glucuronic Acid | Galactose Acid | N-acetyl-Amino Glucose | Glucose | Galactose | Xylose | Arabinose | Fucose | |
---|---|---|---|---|---|---|---|---|---|---|---|
SSP1 | 0.54 | 0.19 | 0.41 | 0.310 | ND | 0.11 | 4.81 | 14.35 | 1.05 | 13.54 | 0.23 |
SSP2 | 1.29 | 0.31 | 1.23 | 1.35 | 0.10 | ND | 3.10 | 18.53 | 0.53 | 11.47 | 0.21 |
SSP3 | 0.73 | 0.050 | 1.72 | 2.32 | 0.25 | ND | 6.87 | 13.90 | 0.36 | 9.03 | 0.20 |
SSP4 | 1.02 | ND | 1.75 | 2.80 | 0.39 | ND | 6.49 | 12.25 | 0.27 | 9.94 | 0.05 |
NO. | SSP1 | SSP2 | SSP3 | SSP4 | Primary Vibrations |
---|---|---|---|---|---|
1 | 3376.75 | 3379.26 | 3373.90 | 3381.43 | υ (OH) |
2 | 2931.38 | 2930.57 | 2931.03 | 2930.93 | υ (CH), υ (CH2), υ (CH3) |
4 | 1648.16 | 1648.92 | 1648.35 | 1642.22 | υ(O-H), υ(–COOR) |
6 | 1451.84 | 1403.37 | 1445.07 | 1413.84 | υs (C-O), υs (C-H), υs (C=O) |
8 | 1245.90 | 1242.62 | 1249.69 | 1250.23 | υs (S=O) |
9 | 1035.27 | 1078.10 | 1076.60 | 1075.95 | υ (C-O-H), υ (C-O-C) |
10 | ND | 893.46 | 868.16 | 889.32 | α-pyranose |
11 | 674.51 | 673.01 | 677.46 | 649.07 | β-configuration |
Monosaccharide Residues | Chemical Shift (δ, ppm) | ||||||
---|---|---|---|---|---|---|---|
C1/H1 | C2/H2 | C3/H3 | C4/H4 | C5/H5 | C6/H6 | ||
A | α-1,3-Araf | 109.16 | 81.23 | 83.77 | 76.69 | 61.25 | — |
5.13 | 4.10 | 4.02 | 3.84 | 3.61/3.73 | — | ||
B | α-1,3,5-Araf | 107.33 | 80.98 | 83.86 | 81.27 | 66.66 | — |
4.98 | 4.02 | 3.99 | 3.79 | 3.71/3.80 | — | ||
C | β-1,3,6-Galp | 103.01 | 69.79 | 80.03 | 68.43 | 69.18 | 69.21 |
4.43 | 3.55 | 3.65 | 4.04 | 3.83 | 3.82/3.94 | ||
D | β-T-Galp | 103.30 | 70.85 | 71.29 | 73.39 | 68.65 | 62.78 |
4.37 | 3.43 | 3.53 | 3.84 | 3.86 | 3.53/3.69 | ||
E | α-1,2,4-Rhap | 99.90 | 76.08 | 74.39 | 76.88 | 74.18 | 16.09 |
5.05 | 4.02 | 3.93 | 4.15 | 3.98 | 1.32 | ||
F | α-T-Glcp | 98.84 | 70.96 | 72.51 | 72.66 | 70.99 | 63.25 |
4.85 | 3.43 | 3.65 | 3.3 | 3.75 | 3.71 | ||
G | β-Glcp | 104.35 | — | — | — | — | — |
4.54 | 3.55 | — | — | — | — | ||
H | α-Manp | 99.79 | — | — | — | — | — |
5.26 | — | — | — | — | — |
Monosaccharide Residues | Chemical Shift (δ, ppm) | ||||||
---|---|---|---|---|---|---|---|
C1/H1 | C2/H2 | C3/H3 | C4/H4 | C5/H5 | C6/H6 | ||
A | α-1,3-Araf | 109.21 | 81.31 | 83.87 | 76.59 | 61.25 | — |
5.14 | 4.10 | 4.03 | 3.84 | 3.63/3.75 | — | ||
B | α-1,3,5-Araf | 107.39 | 80.93 | 83.94 | 81.91 | 66.61 | — |
4.98 | 4.03 | 3.99 | 3.8 | 3.71/3.81 | — | ||
C | β-1,3,6-Galp | 103.04 | 69.87 | 80.13 | 68.44 | 69.17 | 69.31 |
4.43 | 3.55 | 3.65 | 4.05 | 3.83 | 3.83/3.94 | ||
D | β-T-Galp | 103.34 | 70.72 | 72.55 | 73.68 | 68.63 | 61.01 |
4.39 | 3.44 | 3.57 | 3.83 | 3.87 | 3.69 | ||
E | α-1,2-Rhap | 99.99 | 76.34 | 73.67 | 68.56 | 74.23 | 16.56 |
5.06 | 4.02 | 3.83 | 4.14 | 3.94 | 1.31 | ||
F | β-1,2-Glcp | 103.81 | 75.17 | 74.23 | — | — | — |
4.60 | 3.67 | 3.93 | — | — | — | ||
G | β-1,3-Glcp | 104.14 | 72.92 | 83.01 | 75.17 | — | — |
4.54 | 3.58 | 3.85 | 3.68 | — | — | ||
H | α-1,3-Galp | 100.83 | 73.65 | 76.51 | — | — | — |
4.65 | 3.82 | 3.93 | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Liu, S.; Xu, L.; Du, B.; Song, L. Purification, Characterization and Bioactivities of Polysaccharides Extracted from Safflower (Carthamus tinctorius L.). Molecules 2023, 28, 596. https://doi.org/10.3390/molecules28020596
Wang Q, Liu S, Xu L, Du B, Song L. Purification, Characterization and Bioactivities of Polysaccharides Extracted from Safflower (Carthamus tinctorius L.). Molecules. 2023; 28(2):596. https://doi.org/10.3390/molecules28020596
Chicago/Turabian StyleWang, Qiongqiong, Shiqi Liu, Long Xu, Bin Du, and Lijun Song. 2023. "Purification, Characterization and Bioactivities of Polysaccharides Extracted from Safflower (Carthamus tinctorius L.)" Molecules 28, no. 2: 596. https://doi.org/10.3390/molecules28020596
APA StyleWang, Q., Liu, S., Xu, L., Du, B., & Song, L. (2023). Purification, Characterization and Bioactivities of Polysaccharides Extracted from Safflower (Carthamus tinctorius L.). Molecules, 28(2), 596. https://doi.org/10.3390/molecules28020596