Alkyl 4-Aryl-6-amino-7- phenyl-3-(phenylimino)-4,7-dihydro- 3H-[1,2]dithiolo[3,4-b]pyridine-5-carboxylates: Synthesis and Agrochemical Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Agrochemical Studies
- -
- Control group—untreated plants;
- -
- “Herbicide” (reference) group—plants treated with herbicide 2,4-D only;
- -
- “Herbicide + antidote” group—plants treated with herbicide 2,4-D and an antidote.
3. Materials and Methods
3.1. X-ray Studies for Single Crystals of 15a
3.2. Herbicide-Safening Effect Studies
3.3. Growth-Stimulating Effect Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, U.; Kubitzek, H. Synthesen mit den Thioamiden der Malonsäure, II. Thiopyridone aus Cyan-thioacetamid. Chem. Ber. 1960, 93, 1559–1565. [Google Scholar] [CrossRef]
- Baggaley, K.H. Isothiazolo-Pyridines. Patent GB1560726A, 6 February 1980. Available online: https://worldwide.espacenet.com/patent/search/family/010090431/publication/GB1560726A?q=pn%3DGB1560726A (accessed on 12 November 2022).
- Baggaley, K.H.; Jennings, L.J.A.; Tyrrell, A.W.R. Synthesis of 2-substituted isothiazolopyridin-3-ones. J. Heterocycl. Chem. 1982, 19, 1393–1396. [Google Scholar] [CrossRef]
- Pregnolato, M.; Terreni, M.; Ubiali, D.; Pagani, G.; Borgna, P.; Pastoni, F.; Zampollo, F. 3H-[1,2]Dithiolo [3,4-b]pyridine-3-thione and its derivatives. Synthesis and antimicrobial activity. II Farm. 2000, 55, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Salvetti, R.; Martinetti, G.; Ubiali, D.; Pregnolato, M.; Pagani, G. 1,2-Dithiolan-3-ones and derivatives structurally related to leinamycin. Synthesis and biological evaluation. II Farm. 2003, 58, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Merino, V.; Gil, M.J.; Gonzalez, A.; Zabalza, J.M.; Navarro, J.; Manu, M.A. New 5-substituted derivatives of ethyl 2,3-dihydro-3-oxoisothiazolo[5,4-b]pyridine-2-acetate. Heterocycles 1994, 38, 333–344. [Google Scholar] [CrossRef]
- Lyu, L.; Huang, M.; Liu, J.; Wang, X. Preparation Method of Benzodithiole Skeleton Compounds. Patent CN110950836A, 3 April 2020. (In Chinese). Available online: https://worldwide.espacenet.com/patent/search/family/069981368/publication/CN110950836A?q=pn%3DCN110950836A (accessed on 12 November 2022).
- Borgna, P.; Pregnolato, M.; Invernizzi, A.G.; Mellerio, G. On the reaction between 3H-1,2-dithiolo[3,4-b]pyridine-3-thione and primary alkyl and arylalkylamines. J. Heterocycl. Chem. 1993, 30, 1079–1084. [Google Scholar] [CrossRef]
- Davis, R.C.; Grinter, T.J.; Leaver, D.; O’Neil, R.M.; Thomson, G.A. The dithiole series. Part 8. Synthesis of ring-fused 1,2-dithiolylium and isothiazolium salts from complexes containing cyclopalladated ligands. J. Chem. Soc. Perkin Trans. 1 1990, 2881–2887. [Google Scholar] [CrossRef]
- Jian, F.; Zheng, J.; Li, Y.; Wang, J. Novel ((3Z,5Z)-3,5-bis(phenylimino)-1,2-dithiolan-4-yl) and 3H-[1,2]dithiolo[3,4-b]quinolin-4 (9H)-one heterocycles: An effective and facile green route. Green Chem. 2009, 11, 215–222. [Google Scholar] [CrossRef]
- Kobayashi, G.; Matsuda, Y.; Natsuki, R.; Ueno, S. Studies on isoquinoline derivatives. I. Reaction of 1,3-dioxo-1,2,3,4-tetrahydroisoquinolines with carbon disulfide. Yakugaku Zasshi: J. Pharm. Soc. Jpn. 1973, 93, 322–329. [Google Scholar] [CrossRef]
- Pagani, G.; Pregnolato, M.; Ubiali, D.; Terreni, M.; Piersimoni, C.; Scaglione, F.; Fraschini, F.; Rodríguez Gascón, A.; Pedraz Muñoz, J.L. Synthesis and in vitro anti-mycobacterium activity of N-alkyl-1,2-dihydro-2-thioxo-3-pyridinecarbothioamides. Preliminary toxicity and pharmacokinetic evaluation. J. Med. Chem. 2000, 43, 199–204. [Google Scholar] [CrossRef]
- Ubiali, D.; Pagani, G.; Pregnolato, M.; Piersimoni, C.; Pedraz Muñoz, J.L.; Rodríguez Gascón, A.; Terreni, M. New N-Alkyl-1,2-dihydro-2-thioxo-3-pyridinecarbothioamides as antituberculous agents with improved pharmacokinetics. Bioorganic Med. Chem. Lett. 2002, 12, 2541–2544. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsov, V.A.; Karpychev, Y.V.; Rakitin, O.A. Synthesis of 1-[(1,2-dithiol-3-ylidene)methyl]pyrrolo[1,2-a]pyrazines and 2-[(1,2-dithiol-3-ylidene)methyl]pyridines from 1,2-dithiole-3-thiones. Russ. Chem. Bull. 2013, 62, 1076–1079. [Google Scholar] [CrossRef]
- Gompper, R.; Elser, W. Stabile 1,4-Dipole aus Ketenacetalen und Schwefelkohlenstoff und ihre Verwendung zur Synthese von Heterocyclen. Angew. Chem. 1967, 79, 382–383. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Krivokolysko, S.G.; Frolov, K.A.; Chigorina, E.A.; Polovinko, V.V.; Dmitrienko, A.O.; Bushmarinov, I.S. Synthesis of [1,2]dithiolo[3,4-b]pyridines via the reaction of dithiomalondianilide with arylmethylidenemalononitriles. Chem. Heterocycl. Compd. 2015, 51, 389–392. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Buryi, D.S.; Lukina, D.Y.; Krivokolysko, S.G. Recent advances in the chemistry of thieno[2,3-b]pyridines 1. Methods of synthesis of thieno[2,3-b]pyridines. Russ. Chem. Bull. 2020, 69, 1829–1858. [Google Scholar] [CrossRef]
- Larionova, N.A.; Shestopalov, A.M.; Rodinovskaya, L.A.; Zubarev, A.A. Synthesis of biologically active heterocycles via a domino sequence involving an SN2/Thorpe–Ziegler Reaction Step. Synthesis 2022, 54, 217–245. [Google Scholar] [CrossRef]
- Sinotsko, A.E.; Bespalov, A.V.; Pashchevskaya, N.V.; Dotsenko, V.V.; Aksenov, N.A.; Aksenova, I.V. N,N′-Diphenyldithiomalonodiamide: Structural Features, Acidic Properties, and In Silico Estimation of Biological Activity. Russ. J. Gen. Chem. 2021, 91, 2136–2150. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Aksenov, A.V.; Sinotsko, A.E.; Varzieva, E.A.; Russkikh, A.A.; Levchenko, A.G.; Aksenov, N.A.; Aksenova, I.V. The reactions of N,N’-diphenyldithiomalondiamide with arylmethylidene Meldrum’s acids. Int. J. Mol. Sci. 2022, 23, 15997. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Sinotsko, A.E.; Varzieva, E.A.; Chigorina, E.A.; Aksenov, N.A.; Aksenova, I.V. N,N′-Diphenyldithiomalonamide as methylene active thioamide: A first synthesis of stable Michael adducts. Russ. J. Gen. Chem. 2022, 92, 2530–2535. [Google Scholar] [CrossRef]
- Peyronel, G.; Pellacani, G.C.; Benetti, G.; Pollacci, G. Nickel(II) complexes with dithiomalonamide and NN’-diphenyldithiomalonamide. J. Chem. Soc. Dalton Trans. 1973, 879–882. [Google Scholar] [CrossRef]
- Pellacani, G.C. Palladium(II) complexes with dithiomalonamide and N,N′-diphenyldithiomalonamide. Can. J. Chem. 1974, 52, 3454–3458. [Google Scholar] [CrossRef]
- Pal, T.; Ganguly, A.; Maity, D.S.; Livingstone, S.E. N,N’-diphenyldithiomalonamide as a gravimetric reagent for nickel and cobalt. Talanta 1986, 33, 973–977. [Google Scholar] [CrossRef]
- Battaglia, L.P.; Bonamartini Corradi, A.; Marzotto, A.; Menabue, L.; Pellacani, G.C. Co-ordinative abilities of ligands which favour S,S chelation: Copper(I) halide complexes of N,N′-diphenyldithiomalonamide. The crystal and molecular structure of bis(N,N′-diphenyldithiomalonamide)copper(I) iodide–methanol (2/1). J. Chem. Soc. Dalton Trans. 1988, 1713–1718. [Google Scholar] [CrossRef]
- Nizovtseva, T.V.; Komarova, T.N.; Nakhmanovich, A.S.; Larina, L.I.; Lopyrev, V.A. Synthesis of 1,3-dithiinium salts. Arkivoc 2003, 13, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Elokhina, V.N.; Yaroshenko, T.I.; Nakhmanovich, A.S.; Larina, L.I.; Amosova, S.V. Reaction of dithiomalonic acid dianilide with substituted acetylenic ketones. Russ. J. Gen. Chem. 2006, 76, 1916–1918. [Google Scholar] [CrossRef]
- Obydennov, K.L.; Golovko, N.A.; Kosterina, M.F.; Pospelova, T.A.; Slepukhin, P.A.; Morzherin, Y. Synthesis of 4-oxothiazolidine-2,5-diylidenes containing thioamide group based on dithiomalonamides. Russ. Chem. Bull. 2014, 63, 1330–1336. [Google Scholar] [CrossRef]
- Degorce, S.; Jung, F.H.; Harris, C.S.; Koza, P.; Lecoq, J.; Stevenin, A. Diversity-orientated synthesis of 3,5-bis(arylamino)pyrazoles. Tetrahedron Lett. 2011, 52, 6719–6722. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Frolov, K.A.; Krivokolysko, S.G.; Chigorina, E.A.; Pekhtereva, T.M.; Suykov, S.Y.; Papayanina, E.S.; Dmitrienko, A.O.; Bushmarinov, I.S. Aminomethylation of morpholinium and N-methylmorpholinium 3,5-dicyano-4,4-dimethyl-6-oxo-1,4,5,6-tetrahydropyridine-2-thiolates. Chem. Heterocycl. Compd. 2016, 52, 116–127. [Google Scholar] [CrossRef]
- Dyachenko, I.V.; Dyachenko, V.D.; Dorovatovskii, P.V.; Khrustalev, V.N.; Nenaidenko, V.G. New Options of Multicomponent Condensations Leading to Functional Derivatives of 2-Pyridons. Russ. J. Org. Chem. 2021, 57, 1809–1823. [Google Scholar] [CrossRef]
- Shestopalov, A.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Gromova, A.V. One-step synthesis of substituted 3,5-dicyanospiro- 4-(piperidine-4′)-1H,4H-dihydropyridine-2-thiolates and 2,6-diamino-3,5-dicyanospiro-4-[(piperidine-4′) or (2′-oxoindole-3′)]- 4H-thiopyrans. Phosphorus Sulfur Silicon 2009, 184, 1100–1114. [Google Scholar] [CrossRef]
- Bakhite, E.A.; Abd-Ella, A.A.; El-Sayed, M.E.A.; Abdel-Raheem, S.A.A. Pyridine derivatives as insecticides. Part 1: Synthesis and toxicity of some pyridine derivatives against Cowpea Aphid, Aphis craccivora Koch (Homoptera: Aphididae). J. Agric. Food Chem. 2014, 62, 9982–9986. [Google Scholar] [CrossRef]
- Wen, L.-R.; Sun, J.-H.; Li, M.; Sun, E.-T.; Zhang, S.-S. Application of β-(2-chloroaroyl) thioacetanilides in synthesis: An unusual and highly efficient access to thiochromeno[2,3-b]pyridine derivatives. J. Org. Chem. 2008, 73, 1852–1863. [Google Scholar] [CrossRef]
- Li, M.; Cao, H.; Wang, Y.; Lv, X.-L.; Wen, L.-R. One-pot multicomponent cascade reaction of N,S-ketene acetal: Solvent-free synthesis of imidazo[1,2-a]thiochromeno[3,2-e]pyridines. Org. Lett. 2012, 14, 3470–3473. [Google Scholar] [CrossRef]
- Feng, X.; Wang, J.-J.; Xun, Z.; Huang, Z.-B.; Shi, D.-Q. Multicomponent strategy to indeno[2,1-c]pyridine and hydroisoquinoline derivatives through cleavage of carbon–carbon bond. J. Org. Chem. 2015, 80, 1025–1033. [Google Scholar] [CrossRef]
- Li, M.; Zuo, Z.; Wen, L.; Wang, S. Microwave-assisted combinatorial synthesis of hexa-substituted 1,4-dihydropyridines scaffolds using one-pot two-step multicomponent reaction followed by a S-alkylation. J. Comb. Chem. 2008, 10, 436–441. [Google Scholar] [CrossRef]
- Peterson, M.A.; McMaster, S.A.; Riechers, D.E.; Skelton, J.; Stahlman, P.W. 2,4-D past, present, and future: A review. Weed Technol. 2016, 30, 303–345. [Google Scholar] [CrossRef]
- Chkanikov, N.D.; Spiridonov, Y.Y.; Khalikov, S.S.; Muzafarova, A.M. Antidotes for reduction of phytotoxicity of the residues of sulfonylurea herbicides. INEOS OPEN 2019, 2, 145–152. [Google Scholar] [CrossRef]
- Deng, X. Current advances in the action mechanisms of safeners. Agronomy 2022, 12, 2824. [Google Scholar] [CrossRef]
- Jia, L.; Jin, X.Y.; Zhao, L.X.; Fu, Y.; Ye, F. Research progress in the design and synthesis of herbicide safeners: A review. J. Agric. Food Chem. 2022, 70, 5499–5515. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Buryi, D.S.; Lukina, D.Y.; Stolyarova, A.N.; Aksenov, N.A.; Aksenova, I.V.; Strelkov, V.D.; Dyadyuchenko, L.V. Substituted N-(thieno[2,3-b]pyridine-3-yl)acetamides: Synthesis, reactions, and biological activity. Mon. Für Chem. Chem. Mon. 2019, 150, 1973–1985. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Muraviev, V.S.; Lukina, D.Y.; Strelkov, V.D.; Aksenov, N.A.; Aksenova, I.V.; Krapivin, G.D.; Dyadyuchenko, L.V. Reaction of 3-Amino-4,6-diarylthieno[2,3-b]pyridine-2-carboxamides with ninhydrin. Russ. J. Gen. Chem. 2020, 90, 948–960. [Google Scholar] [CrossRef]
- Buryi, D.S.; Dotsenko, V.V.; Aksenov, N.A.; Aksenova, I.V.; Krivokolysko, S.G.; Dyadyuchenko, L.V. Synthesis and properties of 4,6-dimethyl-5-pentyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile and 3-amino-4,6-dimethyl-5-pentylthieno[2,3-b]pyridi- nes. Russ. J. Gen. Chem. 2019, 89, 1575–1585. [Google Scholar] [CrossRef]
- Shapovalov, A.A.; Zhirmunskaya, N.M.; Zubkova, N.F.; Ovsyannikova, T.V.; Gruzinskaya, N.A. Methodological Recommendations for Laboratory Tests of Synthetic Plant Growth Regulators; Shapovalov, A.A., Ed.; NIITEChem: Cherkassy, Russia, 1990; p. 35. (In Russian) [Google Scholar]
- Barnikow, G.; Kath, V.; Richter, D. Isothiocyanate. II. N,N′-Aryl-substituierte Dithiomalonsäurediamide. J. Prakt. Chem. 1965, 30, 63–66. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinementand analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N | Compound | Organ | Antidote Effect A at Different Concentrations, % 1 | |||
---|---|---|---|---|---|---|
10−2 | 10−3 | 10−4 | 10−5 | |||
1 | 15a | roots | 146 | 151 | 155 | 151 |
hypocotyls | 157 | 160 | 154 | 151 | ||
2 | 15c | roots | 140 | 143 | 143 | 140 |
hypocotyls | 137 | 134 | 140 | 148 | ||
3 | 15f | roots | 133 | 151 | 155 | 151 |
hypocotyls | 148 | 154 | 148 | 151 |
N | Compound | Field Test Variants | |||
---|---|---|---|---|---|
“Herbicide” (Reference) Group (2,4-D Only) | “Herbicide + Antidote” Group | ||||
Crop Yield, Quintals per Hectare | Crop Yield, Quintals per Hectare | Antidote Activity | |||
Quintals per Hectare | AF, % | ||||
1 | 15a | 14.0 | 20.8 | 6.8 | 48.6 1 |
2 | 15c | 14.0 | 19.8 | 5.8 | 41.4 1 |
3 | 15f | 14.0 | 21.2 | 7.2 | 51.4 1 |
N | Compound | Organ | Growth-Stimulating Effect E at Different Concentrations, % 1 | |||
---|---|---|---|---|---|---|
10−2 | 10−3 | 10−4 | 10−5 | |||
1 | 15a | roots | 116 | 120 | 119 | 118 |
stems | 115 | 120 | 120 | 122 | ||
2 | 15c | roots | 108 | 112 | 114 | 112 |
stems | 114 | 115 | 115 | 116 | ||
3 | 15f | roots | 112 | 117 | 117 | 118 |
stems | 113 | 117 | 116 | 112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dotsenko, V.V.; Sinotsko, A.E.; Strelkov, V.D.; Varzieva, E.A.; Russkikh, A.A.; Levchenko, A.G.; Temerdashev, A.Z.; Aksenov, N.A.; Aksenova, I.V. Alkyl 4-Aryl-6-amino-7- phenyl-3-(phenylimino)-4,7-dihydro- 3H-[1,2]dithiolo[3,4-b]pyridine-5-carboxylates: Synthesis and Agrochemical Studies. Molecules 2023, 28, 609. https://doi.org/10.3390/molecules28020609
Dotsenko VV, Sinotsko AE, Strelkov VD, Varzieva EA, Russkikh AA, Levchenko AG, Temerdashev AZ, Aksenov NA, Aksenova IV. Alkyl 4-Aryl-6-amino-7- phenyl-3-(phenylimino)-4,7-dihydro- 3H-[1,2]dithiolo[3,4-b]pyridine-5-carboxylates: Synthesis and Agrochemical Studies. Molecules. 2023; 28(2):609. https://doi.org/10.3390/molecules28020609
Chicago/Turabian StyleDotsenko, Victor V., Anna E. Sinotsko, Vladimir D. Strelkov, Ekaterina A. Varzieva, Alena A. Russkikh, Arina G. Levchenko, Azamat Z. Temerdashev, Nicolai A. Aksenov, and Inna V. Aksenova. 2023. "Alkyl 4-Aryl-6-amino-7- phenyl-3-(phenylimino)-4,7-dihydro- 3H-[1,2]dithiolo[3,4-b]pyridine-5-carboxylates: Synthesis and Agrochemical Studies" Molecules 28, no. 2: 609. https://doi.org/10.3390/molecules28020609
APA StyleDotsenko, V. V., Sinotsko, A. E., Strelkov, V. D., Varzieva, E. A., Russkikh, A. A., Levchenko, A. G., Temerdashev, A. Z., Aksenov, N. A., & Aksenova, I. V. (2023). Alkyl 4-Aryl-6-amino-7- phenyl-3-(phenylimino)-4,7-dihydro- 3H-[1,2]dithiolo[3,4-b]pyridine-5-carboxylates: Synthesis and Agrochemical Studies. Molecules, 28(2), 609. https://doi.org/10.3390/molecules28020609