Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold
Abstract
:1. Introduction
2. Natural Spiroindoles Isolated from Plants and Microorganisms
3. Synthetic Spirooxindoles
3.1. Antibacterial and Antifungal Spirooxindoles
3.2. Antimycobacterial Spirooxindoles
3.3. Antiviral Spirooxindoles
3.4. Anticancer Spiroindoles
3.5. Antimalarial Spirooxindoles
3.6. Anti-Inflammatory Spirooxindoles
3.7. Antihyperglycemic Spirooxindoles
3.8. Anti-Leishmanial Spirooxindoles
4. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bariwal, J.; Voskressensky, L.G.; Van der Eycken, E.V. Recent advances in spirocyclization of indole derivatives. Chem. Soc. Rev. 2018, 47, 3831–3848. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Yu, D.-Q.; Liu, H.-M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem. 2015, 97, 673–698. [Google Scholar] [CrossRef]
- Ganesh, M.; Suraj, S. Expeditious entry into carbocyclic and heterocyclic spirooxindoles. Org. Biomol. Chem. 2022, 20, 5651–5693. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Y.; Guan, W.; Su, W.; Li, G.; Zhang, S.; Yao, H. Spiral molecules with antimalarial activities: A. review. Eur. J. Med. Chem. 2022, 237, 114361. [Google Scholar] [CrossRef]
- Nasri, S.; Bayat, M.; Mirzaei, F. Recent strategies in the synthesis of spiroindole and spirooxindole scaffolds. Top. Curr. Chem. 2021, 379, 25. [Google Scholar] [CrossRef] [PubMed]
- Bora, D.; Kaushal, A.; Shankaraiah, N. Anticancer potential of spirocompounds in medicinal chemistry: A pentennial expedition. Eur. J. Med. Chem. 2021, 215, 113263. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.S.; Jones, R.A.; Bachawala, P.; Mohapatra, P.P. Spirooxindoles as potential pharmacophores. Mini-Rev. Med. Chem. 2017, 17, 1515–1536. [Google Scholar] [CrossRef]
- Xie, Q.-J.; Zhang, W.-Y.; Wu, Z.-L.; Xu, M.-T.; He, Q.-F.; Huang, X.-J.; Che, C.-T.; Wang, Y.; Ye, W.-C. Alkaloid constituents from the fruits of Flueggea virosa. Chin. J. Nat. Med. 2020, 18, 385–392. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, H.-B.; Liu, Y.; Algradi, A.M.; Naseem, A.; Zhou, Y.-Y.; She, X.; Li-Li; Yang, B.-Y.; Kuang, H.-X. New indole alkaloids from the seeds of Datura metel L. Fitoterapia 2020, 146, 104726. [Google Scholar] [CrossRef]
- Chear, N.J.-Y.; León, F.; Sharma, A.; Kanumuri, S.R.R.; Zwolinski, G.; Abboud, K.A.; Singh, D.; Restrepo, L.F.; Patel, A.; Hiranita, T.; et al. Exploring the chemistry of alkaloids from Malaysian Mitragyna speciosa (Kratom) and the role of oxindoles on human opioid receptors. J. Nat. Prod. 2021, 84, 1034–1043. [Google Scholar] [CrossRef]
- Wang, G.; Hou, L.; Wang, Y.; Liu, H.; Yuan, J.; Hua, H.; Sun, L. Two new neolignans and an indole alkaloid from the stems of Nauclea officinalis and their biological activities. Fitoterapia 2022, 160, 105228. [Google Scholar] [CrossRef]
- Yang, W.-X.; Chen, Y.-F.; Yang, J.; Huang, T.; Wu, L.-L.; Xiao, N.; Hao, X.-J.; Zhang, Y.-H. Monoterpenoid indole alkaloids from Gardneria multiflora. Fitoterapia 2018, 124, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-Y.; Shen, N.-X.; Liang, Z.-Y.; Shen, L.; Chen, M.; Wang, C.-Y. Paraherquamide J, a new prenylated indole alkaloid from the marine-derived fungus Penicillium janthinellum HK1-6. Nat. Prod. Res. 2020, 34, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Pandey, A.; Dubey, R.; Kant, R.; Pandey, J. Synthesis and computational studies of potent antimicrobial and anticancer indolone scaffolds with spiro cyclopropyl moiety as a novel design element. J. Ind. Chem. Soc. 2022, 99, 100539. [Google Scholar] [CrossRef]
- Salem, M.A.; Ragab, A.; Askar, A.A.; El-Khalafawy, A.; Makhlouf, A.H. One-pot synthesis and molecular docking of some new spiropyranindol-2-one derivatives as immunomodulatory agents and in vitro antimicrobial potential with DNA gyrase inhibitor. Eur. J. Med. Chem. 2020, 188, 111977. [Google Scholar] [CrossRef] [PubMed]
- Nalini, R.; Basavarajaiah, S.M.; Nagesh, G.Y.; Reddy, K.R. Design, synthesis and biological evaluation of novel isoniazid hybrids. J. Ind. Chem. Soc. 2022, 99, 100273. [Google Scholar] [CrossRef]
- Jarrahpour, A.; Jowkar, Z.; Haghighijoo, Z.; Heiran, R.; Rad, J.A.; Sinou, V.; Rouvier, F.; Latour, C.; Brunel, J.M.; Özdemir, N. Synthesis, in-vitro biological evaluation, and molecular docking study of novel spiro-β-lactam-isatin hybrids. Med. Chem. Res. 2022, 31, 1026–1034. [Google Scholar] [CrossRef]
- Radwan, A.A.; Aanazi, F.K.; Al-Agamy, M.; Mahrous, G.M. Design, synthesis and molecular modeling study of substituted indoline-2-ones and spiro[indole-heterocycles] with potential activity against Gram-positive bacteria. Acta Pharm. 2022, 72, 79–95. [Google Scholar] [CrossRef]
- Pourshab, M.; Asghari, S.; Mohseni, M. Synthesis and antibacterial evaluation of novel spiro[indole-pyrimidine]ones. J. Heterocycl. Chem. 2018, 55, 173–180. [Google Scholar] [CrossRef]
- Huang, Y.; Min, W.; Wu, Q.-W.; Sun, J.; Shi, D.-H.; Yan, C.-G. Facile one-pot synthesis of spirooxindole-pyrrolidine derivatives and their antimicrobial and acetylcholinesterase inhibitory activities. New J. Chem. 2018, 42, 16211–16216. [Google Scholar] [CrossRef]
- Bolous, M.; Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Maruoka, K.; Antharam, V.C.; Thangamani, S. Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens. Bioorg. Med. Chem. Lett. 2019, 29, 2059–2063. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam-Manesh, M.; Sheikhhosseini, E.; Ghazanfari, D.; Akhgar, M. Synthesis of novel 2-oxospiro[indoline-3,4′-[1,3]dithiine]-5′-carbonitrile derivatives by new spiro[indoline-3,4′-[1,3]dithiine]@Cu(NO3)2 supported on Fe3O4@gly@CE MNPs as efficient catalyst and evaluation of biological activity. Bioorganic Chem. 2020, 98, 103751. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.S.; Girgis, A.S.; Mishra, B.B.; Elagawany, M.; Devarapalli, V.; Littlefield, W.F.; Samir, A.; Fayad, W.; Fawzy, N.G.; Srour, A.M.; et al. Synthesis, computational studies, antimycobacterial and antibacterial properties of pyrazinoic acid–isoniazid hybrid conjugates. RSC Adv. 2019, 9, 20450–20462. [Google Scholar] [CrossRef] [Green Version]
- Vintonyak, V.V.; Warburg, K.; Over, B.; Hübel, K.; Rauh, D.; Waldmann, H. Identification and further development of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Tetrahedron 2011, 67, 6713–6729. [Google Scholar] [CrossRef]
- Borad, M.A.; Bhoi, M.N.; Rathwa, S.K.; Vasava, M.S.; Patel, H.D.; Patel, C.N.; Pandya, H.A.; Pithawala, E.A.; Georrge, J.J. Microwave-assisted ZrSiO2 catalysed synthesis, characterization and computational study of novel spiro[indole-thiazolidines] derivatives as anti-tubercular agents, Interdiscip. Sci. Comput. Life Sci. 2018, 10, 411–418. [Google Scholar] [CrossRef]
- Borad, M.A.; Jethava, D.J.; Bhoi, M.N.; Patel, C.N.; Pandya, H.A.; Patel, H.D. Novel isoniazid-spirooxindole derivatives: Design, synthesis, biological evaluation, in silico ADMET prediction and computational studies. J. Mol. Str. 2020, 1222, 128881. [Google Scholar] [CrossRef]
- Fawazy, N.G.; Panda, S.S.; Mostafa, A.; Kariuki, B.M.; Bekheit, M.S.; Moatasim, Y.; Kutkat, O.; Fayad, W.; El-Manawaty, M.A.; Soliman, A.A.F.; et al. Development of spiro-3-indolin-2-one containing compounds of antiproliferative and anti-SARS-CoV-2 properties. Sci. Rep. 2022, 12, 13880. [Google Scholar] [CrossRef]
- Xu, J.; Xie, X.; Ye, N.; Zou, J.; Chen, H.; White, M.A.; Shi, P.-Y.; Zhou, J. Design, synthesis, and biological evaluation of substituted 4,6-dihydrospiro[[1,2,3]triazolo [4,5-b]pyridine-7,3′-indoline]-2′,5(3H)-dione analogues as potent NS4B inhibitors for the treatment of Dengue virus infection. J. Med. Chem. 2019, 62, 7941–7960. [Google Scholar] [CrossRef]
- Youssef, M.A.; Panda, S.S.; Aboshouk, D.R.; Said, M.F.; El Taweel, A.; GabAllah, M.; Fayad, W.; Soliman, A.F.; Mostafa, A.; Fawzy, N.G.; et al. Novel curcumin mimics: Design, synthesis, biological properties and computational studies of piperidone-piperazine conjugates. ChemistrySelect 2022, 7, e202201406. [Google Scholar] [CrossRef]
- Girgis, A.S.; Panda, S.S.; Srour, A.M.; Abdelnaser, A.; Nasr, S.; Moatasim, Y.; Kutkat, O.; El Taweel, A.; Kandeil, A.; Mostafa, A.; et al. 3-Alkenyl-2-oxindoles: Synthesis, antiproliferative and antiviral properties against SARS-CoV-2. Bioorg. Chem. 2021, 114, 105131. [Google Scholar] [CrossRef]
- Wang, S.; Chen, F.-E. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur. J. Med. Chem. 2022, 236, 114334. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Laramy, J.K.; Gampa, G.; Parrish, K.E.; Brundage, R.; Sarkaria, J.N.; Elmquist, W.F. Brain distributional kinetics of a novel MDM2 inhibitor SAR405838: Implications for use in brain tumor therapy. Drug Metab. Dispos. 2019, 47, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
- Wurz, R.P.; Cee, V.J. Targeted degradation of MDM2 as a new approach to improve the efficacy of MDM2-p53 inhibitors. J. Med. Chem. 2019, 62, 445–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gollner, A.; Weinstabl, H.; Fuchs, J.E.; Rudolph, D.; Garavel, G.; Hofbauer, K.S.; Karolyi-Oezguer, J.; Gmaschitz, G.; Hela, W.H.; Kerres, N.; et al. Targeted synthesis of complex spiro [3H-indole-3,2’-pyrrolidin]-2(1H)-ones by intramolecular cyclization of azomethine ylides: Highly potent MDM2–p53 inhibitors. ChemMedChem 2019, 14, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espadinha, M.; Lopes, E.A.; Marques, V.; Amaral, J.D.; dos Santos, D.J.V.A.; Mori, M.; Daniele, S.; Piccarducci, R.; Zappelli, E.; Martini, C.; et al. Discovery of MDM2-p53 and MDM4-p53 protein-protein interactions small molecule dual inhibitors. Eur. J. Med. Chem. 2022, 241, 114637. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, G.; Abdel Aziz, Y.M.; Said, M.M.; El Ashry, E.H.; El Tamany, E.H.; Abu-Serie, M.M.; Teleb, M.; Dömling, A.; Barakat, A. Molecular hybridization design and synthesis of novel spirooxindole-based MDM2 inhibitors endowed with BCL2 signaling attenuation; a step towards the next generation p53 activators. Bioorg. Chem. 2021, 117, 105427. [Google Scholar] [CrossRef]
- Altowyan, M.S.; Soliman, S.M.; Haukka, M.; Al-Shaalan, N.H.; Alkharboush, A.A.; Barakat, A. Synthesis, characterization, and cytotoxicity of new spirooxindoles engrafted furan structural motif as a potential anticancer agent. ACS Omega 2022, 7, 35743–35754. [Google Scholar] [CrossRef]
- Liu, S.-J.; Zhao, Q.; Peng, C.; Mao, Q.; Wu, F.; Zhang, F.-H.; Feng, Q.-S.; He, G.; Han, B. Design, synthesis, and biological evaluation of nitroisoxazole-containing spiro[pyrrolidin-oxindole] derivatives as novel glutathione peroxidase 4/mouse double minute 2 dual inhibitors that inhibit breast adenocarcinoma cell proliferation. Eur. J. Med. Chem. 2021, 217, 113359. [Google Scholar] [CrossRef]
- Kukushkin, M.; Novotortsev, V.; Filatov, V.; Ivanenkov, Y.; Skvortsov, D.; Veselov, M.; Shafikov, R.; Moiseeva, A.; Zyk, N.; Majouga, A.; et al. Synthesis and biological evaluation of S-, O- and Se-containing dispirooxindoles. Molecules 2021, 26, 7645. [Google Scholar] [CrossRef]
- Wang, B.; Peng, F.; Huang, W.; Zhou, J.; Zhang, N.; Sheng, J.; Haruehanroengra, P.; He, G.; Han, B. Rational drug design, synthesis, and biological evaluation of novel chiral tetrahydronaphthalene-fused spirooxindole as MDM2-CDK4 dual inhibitor against glioblastoma. Acta Pharm. Sin. B 2020, 10, 1492–1510. [Google Scholar] [CrossRef]
- Srour, A.M.; Panda, S.S.; Mostafa, A.; Fayad, W.; El-Manawaty, M.A.; Soliman, A.A.F.; Moatasim, Y.; El Taweel, A.; Abdelhameed, M.F.; Bekheit, M.S.; et al. Synthesis of aspirin-curcumin mimic conjugates of potential antitumor and anti-SARS-CoV-2 properties. Bioorg. Chem. 2021, 117, 105466. [Google Scholar] [CrossRef] [PubMed]
- Al-Rashood, S.T.; Hamed, A.R.; Hassan, G.S.; Alkahtani, H.M.; Almehizia, A.A.; Alharbi, A.; Al-Sanea, M.M.; Eldehna, W.M. Antitumor properties of certain spirooxindoles towards hepatocellular carcinoma endowed with antioxidant activity. J. Enzym. Inhib. Med. Chem. 2020, 35, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eldehna, W.M.; EL-Naggar, D.H.; Hamed, A.R.; Ibrahim, H.S.; Ghabbour, H.A.; Abdel-Aziz, H.A. One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells. J. Enzym. Inhib. Med. Chem. 2018, 33, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayed, E.A.; Ezz Eldin, R.R.; Mehany, A.B.M.; Bayoumi, A.H.; Ammar, Y.A. Isatin-Schiff’s base and chalcone hybrids as chemically apoptotic inducers and EGFR inhibitors; design, synthesis, anti-proliferative activities and in silico evaluation. J. Mol. Struct. 2021, 1234, 130159. [Google Scholar] [CrossRef]
- Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Mohammad, F.; Kotresha, D.; Menendez, J.C. Spirooxindole-pyrrolidine heterocyclic hybrids promotes apoptosis through activation of caspase-3. Bioorg. Med. Chem. 2019, 27, 2487–2498. [Google Scholar] [CrossRef]
- Aksenov, A.V.; Aksenov, D.A.; Arutiunov, N.A.; Aksenov, N.A.; Aleksandrova, E.V.; Zhao, Z.; Du, L.; Kornienko, A.; Rubin, M. Synthesis of spiro[indole-3,5’-isoxazoles] with anticancer activity via a formal (4+1)-spirocyclization of nitroalkenes to indoles. J. Org. Chem. 2019, 84, 7123–71377. [Google Scholar] [CrossRef]
- Rajaraman, D.; Anthony, L.A.; Sundararajan, G.; Shanmugam, M.; Arunkumar, A. Synthesis, NMR, anti-oxidant, anti-cancer activity, molecular docking, DFT calculations and in silico ADME analysis of 3’-benzoyl-4’-phenyl- 5’-(piperazin-1-ylmethyl)spiro[indoline -3,2’- pyrrolidin ]-2-one derivatives. J. Mol. Struct. 2022, 1267, 133551. [Google Scholar] [CrossRef]
- Islam, M.S.; Ghawas, H.M.; El-Senduny, F.F.; Al-Majid, A.M.; Elshaier, Y.A.M.M.; Badria, F.A.; Barakat, A. Synthesis of new thiazolo-pyrrolidine-(spirooxindole) tethered to 3-acylindole as anticancer agents. Bioorg. Chem. 2019, 82, 423–430. [Google Scholar] [CrossRef]
- Murali, K.; Sparkes, H.A.; Prasad, K.J.R. Regio- and stereoselective synthesis of dispirooxindolepyrrolocarbazole hybrids via 1,3-dipolar cycloaddition reactions: Cytotoxic activity and SAR studies. Eur. J. Med. Chem. 2018, 143, 292–305. [Google Scholar] [CrossRef] [Green Version]
- Kasaboina, S.; Bollu, R.; Ramineni, V.; Gomedhika, P.M.; Korra, K.; Basaboina, S.R.; Holagunda, U.D.; Nagarapu, L.; Dumala, N.; Grover, P.; et al. Novel benzosuberone conjugates as potential anti-proliferative agents: Design, synthesis and molecular docking studies. J. Mol. Struct. 2019, 1180, 355–362. [Google Scholar] [CrossRef]
- Al-Majid, A.M.; Ali, M.; Islam, M.S.; Alshahrani, S.; Alamary, A.S.; Yousuf, S.; Choudhary, M.I.; Barakat, A. Stereoselective synthesis of the di-spirooxindole analogs based oxindole and cyclohexanone moieties as potential anticancer agents. Molecules 2021, 26, 6305. [Google Scholar] [CrossRef] [PubMed]
- Pourshab, M.; Asghari, S.; Tajbakhsh, M.; Khalilpour, A. Diastereoselective sonochemical synthesis of spirocyclopropaneoxindoles and evaluation of their antioxidant and cytotoxic activities. Chem. Biodivers. 2019, 16, e1900087. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.R.; Manikandan, A.; Sivakumar, A.; Dhayabaran, V.V. An eco-friendly catalytic system for multicomponent, one-pot synthesis of novel spiro-chromeno indoline-triones and their anti-prostate cancer potentials evaluated via alkaline phosphatase inhibition mechanism. Bioorg. Chem. 2018, 81, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Gobinath, P.; Packialakshmi, P.; Daoud, A.; Alarifi, S.; Idhayadhulla, A.; Radhakrishnan, S. Grindstone chemistry: Design, one-pot synthesis, and promising anticancer activity of spiro[acridine-9,2’-indoline]-1,3,8-trione derivatives against the MCF-7 cancer cell line. Molecules 2020, 25, 5862. [Google Scholar] [CrossRef] [PubMed]
- El-Sharief, A.M.S.; Ammar, Y.A.; Belal, A.; El-Sharief, M.A.S.; Mohamed, Y.A.; Mehany, A.B.; Ali, G.A.E.; Ragab, A. Design, synthesis, molecular docking and biological activity evaluation of some novel indole derivatives as potent anticancer active agents and apoptosis inducers. Bioorganic Chem. 2019, 85, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Budovská, M.; Krochtová, K.; Michalková, R.; Mojžiš, J. Aminoanalogues of isobrassinin, erucalexin and isocyclobrassinin: Synthesis and evaluation of the antiproliferative and cytotoxic properties. Tetrahedron 2022, 120, 132898. [Google Scholar] [CrossRef]
- Ji, L.; Zhou, Y.; Yu, Q.; Fang, Y.; Jiang, Y.; Zhao, Y.; Yuan, C.; Xie, W. Synthesis and anticancer activity of new spirooxindoles incorporating [1,2,4]triazolo [3,4-b][1,3,4]thiadiazine moiety. J. Mol. Struct. 2021, 1227, 129406. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.-X.; Sun, J.; Yan, C.-G. A [3+2] cycloaddition reaction for the synthesis of spiro[indoline-3,3’-pyrrolidines] and evaluation of cytotoxicity towards cancer cells. New J. Chem. 2019, 43, 8903–8910. [Google Scholar] [CrossRef]
- Su, X.-Z.; Miller, L.H. The discovery of artemisinin and the Nobel Prize in Physiology or Medicine. Sci. China Life Sci. 2015, 58, 1175–1179. [Google Scholar] [CrossRef] [Green Version]
- Faidallah, H.M.; Panda, S.S.; Serrano, J.C.; Girgis, A.S.; Khan, K.A.; Alamry, K.A.; Therathanakorn, T.; Meyers, M.J.; Sverdrup, F.M.; Eikhoff, C.S.; et al. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg. Med. Chem. 2016, 24, 3527–3539. [Google Scholar] [CrossRef]
- Feng, L.; Xin-Long, H.; Culleton, R.; Jun, C. A brief history of artemisinin: Modes of action and mechanisms of resistance. Chin. J. Nat. Med. 2019, 17, 331–336. [Google Scholar] [CrossRef]
- Yipsirimetee, A.; Chiewpoo, P.; Tripura, R.; Lek, D.; Day, N.P.J.; Dondorp, A.M.; Pukrittayakamee, S.; White, N.J.; Chotivanich, K. Assessment in vitro of the antimalarial and transmission-blocking activities of Cipargamin and Ganaplacide in Artemisinin-resistant Plasmodium falciparum. Antimicrob. Agents Chemother. 2022, 66, e01481-21. [Google Scholar] [CrossRef] [PubMed]
- Ndayisaba, G.; Yeka, A.; Asante, K.P.; Grobusch, M.P.; Karita, E.; Mugerwa, H.; Asiimwe, S.; Oduro, A.; Fofana, B.; Doumbia, S.; et al. Hepatic safety and tolerability of cipargamin (KAE609), in adult patients with Plasmodium falciparum malaria: A randomized, phase II, controlled, dose-escalation trial in sub-Saharan Africa. Malar. J. 2021, 20, 478. [Google Scholar] [CrossRef]
- McCarthy, J.S.; Abd-Rahman, A.N.; Collins, K.A.; Marquart, L.; Griffin, P.; Kümmel, A.; Fuchs, A.; Winnips, C.; Mishra, V.; Csermak-Renner, K.; et al. Defining the antimalarial activity of Cipargamin in healthy volunteers experimentally infected with blood-stage Plasmodium falciparum. Antimicrob. Agents Chemother. 2021, 65, e01423-20. [Google Scholar] [CrossRef] [PubMed]
- Lopes, E.A.; Mestre, R.; Fontinha, D.; Legac, J.; Pei, J.V.; Sanches-Vaz, M.; Mori, M.; Lehane, A.M.; Rosenthal, P.J.; Prudêncio, M.; et al. Discovery of spirooxadiazoline oxindoles with dual-stage antimalarial activity. Eur. J. Med. Chem. 2022, 236, 114324. [Google Scholar] [CrossRef]
- Mathebula, B.; Butsi1, K.R.; van Zyl, R.L.; van Vuuren, N.C.J.; Hoppe, H.C.; Michael, J.P.; de Koning, C.B.; Rousseau, A.L. Preparation and antiplasmodial activity of 3’,4’-dihydro-1’H-spiro(indoline-3,2’-quinolin)-2-ones. Chem. Biol. Drug Des. 2019, 94, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Saxena, H.; Bathula, C.; Kumar, T.; Bhattacharjee, S.; Sen, S.; Gupta, A. Diversity-oriented synthesis derived indole based spiro and fused small molecules kills artemisinin-resistant Plasmodium falciparum. Malar. J. 2021, 20, 100. [Google Scholar] [CrossRef]
- Kumar, R.S.; Antonisamy, P.; Almansour, A.I.; Arumugam, N.; Periyasami, G.; Altaf, M.; Kim, H.-R.; Kwon, K.-B. Functionalized spirooxindole-indolizine hybrids: Stereoselective green synthesis and evaluation of anti-inflammatory effect involving TNF-α and nitrite inhibition. Eur. J. Med. Chem. 2018, 152, 417–423. [Google Scholar] [CrossRef]
- Hammouda, M.B.; Boudriga, S.; Hamden, K.; Askri, M.; Knorr, M.; Strohmann, C.; Brieger, L.; Krupp, A.; Anouar, E.; Snoussi, M.; et al. New spiropyrrolothiazole derivatives bearing an oxazolone moiety as potential antidiabetic agent: Design, synthesis, crystal structure, Hirshfeld surface analysis, ADME and molecular docking studies. J. Mol. Struct. 2022, 1254, 132398. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, B.; Vyas, B.; Silakari, O. Synthesis and biological activity of 4-aryl-3-benzoyl-5-phenylspiro[pyrrolidine-2.3’-indolin]-2’-one derivatives as novel potent inhibitors of advanced glycation end product. Eur. J. Med. Chem. 2014, 79, 282–289. [Google Scholar] [CrossRef]
- Leañez, J.; Nuñez, J.; García-Marchan, Y.; Sojo, F.; Arvelo, F.; Rodriguez, D.; Buscema, I.; Alvarez-Aular, A.; Forero, J.S.B.; Kouznetsov, V.V.; et al. Anti-leishmanial effect of spiro dihydroquinoline-oxindoles on volume regulation decrease and sterol biosynthesis of Leishmania braziliensis. Exp. Parasitol. 2019, 198, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, G.; Aziz, Y.M.A.; Said, M.M.; El Ashry, E.S.H.; El Tamany, E.S.H.; Barakat, A.; Ghabbour, H.A.; Yousuf, S.; Ul-Haq, Z.; Choudhary, M.I. Synthesis of Oxindole Analogues, Biological Activity, and In Silico Studies. ChemistrySelect 2019, 4, 10510–10516. [Google Scholar] [CrossRef]
- Sakla, A.P.; Kansal, P.; Shankaraiah, N. Syntheses and Applications of Spirocyclopropyl Oxindoles: A Decade Review. Eur. J. Org. Chem. 2021, 2021, 757–772. [Google Scholar] [CrossRef]
- Sharma, P.; Senwar, K.R.; Jeengar, M.K.; Reddy, T.S.; Naidu, V.G.M.; Kamal, A.; Shankaraiah, N. H2O-mediated isatin spiro-epoxide ring opening with NaCN: Synthesis of novel 3-tetrazolylmethyl-3-hydroxy-oxindole hybrids and their anticancer evaluation. Eur. J. Med. Chem. 2015, 104, 11–24. [Google Scholar] [CrossRef]
- Saleh, S.K.A.; Hazra, A.; Singh, M.S.; Hajra, S. Selective C3-Allylation and Formal [3 + 2]-Annulation of Spiro-Aziridine Oxindoles: Synthesis of 5′-Substituted Spiro[pyrrolidine-3,3′-oxindoles] and Coerulescine. J. Org. Chem. 2022, 87, 8656–8671. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.; Al-thamili, D.M.; Almansour, A.I.; Arumugam, N.; Mohammad, F. A One-Pot Three-Component Synthesis and Investigation of the In Vitro Mechanistic Anticancer Activity of Highly Functionalized Spirooxindole-Pyrrolidine Heterocyclic Hybrids. Molecules 2020, 25, 5581. [Google Scholar] [CrossRef]
- Ye, N.; Chen, H.; Wold, E.A.; Shi, P.-Y.; Zhou, J. Therapeutic Potential of Spirooxindoles as Antiviral Agents. ACS Infect. Dis. 2016, 2, 382–392. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panda, S.S.; Girgis, A.S.; Aziz, M.N.; Bekheit, M.S. Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold. Molecules 2023, 28, 618. https://doi.org/10.3390/molecules28020618
Panda SS, Girgis AS, Aziz MN, Bekheit MS. Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold. Molecules. 2023; 28(2):618. https://doi.org/10.3390/molecules28020618
Chicago/Turabian StylePanda, Siva S., Adel S. Girgis, Marian N. Aziz, and Mohamed S. Bekheit. 2023. "Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold" Molecules 28, no. 2: 618. https://doi.org/10.3390/molecules28020618
APA StylePanda, S. S., Girgis, A. S., Aziz, M. N., & Bekheit, M. S. (2023). Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold. Molecules, 28(2), 618. https://doi.org/10.3390/molecules28020618