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Abstract: Spirooxindoles occupy an important place in heterocyclic chemistry. Many natural
spirooxindole-containing compounds have been identified as bio-promising agents. Synthetic analogs
have also been synthesized utilizing different pathways. The present article summarizes the recent
development of both natural and synthetic spirooxindole-containing compounds prepared from
isatin or its derivatives reported in the last five years. The spirooxindoles are categorized based on
their mentioned biological properties.
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1. Introduction

Spirocyclic compounds occupy a unique place within organic chemical compounds
due to their rigidity and 3D-geometrical structure. A. Pictet and T. Spengler (1911) re-
ported the first spiro-analog intermediate. Among all spirocyclic compounds, spiroindole-
containing compounds represent an important branch of this class. This is attributed to
the versatile biological properties established by diverse natural and synthetic analogs that
may originate from the C-2 or C-3 indolyl ring with many heterocycles affording various
motifs [1] (Figure 1).
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1. Introduction 
Spirocyclic compounds occupy a unique place within organic chemical compounds 

due to their rigidity and 3D-geometrical structure. A. Pictet and T. Spengler (1911) re-
ported the first spiro-analog intermediate. Among all spirocyclic compounds, spiroin-
dole-containing compounds represent an important branch of this class. This is attributed 
to the versatile biological properties established by diverse natural and synthetic analogs 
that may originate from the C-2 or C-3 indolyl ring with many heterocycles affording var-
ious motifs [1] (Figure 1). 

 
Figure 1. Natural C-2 and C-3 spiroindole-containing compounds. 
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Figure 1. Natural C-2 and C-3 spiroindole-containing compounds.
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Cipargamin (NITD609) and MI-888 are good representatives of these compounds
which are under clinical studies for consideration as antimalarial and antitumor drugs,
respectively. Cipargamin is capable of inhibiting the synthesized protein in Plasmodium fal-
ciparum. MI-888 is capable of inhibiting p53–MDM2 with high efficacy against human
cancers [2]. MI-219 also revealed potent inhibitory properties against MDM2 protein
with apoptosis induction in cancer cells and safe behavior towards normal cells. SOID-
8 is an effective agent against melanoma capable of STAT3 (transcription 3) and JAK-2
(Janus-activated kinase-2) inhibition (Figure 2) [3].
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active spirooxindoles.

The unique chemical and bio-properties of spiroindolyl-containing alkaloids have
attracted the great attention of many researchers. Many review articles have mentioned the
synthetic protocols and bio-properties associated with compounds possessing this scaffold
within the last few decades [1–7]. This study summarizes the important recent development
of either naturally isolated or synthetically prepared spirooxindole-containing compounds
within the last five years (2018–2022) based on their biological properties.

2. Natural Spiroindoles Isolated from Plants and Microorganisms

The whole plant of Flueggea virosa is used in Chinese folk medicine against rheumatism,
cephalic eczema, pruritus, and injuries. Flueindoline C 1 was isolated from the ripe fruits
of Flueggea virosa (extracted by 95% ethanol and purified by silica gel column chromatog-
raphy) [8]. Other spirooxindole derivatives 2 and 3 were isolated from the Datura metel
L. seeds (extracted by 95% ethanol) (Figure 3). Spectroscopic techniques including UV,
IR, 1D-, 2D-NMR, and mass spectroscopy (HRESIMS), in addition to electronic circular
dichroism, supported the structures of 2 and 3. Significant antiproliferative properties were
observed compared to the reference drug 5-Fluorouracil (IC50 = 29.34, 24.3, 20.37; 18.97,
32.82, 47.63; 6.73, 19.38, 10.39 µM for compounds 2, 3, and 5-Fluorouracil against HepG2
“hepatoma”, MCF-7 “breast”, and SGC-7901 “adenocarcinoma” human cancer cell lines,
respectively) [9].

Molecules 2023, 28, 618 2 of 34 
 

 

Cipargamin (NITD609) and MI-888 are good representatives of these compounds 
which are under clinical studies for consideration as antimalarial and antitumor drugs, 
respectively. Cipargamin is capable of inhibiting the synthesized protein in Plasmodium 
falciparum. MI-888 is capable of inhibiting p53‒MDM2 with high efficacy against human 
cancers [2]. MI-219 also revealed potent inhibitory properties against MDM2 protein with 
apoptosis induction in cancer cells and safe behavior towards normal cells. SOID-8 is an 
effective agent against melanoma capable of STAT3 (transcription 3) and JAK-2 (Janus-
activated kinase-2) inhibition (Figure 2) [3]. 

The unique chemical and bio-properties of spiroindolyl-containing alkaloids have at-
tracted the great attention of many researchers. Many review articles have mentioned the 
synthetic protocols and bio-properties associated with compounds possessing this scaf-
fold within the last few decades [1–7]. This study summarizes the important recent devel-
opment of either naturally isolated or synthetically prepared spirooxindole-containing 
compounds within the last five years (2018‒2022) based on their biological properties. 

 
Figure 2. Cipargamin (NITD609), MI-888, MI-219 and SOID-6 representatives of potent biologically 
active spirooxindoles. 

2. Natural Spiroindoles Isolated from Plants and Microorganisms 
The whole plant of Flueggea virosa is used in Chinese folk medicine against rheuma-

tism, cephalic eczema, pruritus, and injuries. Flueindoline C 1 was isolated from the ripe 
fruits of Flueggea virosa (extracted by 95% ethanol and purified by silica gel column chro-
matography) [8]. Other spirooxindole derivatives 2 and 3 were isolated from the Datura 
metel L. seeds (extracted by 95% ethanol) (Figure 3). Spectroscopic techniques including 
UV, IR, 1D-, 2D-NMR, and mass spectroscopy (HRESIMS), in addition to electronic circu-
lar dichroism, supported the structures of 2 and 3. Significant antiproliferative properties 
were observed compared to the reference drug 5-Fluorouracil (IC50 = 29.34, 24.3, 20.37; 
18.97, 32.82, 47.63; 6.73, 19.38, 10.39 μM for compounds 2, 3, and 5-Fluorouracil against 
HepG2 “hepatoma”, MCF-7 “breast”, and SGC-7901 “adenocarcinoma” human cancer 
cell lines, respectively) [9]. 

 
Figure 3. Flueindoline C 1 isolated from the ripe fruits of Flueggea virosa and spiroindoles 2, 3 from 
Datura metel L. seeds. 

Figure 3. Flueindoline C 1 isolated from the ripe fruits of Flueggea virosa and spiroindoles 2, 3 from
Datura metel L. seeds.



Molecules 2023, 28, 618 3 of 32

Spirooxindole alkaloids 4–7 were isolated from the leaves of Malaysian Mitragyna
speciosa (Kratom) (Figure 4). Promising binding affinities with µ-opioid were noticed by
compounds 4 and 5 relative to that of Morphine (Ki = 16.4, 109.8, 789.4, 1715.9, 4.19 nM for
compounds 4–7 and Morphine, respectively) [10].
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(Kratom).

The stems and barks of Nauclea officinalis are traditionally used in China as folk
medications due to their anti-inflammatory and antimicrobial properties. Spirooxindoles
(2S,3S)-javaniside 8, naucleoxoside A 9, and naucleoxoside B 10 were isolated and identified
as the active constituents of Nauclea officinalis (78% ethanol extract of the stem) (Figure 5).
Mild inhibitory properties of nitric oxide production by LPS (lipopolysaccharide) in RAW
264.7 cells were revealed (% inhibition = 59.1, 76.6, 144.7, and 12.3 for compounds 8,
9, 10, and Dexamethasone, respectively). However, no antimicrobial properties were
observed against bacterial (S. aureus, E. coli, K. pneumonia, P. aeruginosa) and fungal strains
(C. neoformans var. gattii, C. albicans, C. tropicalis, A. fumigatus). In addition, these compounds
did not show antiproliferation properties (MTT assay, up to 100 µg/mL) against HepG-2,
SKOV3, HeLa, SGC 7901, MCF-7, and KB carcinoma cell lines [11].
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Figure 5. Spirooxindoles (2S,3S)-javaniside 8, naucleoxoside A 9, and naucleoxoside B 10 isolated
from the stem of Nauclea officinalis.

For a long time in China, the stem of Gardneria multiflora has been used for treating
pain, herpes, eczema, snake bites, and food poisoning. Monoterpenoid indole alkaloids
11–14 were identified from the leaves and stems of this plant (extracted by 95% EtOH and
purified by silica gel column chromatography) (Figure 6) [12].

Spirooxindole metabolites 15–19 were isolated from the marine fungus Penicillium
janthinellum HK1–6 (Figure 7). None of the isolated compounds reveal considerable antibac-
terial properties against Gram-positive (S. aureus, E. faecalis, E. faecium) and Gram-negative
(E. coli) bacterial strains [13].
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3. Synthetic Spirooxindoles
3.1. Antibacterial and Antifungal Spirooxindoles

A variety of 3-spirocyclopropyl-2-oxindoles 21 were synthesized through the methylenein-
dolinones 20 with the appropriate aromatic aldehyde and TsNHNH2 in MeCN. The reaction
was assumed to take place via the formation of the corresponding hydrazone due to the reaction
of an aromatic aldehyde with TsNHNH2 which afforded the aryl-diazomethane in presence
of K2CO3. The latter due to the interaction with 20 finally furnished the spirooxindoles 21
(Scheme 1). Some of the targeted agents showed promising antibacterial properties. The most
potent was 21d (R = Br, Ar = 3-C6H4-O-CH2-Ph) revealing considerable antimicrobial properties
relative to Ciprofloxacin against Gram-positive (MIC = 0.49, 0.007; 0.24, 0.007 µM for 21d and
Ciprofloxacin against S. pneumonia and B. subtilis, respectively) and mild behavior against Gram-
negative bacteria (MIC = 7.88, 6.88; 3.9, 0.49 µM for 21d and Ciprofloxacin against P. aeruginosa
and E. coli, respectively) [14].

A series of spiro[indoline-3,4′-pyrans] 27/28 was synthesized via multicomponent
reaction of 5-sulfonylisatins 22, malononitrile/ethyl cyanoacetate 23, and β-ketoester/β-
diketone 25/26 in stirring methanol containing piperidine (basic catalyst) at room temper-
ature (Scheme 2). The reaction was assumed to proceed through 3-cyanomethylidene-2-
oxindoles 24 intermediacy followed by the addition of 25/26, finally affording the corre-
sponding spiro-compounds 27/28. Independent synthesis of the spiro derivatives 27/28
through the reaction of 24 with 25/26 under similar reaction conditions supported the pro-
posed reaction sequence. Some of the synthesized agents revealed promising antibacterial
(Gram-positive “E. faecalis, S. aureus” Gram-negative “E. coli, S. typhi”) and antifungal
(C. albicans, A. brasiliensis) properties comparable with the standard referenced drugs Tetra-
cycline and Amphotericin. Compounds 27f,h and 28a,c,e,f,g are the most potent against
Staphylococcus aureus with considerable gyrase inhibitory properties (IC50 = 18.07–27.03 µM)
relative to that of Ciprofloxacin (IC50 = 26.43 µM) [15].

The spiro[indoline-3,2′-[1,3,4]oxadiazols] incorporated pyridinyl heterocycle 30 was
obtained through cyclization of the appropriate hydrazones 29 in refluxing acetic anhydride
(Scheme 3). Considerable antibacterial (B. Subtilis, S. aureus, E. coli, S. typhi) properties
were noticed by the synthesized agents relative to Gentamicin. Additionally, antifungal
(C. albicans, C. oxysporum, A. Flavus, A. niger) properties were exhibited by the spiro-
compounds compared with Fluconazole. The most effective agent synthesized was that
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with R = Cl (MIC = 12.5 µg/mL against B. subtilis and E. coli for both the effective agent
synthesized and Gentamicin; MIC = 12.5 µg/mL against C. oxysporum for both the effective
agent synthesized and Fluconazole) [16].
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Scheme 2. Synthesis of spiro[indoline-3,4’-pyrans] 27 and 28.

Spiro-β-lactam-oxindoles 31 were obtained through [2+2] cycloaddition of isatin-
imines with aryloxy acetic acid (Scheme 4). All the synthesized agents revealed weak
antibacterial properties (>200 µM) against E. coli, P. aeruginosa, and S. aureus [17].
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The spiro[indoline-3,3′-pyrazoline]-2-ones 33 and spiro[indoline-3,4′-pyrimidin]-2-
ones 34 were obtained through reaction of 3-(2-oxo-2-ethylidene)-2-indolinones 32 with
hydrazine hydrate in refluxing ethanol containing Et2NH or thiourea in refluxing ethanolic
KOH, respectively (Scheme 5). Promising antibacterial properties were noticed against
B. subtilis (MIC = 0.348–1.809 mM) and S. aureus (MIC = 0.044–0.226 mM) relative to
Imipenem (standard reference, MIC = 0.026, 0.026 mM against B. subtilis and S. aureus,
respectively) [18].

Analogously, a series of 34 was obtained through a multicomponent reaction of
phenacylidenetriphenylphosphoranes 35 with isatins and thiourea in refluxing tetrahy-
drofuran (Scheme 6). Some of the synthesized agents revealed promising antimicrobial
properties against Gram-positive (S. aureus and B. subtilis) and Gram-negative (E. coli and
P. aeruginosa) bacteria. The compound with X/Y/Z = F/Cl/H was the most effective hit
obtained (zone of growth inhibition = 13.5, 14.0, 8.5, 9.0; 20.3, 26.0, 19.6, 15.6 mm for the
effective hit synthesized and Gentamicin against S. aureus, B. subtilis, E. coli, and P. aeruginos,
respectively) [19].

A variety of spiro[indoline-3,3′-pyrrolidines] 40–42 was obtained in excellent yields
through azomethine cycloaddition of 3-methyleneoxindolines 32/36/37 with azomethine
ylide (obtained through condensation of paraformaldehyde 38 and sarcosine 39) in refluxing
toluene (Scheme 7). Mild to weak antibacterial (Gram-positive, S. aureus and Gram-negative,
E. coli“ MIC = 250–1000 µg/mL) properties were observed by some of the synthesized
agents [20].

A series of spirooxindolopyrrolidines 47 and 48 was prepared through dipolar cy-
cloaddition of β-nitrostyrenes 43 and azomethine ylides (obtained from the condensation
of isatin 44 and tryptophan 45 or L-histidine 46) in different organic solvents (Scheme 8).
Enhanced/higher yields were observed upon considering ionic liquid ([bmim]Br, 1-butyl-
3-methylimidazolium bromide) compared with the conventional solvents. Some of the
synthesized agents revealed antifungal properties, of which 47 is the most notable, against
C. albicans (MIC = 4–16 µg/mL) with inhibition of fungal hyphae and biofilm formation [21].
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Scheme 6. Synthesis of spiro[indoline-3,4’-pyrimidin]-2-ones 34.

A series of spiro[indoline-3,4′-[1,3]dithiines] 50 was obtained through a reaction of
3-methyleneoxindolines 36 (obtained from the reaction of the appropriate isatin and mal-
ononitrile in MeCN) and 5-(dimercaptomethylene)barbituric or thiobarbituric acid 49
(obtained through the reaction of barbituric/thiobarbituric acid, CS2, and triethylamine in
MeCN) (Scheme 9). The same products were also obtained by utilizing magnetic nanopar-
ticles (Fe3O4@gly@CE) as a recyclable catalyst. Some of the synthesized agents showed
considerable inhibitory properties against Gram-positive (S. fradiae, S. pyogenes, S. agalactiae,
S. equinus, S. aureus, S. epidermidis, B. cereus, B. thuringiensis, R. equi) and Gram-negative
(A. baumannii, P. aeruginosa, K. pneumoniae, E. coli, S. dysenteriae, P. mirabilis, S. enterica, Y.
enterocolitica) bacterial strains, as well as fungal strains (A. fumigatus, C. albicans, F. oxyspo-
rum). The synthesized agents with barbituric acid revealed better antimicrobial properties
than those with thiobarbituric acid. The most promising agent is that with R = Cl, X = O
relative to Gentamicin and Terbinafine (standard antibacterial and antifungal references,
respectively; MIC = 8 µg/mL for the synthesized agent and Gentamicin against E. coli; MIC
= 8, 32 µg/mL for the synthesized agent and Terbinafine against both A. fumigatus and
C. albicans, respectively) [22].
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3.2. Antimycobacterial Spirooxindoles

Tuberculosis is one of the most severe infectious diseases threatening human life.
Mycobacterium tuberculosis is a pathogenic bacterial microorganism responsible for infectious
diseases. Although different therapeutics have been developed and clinically approved,
novel agents are still in demand. This is due to the side effects of the used medications and
drug resistance strains discovered [23].

A series of spiro[indoline-3,2′-thiazolidine]-2,4′-diones 52 was prepared through the
oxidation reaction of spiroindoles 51 by mCPBA in CHCl3 (Scheme 10). Some of the
synthesized agents revealed promising inhibitory properties against MptpB (M. tuber-
culosis protein tyrosine phosphatase B) which possess a controlling role in the immune
system useful for the treatment of the disease. The nitro-substituted indole-containing
compounds were the most potent hits synthesized (IC50 = 1.2 µM of Ar = 3,4-F2C6H3,
R = H, R’ = 4-NO2) [24].
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A variety of spiro[indoline-3,2′-thiazolidines] 54 was synthesized through the microwave-
assisted synthetic reaction of isatin-3-imines 53 with thioglycolic acid in DMF using ZrSiO2
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(Scheme 11). Anti-mycobacterial properties against M. tuberculosis were noticed for the
synthesized agents. The most potent is that of R = NO2, X = O (IC50 = 12.5 µg/mL) relative
to that of Isoniazid (standard reference, IC50 = 0.2 µg/mL) [25].
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Isoniazid-spirooxindoles 56 were obtained through a reaction of spiro[benzo[e]pyrazolo
[1,5-c][1,3]oxazine-5,3’- indolins] 55 with chloroacetyl chloride and isoniazid (Scheme 12).
Compound 56 with R= 4-Cl, R’ = Cl is the most effective agent (MIC = 12.5 µg/mL)
synthesized relative to isoniazid (MIC = 0.2 µg/mL) against M. tuberculosis H 37 Rv [26].
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Anti-mycobacterial properties by spiro[indoline-3,2′-[1,3,4]oxadiazols] 30 (Scheme 3)
against M. tuberculosis were also noticed. The most promising are those with halogen-
substituted indolyl heterocycle (R = Br and Cl, IC50 = 6.25 µg/mL) relative to Ciprofloxacin
(IC50 = 3.12 µg/mL) [17].
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3.3. Antiviral Spirooxindoles

The dispiro[indoline-3,2′-pyrrolidine-3′,3”-piperidines] 58 incorporated alkylsulfonyl
group attached at the piperidinyl nitrogen were synthesized through regioselective azome-
thine cycloaddition (obtained through condensation of isatins and sarcosine) with 3,5-
bis(ylidene)-4-piperidones 57 (Scheme 13). Some of the synthesized agents revealed promis-
ing antiviral properties against SARS-CoV-2 with considerable safety behavior towards the
host cell (IC50 = 7.687, CC50 = 262.5 µM, selectivity index = 34.1 for the compound with
R = 4-FC6H4, R’ = Et, R” = Cl). SARS-CoV-2 is the virus which caused a global pandemic
(at the end of 2019), affecting and threatening millions of human lives. Intensive research
studies for effective drugs are still one of the hot topics of scientific society [27].
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A series of spiro[[1–3]triazolo [4,5-b]pyridine-7,3′-indolines] 60 was synthesized through
reaction of the substituted aminotriazoles 59, isatin derivatives, and Meldrum’s acid in acetic
acid at 100 ◦C followed by selective N-alkylation of the oxindole fragment (Scheme 14).
Antiviral properties of the synthesized agents were noticed against Dengue virus (DENV)
infection (IC50 = 0.78, 0.16, 0.035 µM against DENV-1, -2 and -3, respectively, for the compound
with R = CH2CH2CH(Me)2). Dengue is a viral disease widely spread in many tropical and
subtropical regions. Female Aedes mosquitoes are responsible for the distribution of this
disease. Fever and pain are the main symptoms, similar to that of flu infection [28].
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Scheme 14. Synthesis of spiro[[ 1,2,3]triazolo[4,5-b]pyridine-7,3’-indolines] 60.

3.4. Anticancer Spiroindoles

Cancer is one of the most deadly diseases threatening several millions of human lives
every year. Chemotherapeutical approaches represent one of the major options besides
radiotherapy, immunotherapy, and surgery for cancer treatment. Although advances have
been achieved in discovering many chemotherapeutical agents, ideal therapeutics (high
efficacy with limited side effects) are unreachable. Progress in research directed toward
novel bioactive agents is still encouraged [29,30].

The MDM2 (human murine double minute-2) is an important target for cancer therapy.
It is a cellular inhibitor for p53 (tumor suppressor). Overexpression of MDM2 was exhibited
in many cancer types with wild p53. Due to protein–protein interaction, MDM2 is capable of
p53 inhibition (negative regulation through direct binding or ubiquitination/degradation);
it is considered a highly attractive target for developing antitumor active agents. The p53
has a circular role in cancer cell apoptosis. In other words, p53 inactivation is an important
factor for cancer progression that may be achieved by blocking the interaction of MDM2-
p53 [31,32]. Some spiroindole-containing compounds were discovered as MDM2-p53
inhibitors which are entered into human clinical trials (Figure 8) [33].

Azomethine cycloaddition derived from amino acid derivative 61 in MeOH under
microwave irradiation at 100 ◦C with isatin afforded the spirooxindole derivative 62 as
a racemic mixture followed by a reductive amination reaction with cyclopropane car-
boxaldehyde and then N-arylation of lactam in Buchwald coupling conditions, with p-
bromobenzoate giving the final target spirooxindole 63 (Scheme 15). Promising efficacy was
noticed towards MDM2-p53 and SJSA-1 (p53 wild-type osteosarcoma) (IC50 = 161 nM) [34].
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Scheme 15. Synthesis of spirooxindole derivative 63.

A series of spiropyrazoline-oxindole 66 was prepared through nitrilimine cycloaddi-
tion of 3-ylidene-2-indolinones 64 with hydrazonyl chlorides 65 in acetonitrile in presence
of Et3N (sealed tube at 90 ◦C). Compounds 67 were obtained through the hydrolysis of the
corresponding 66 followed by amination (Scheme 16). Some of the synthesized analogs
revealed promising antiproliferation properties against SJSA-1 (osteosarcoma), LNCaP
(prostate), and MCF-7 (breast) cancer cell lines with the ability to dually inhibit MDM2-P53
and MDM4-p53 protein–protein interactions (IC50 = 26.1, 219.0; 35.9, 57.4 nM for MDM2-
p53, MDM4-p53 corresponding to compounds 67 with R = 6-Cl, R’ = 3-OH, R” = 4-ClC6H4,
R′ ′ ′ = 3-(3-phenyl-1H-pyrazol-1-yl)phenyl and R = 6-Cl, R′ = 3-OH, R” = 4-ClC6H4, R′ ′ ′ =
3-(1H-pyrazol-1-yl)phenyl, respectively) [35].
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Spirooxindoles 69 were synthesized through azomethine (obtained from the conden-
sation of isatins with different amino acids in refluxing methanol) cycloaddition with
3-(2-pyrrolidinyl)-2-propen-1-ones 68 (Scheme 17). The proposed approach of amino acid
to the olefinic linkage was mentioned for the regio- and stereoselectivity of the obtained
products. Quantum chemical calculations by DFT (density functional theory) were con-
ducted as supporting elements for the selectivity observations. Antiproliferation properties
against diverse human cell lines were explored through the US-NCI program. Some of
the synthesized agents revealed MDM2 inhibitory properties [KD “MDM2 binding by mi-
croscale thermophoresis” = 1.13 µM for the most effective agent synthesized with R’ = Cl,
R= 3-NO2, amino acid = (2S,3aS,7aS)-octahydro-1H-indole-2-carboxylic acid] [36].
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Scheme 17. Synthesis of spirooxindoles 69.

Analogously, compounds 70 were obtained in a similar synthetic protocol utilizing
furyl-containing chalcones. Some of the synthesized agents exhibited potent antitumor
properties against MCF-7 (breast) and HepG2 (liver) cancer cell lines (IC50 = 4.3, 6.9; 4.7,
11.8, 17.8, 10.3 µM for 70a, 70b, and Staurosporine, respectively) [37] (Scheme 18).

Nitroisoxazole-containing spirooxindoles 71 were synthesized through the reaction
of 5-styrylisoxazole and isatinimines in MeCN in the presence of DBU (Scheme 19). Some
of the synthesized agents (71a and 71b) exhibited noticeable antitumor properties against
MCF-7 cell line with suppression of MDM2-mediated degradation of p53 [38].
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Dispirooxindoles 73 were obtained through a cycloaddition reaction of 5-indolidene-
2-chalcogen-imidazolones 72 with azmethine ylide (obtained from the condensation of
sarcosine and paraformaldehyde) in refluxing toluene (Scheme 20). Compound 73 with



Molecules 2023, 28, 618 16 of 32

R = Cl, R’ = 4-MeOC6H4, X = S revealed considerable antiproliferative properties against
HCT116 p53+/+ and HCT116 p53−/− CC50 = 1.95, 2.35 µM, respectively [39].
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Spiro[indoline-3,2’-naphthalenes] 74 were obtained by Michael-aldol cascade reaction
of 3-ylideneoxindoles and 2-methyl-3,5-dinitrobenzaldehyde in CH2Cl2 in the presence
of a bifunctional hydrogen-bonding catalyst followed by treatment with HCl/EtOAc
(Scheme 21). Inhibition of MDM2 and CDK4 in glioblastoma cells were noticed by the
synthesized agents. Compound 74 with R = 5-Br, R’ = CO2Et is the most potent agent
synthesized with IC50 = 4.9, 8.6, 9.5 µM against U87MG, U251, and T98G, respectively [40].
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Dual inhibitory properties of spirooxindoles bearing sulfonyl function 58 were re-
vealed against VEGFR2 and EGFR [27]. Multi-targeted inhibitors have recently attracted
great attention for cancer chemotherapy. This is not only for optimizing effective agents
of wide applicability against different types of cancer but also since cancer progression
usually depends on several pathways [41]. Some of the synthesized agents revealed high
antiproliferative properties (MTT assay). The most potent is that with R = 4-BrC6H4, R’ =
Me, R” = H (IC50 = 3.597, 3.236, 2.434, 12.5 µM against MCF-7 “breast”, HCT116 “colon”,
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A431 “skin”, and PaCa-2 “pancreatic” cell lines, respectively) relative to 5-fluorouracil (IC50
= 3.15, 20.43, 23.44 µM against MCF-7, HCT116, and A431, respectively) and Sunitinib (IC50
= 3.97, 9.67, 16.91 µM against MCF-7, HCT116, and PaCa-2 cell lines, respectively) [41].

A series of spirooxindoles 77 was prepared through the reaction of isatins with aroy-
lacetonitriles 75 and 5-aminopyrazole 76 in refluxing AcOH/H2O (1:1) (Scheme 22). Promis-
ing antiproliferative properties were noticed by some of the synthesized agents (IC50 =
6.9, 11.8; 0.12, 0.62 µM against HepG2 “liver” and PC3 “prostate” cancer cell lines for
the promising agent synthesized “R = H; R’ = Ph” and Doxorubicin, respectively). It has
been noticed that the promising agent synthesized exhibited a high pro-apoptotic protein
Bax level with low anti-apoptotic protein Bcl-2 in HepG2 cells, confirming its impact on
apoptosis induction. The same phenomenon was also supported by testing the caspase-3/9
and p53 protein levels [42]. Additionally, the most promising agents discovered against
MDA-MB-231 (triple-negative breast) cancer cell line are those with R/R’ = H/Ph and
Cl/Ph (IC50 = 6.70 µM for both) relative to Doxorubicin (IC50 = 0.12 µM) which also showed
good affinity against caspase-3/9 and p53 protein supporting their capability for apoptosis
induction [43].

Molecules 2023, 28, 618 18 of 34 
 

 

great attention for cancer chemotherapy. This is not only for optimizing effective agents 
of wide applicability against different types of cancer but also since cancer progression 
usually depends on several pathways [41]. Some of the synthesized agents revealed high 
antiproliferative properties (MTT assay). The most potent is that with R = 4-BrC6H4, R’ = 
Me, R″ = H (IC50 = 3.597, 3.236, 2.434, 12.5 μM against MCF-7 “breast”, HCT116 “colon”, 
A431 “skin”, and PaCa-2 “pancreatic” cell lines, respectively) relative to 5-fluorouracil 
(IC50 = 3.15, 20.43, 23.44 μM against MCF-7, HCT116, and A431, respectively) and Sunitinib 
(IC50 = 3.97, 9.67, 16.91 μM against MCF-7, HCT116, and PaCa-2 cell lines, respectively) 
[41]. 

A series of spirooxindoles 77 was prepared through the reaction of isatins with aroy-
lacetonitriles 75 and 5-aminopyrazole 76 in refluxing AcOH/H2O (1:1) (Scheme 22). Prom-
ising antiproliferative properties were noticed by some of the synthesized agents (IC50 = 
6.9, 11.8; 0.12, 0.62 μM against HepG2 “liver” and PC3 “prostate” cancer cell lines for the 
promising agent synthesized “R = H; R’ = Ph” and Doxorubicin, respectively). It has been 
noticed that the promising agent synthesized exhibited a high pro-apoptotic protein Bax 
level with low anti-apoptotic protein Bcl-2 in HepG2 cells, confirming its impact on apop-
tosis induction. The same phenomenon was also supported by testing the caspase-3/9 and 
p53 protein levels [42]. Additionally, the most promising agents discovered against MDA-
MB-231 (triple-negative breast) cancer cell line are those with R/R’ = H/Ph and Cl/Ph (IC50 
= 6.70 μM for both) relative to Doxorubicin (IC50 = 0.12 μM) which also showed good af-
finity against caspase-3/9 and p53 protein supporting their capability for apoptosis induc-
tion [43]. 

 
Scheme 22. Synthesis of spirooxindoles 77. 

Spiro[chroman-2,3′-indoline] 78 was obtained through the reaction of isatin with 2′-
hydroxyacetophenone in EtOH containing Et2NH. Meanwhile, the 3-hydroxyindolin-2-
one derivative 79 was obtained upon considering 4′-aminoacetophenone instead, which 
afforded the corresponding imine 80 via condensation with salicylaldehyde. Spiro[indo-
line-3,3′-pyrazols] 81 were obtained through a reaction of 80 with hydrazines in refluxing 
EtOH/AcOH (Scheme 23). Promising antiproliferative properties were observed by com-
pounds 78 and 81b (IC50 = 0.68, 0.95, 0.74; 1.28, 1.30, 0.76; 2.87, 2.95, 4.76 μM for compounds 
78, 81b, and Imatinib “standard reference” against MCF-7 “breast”, HepG2 “liver”, and 
HCT116 “colon” cancer cell lines, respectively) with safe behavior against non-cancer cell 
line WI-38 (IC50 = 204.36, 202.08 μM for compounds 78 and 81b, respectively). Caspase-3 
activation of the promising agents synthesized 78 and 81b supported the antiproliferation 
properties revealed. Compound 81b revealed promising EGFR (epidermal growth factor 
receptor) inhibitory properties [44]. 

Scheme 22. Synthesis of spirooxindoles 77.

Spiro[chroman-2,3′-indoline] 78 was obtained through the reaction of isatin with
2′-hydroxyacetophenone in EtOH containing Et2NH. Meanwhile, the 3-hydroxyindolin-2-
one derivative 79 was obtained upon considering 4′-aminoacetophenone instead, which
afforded the corresponding imine 80 via condensation with salicylaldehyde. Spiro[indoline-
3,3′-pyrazols] 81 were obtained through a reaction of 80 with hydrazines in refluxing
EtOH/AcOH (Scheme 23). Promising antiproliferative properties were observed by com-
pounds 78 and 81b (IC50 = 0.68, 0.95, 0.74; 1.28, 1.30, 0.76; 2.87, 2.95, 4.76 µM for compounds
78, 81b, and Imatinib “standard reference” against MCF-7 “breast”, HepG2 “liver”, and
HCT116 “colon” cancer cell lines, respectively) with safe behavior against non-cancer cell
line WI-38 (IC50 = 204.36, 202.08 µM for compounds 78 and 81b, respectively). Caspase-3
activation of the promising agents synthesized 78 and 81b supported the antiproliferation
properties revealed. Compound 81b revealed promising EGFR (epidermal growth factor
receptor) inhibitory properties [44].

Ionic liquid [bmim]Br, mediated (100 ◦C) azomethine (formed from the condensation
of tyrosine and isatins) cycloaddition with β-nitrostyrenes 43 afforded the spiroindole-
pyrrolidines 82 (Scheme 24). Some of the synthesized agents revealed mild antiproliferative
properties against A549 (alveolar basal epithelial) and Jurkat (acute T-cell lymphoma)
cancer cell lines (MTT assay) relative to Camptothecin (standard reference) with caspase-
dependent (caspase-3) apoptosis (IC50 = 38.66, 52.79; 50.88, 51.5 µM against A549, Jurkat for
the most promising agent synthesized with R = 4-OMe, R’ = OCF3 and Camptothecin, re-
spectively). The chiral configuration of compound 82 was not identified by the authors [45].

Spiro[indole-3,5′-isoxazoles] 84 were obtained through the reaction of 2-arylindoles
and nitroalkenes 83 in HCO2H containing H3PO4 at room temperature (Scheme 25). Some
of the synthesized spiro-containing compounds revealed mild antiproliferative properties
against BE(2)-C (neuroblastoma) cell line in the MTT assay (% cell viability = 18 for the most
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promising agents synthesized with R = 2-thienyl, R′ = H, R” = Ph; R = 2,3-dihydrobenzo[b][1,
4]dioxine-6-yl, R′ = H, R” = 4-MeOC6H4 at 25 µM) [46].
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However, no process of reaction was detected with utilization of nitroalkenes possess-
ing substituent 85 under the same mentioned reaction conditions. As a result, MeSO3H
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was used instead affording a mixture of the corresponding spiroindoles 86 and 3,3′-bis(1H-
indole)methane derivatives 87 [46] (Scheme 26).
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Scheme 26. Synthesis of spiroindoles 86 and 3,3′-bis(1H-indole)methanes 87.

Azomethine cycloaddition of equimolar amounts of chalcones 88, 2-(piperazin-1-
yl)ethanamine and isatin in stirring ethanol afforded the corresponding spiro[indoline
-3,2′-pyrrolidins] 89 (Scheme 27). The chiral configuration of pyrrolidine ring was not
identified and reported by the authors. Some of the synthesized agents revealed consider-
able antiproliferative properties (MTT assay) against KB cell line (the most potent is the
compound with R = Me, IC50 = 6.5 µM) [47].
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Scheme 27. Synthesis of spiro[indoline -3,2′-pyrrolidins] 89.

Thiazolo-pyrrolidine-spirooxoindoles 91 were analogously obtained in good to excel-
lent yields (71–89%) through multicomponent azomethine (obtained from the condensation
of isatin and L-thioproline) reaction with indolyl-containing chalcones 90 in boiling MeOH
(Scheme 28). The most effective antiproliferative agent is that with R = 4-CF3C6H4 (IC50
= 7.0, 5.5 µM against HCT116 “colon” and HepG2 “liver” cancer cell lines, respectively)
relative to that of Cisplatin (IC50 = 12.6, 5.5 µM against HCT116 and HepG2 cancer cell
lines, respectively) [48].
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The spirooxindole-pyrrolo-carbazoles 93 were obtained through azomethine (ob-
tained through condensation of benzylamine and isatin) cycloaddition with 2-ylidene-
1H-carbazole-1-ones 92 in refluxing dioxane/methanol (1:1) (Scheme 29). Antiproliferative
properties were noticed for the synthesized agents. The most potent are those derived from
2-thienylidene-1 H-carbazole-1-ones (IC50 = 14, 13, 15; 15, 14, 16 µM for compounds with R’
= Me, Cl, and H relative to Cisplatin; IC50 = 9, 10 µM against MCF-7 “breast” and A-549
“lung” cancer cell lines, respectively) [49].
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Scheme 29. Synthesis of spirooxindole-pyrrolo-carbazole 93.

A series of spiro[indoline-pyrrolizin]-ones 95 was obtained through azomethine (ob-
tained through isatins and L-proline) cycloaddition with 3-(benzo[7]annulen-8-yl)-2-propen-
1-ones 94 in refluxing methanol (Scheme 30). Some of the prepared agents exhibited promis-
ing antiproliferative properties against SKNSH (neuroblastoma) cancer cell lines. The most
promising agents are those with R/R’/R” = OMe/H/Cl; OMe/H/I (IC50 = 4.61 and 5.04
µM, respectively) relative to Doxorubicin (IC50 = 6.3 µM) [50].
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Azomethine ylides (generated from the condensation of isatins and 2-S-octahydro-1H-
indole-2-carboxylic acid) with 2,6-bis(arylidene)cyclohexanones 96 afforded the correspond-
ing spirooxindoles 97 in good yields (Scheme 31). Some of the prepared agents exhibited
mild antiproliferative properties against PC3 (prostate), Hela (cervical), and (MCF-7, MDA-
MB231) breast cancer cell lines in MTT assay relative to Doxorubicin (standard reference)
(IC50 = 3.7 µM for the compound with R = H, R′ = 6-Cl against PC3, IC50 = 7.1 µM for the
compound with R = R′ = H against HeLa relative to IC50 = 1.9, 0.9 µM for Doxorubicin
against PC3 and HeLa, respectively) [51].
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Scheme 31. Synthesis of spirooxindoles 97.

Ultrasonic irradiation of isatins, phenacyl bromides, and phenacylidenetriphenylphos-
phorane 98 in water containing Et3N at 20–30 ◦C (60 W) afforded the corresponding
spirocyclopropaneoxindoles 99 in high yields (Scheme 32). Some of the synthesized com-
pounds revealed promising antiproliferation properties against HeLa (cervical) cancer cell
line in the MTT assay (IC50 = 9.30, 4.50; 6.33, 1.86 for the most effective agent synthesized
with R = H, R′ = Cl, R” = [1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl] and Doxorubicin at 24 h
and 48 h, respectively) [52].
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Scheme 32. Synthesis of spirocyclopropaneoxindoles 99.

A series of spiro[chromeno[4,3-b]chromene-7,3′-indolines] 100 and spiro[indeno[2′,1′:5,6]
pyrano[3,2-c]chromene-7,3′-indolines] 101 were obtained through eco-friendly synthetic ap-
proach through the reaction of isatins, 4-hydroxycoumarin, and 5,5-dimethylcyclohexande-1,3-
dione or 1H-indene-1,3(2H)-dione, respectively, in H2O in the presence of p-toluenesulfonic
acid (p-TSA.H2O) at room temperature (Scheme 33). Some of the synthesized agents revealed
promising antiproliferation properties against (PC-3 and LNCaP) prostate cancer cell lines
and alkaline phosphatase inhibitory properties. The most potent agents discovered are 101
derived from 5-bromoisatine (R = H, R′ = Br; IC50 = 0.025 µM) and N-allylisatin (R = allyl,
R′ = H; IC50 = 0.25 µM) relative to Bicalutamide (standard reference, IC50 = 1.25, 1.50 µM)
against PC3 and LNCaP cell lines, respectively [53].

A series of spiro[acridine-9,3′-indolines]-1,2′,8-triones 102 was obtained through mul-
ticomponent free solvent reaction (grinding for 3–4 min) of isatin, 1,3-cyclohexanedione,
and the appropriate aromatic amine in presence of p-toluenesulfonic acid as a catalyst
(Scheme 34). Some of the synthesized compounds revealed promising antiproliferative
properties against MCF-7 (breast) cancer cell line (MTT assay). The most promising
agent was that of R = 4-MeOC6H4 relative to that of Doxorubicin (GI50/TGI/LC50 =
0.01/0.02/0.71, 0.02/0.21/0.74 µM for the promising synthesized agent and Doxorubicin,
respectively) [54].
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anol containing a catalytic amount of piperidine or NaOAc. In an alternative pathway, 
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either pyrazol-5-one or phenols under the same reaction conditions (Scheme 35). Mild an-
tiproliferative properties were revealed by the synthesized spiro-compounds against 
HepG-2 (liver), HCT-116 (colon) and MCF-7 (breast) cancer cell lines relative to Doxoru-
bicin (MTT assay) (IC50 = 29.05, 25.31, 33.75; 5.59, 7.03, 4.89 μM against HepG-2, HCT-116, 
and MCF-7 for compound 97 with R = Ph and Doxorubicin, respectively) [55]. 

 
Scheme 35. Synthesis of spirooxindoles 104, 105, and 106. 

Chromium oxide-promoted oxidation of N-[(1-methoxyindol-2-yl)methyl]-N’-
(aryl)thioureas 108 afforded the corresponding spiro[indoline-2,5′-[4′,5′]dihydrothiazoles] 

Scheme 34. Synthesis of spiro[acridine-9,3′-indolines]-1,2′,8-triones 102.

Spiro[chromene-2,3′-indolin] 104 was obtained through the reaction of 5-(morpholino
sulfonyl)isatin 103 with 2′-hydroxyacetophenone in a two-step reaction through addition
of methanol containing Et2NH followed by heating (95 ◦C) in AcOH containing a catalytic
amount of HCl. Meanwhile, spirooxindoles 105 and 106 were obtained through reaction of
103 with malononitrile and either pyrazol-5-one or phenols in refluxing methanol containing
a catalytic amount of piperidine or NaOAc. In an alternative pathway, compounds 105 and
106 were obtained through reaction of ylidenemalononitrile 107 with either pyrazol-5-one or
phenols under the same reaction conditions (Scheme 35). Mild antiproliferative properties
were revealed by the synthesized spiro-compounds against HepG-2 (liver), HCT-116 (colon)
and MCF-7 (breast) cancer cell lines relative to Doxorubicin (MTT assay) (IC50 = 29.05, 25.31,
33.75; 5.59, 7.03, 4.89 µM against HepG-2, HCT-116, and MCF-7 for compound 97 with R = Ph
and Doxorubicin, respectively) [55].

Chromium oxide-promoted oxidation of N-[(1-methoxyindol-2-yl)methyl]-N’-(aryl)th
ioureas 108 afforded the corresponding spiro[indoline-2,5′-[4′,5′]dihydrothiazoles] 109
(Scheme 36). Some of the synthesized agents revealed mild antiproliferative properties
against HCT116 (colon), Jurkat (leukemic T cell lymphoma), and MCF-7 (breast) cancer cell
lines relative to Cisplatin (standard reference) (IC50 = 33.7, 35.5, 36.9; 15.3, 16.2, 15.6 µM for
the synthesized agent with R = 4-CF3 and Cisplatin against HCT116, Jurkat, and MCF-7,
respectively) [56].
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Scheme 36. Synthesis of spiro[indoline-2,5′-[4′,5′]dihydrothiazoles] 109.

A group of spirooxindoles 113 was obtained through the reaction of phenacyl bromides
112 with [5-mercapto-1,2,4-triazole-4-ylimino]-2-indolinones 111 in refluxing methanol
containing Et3N. The latter were prepared via condensation of isatin with the appropriate
4-amino-1,2,4-triazol-5-thiols 110 in refluxing MeOH containing a catalytic amount of p-
toluenesulfonic acid (Scheme 37). Some of the targeted spiro-analogs revealed promising
antiproliferative properties against MGC803, a human gastric cell line (IC50 = 9.49 µM)
relative to that of 5-fluorouracil (IC50 = 25.54 µM) in MTT assay [57].
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Ylideneoxindoline-2-ones 32 in ethanol containing Et3N at room temperature afforded
the corresponding spiro[indoline-3,3′-pyrrolidines] 114 (Scheme 38). Some of the synthe-
sized agents revealed noticeable antiproliferative properties (MTT assay) against HepG2
(liver) and CT26 (colon) cancer cell lines (% cell death = 15.3, 35.39; 50.89, 75.17 for the
compound with R = CH2Ph, R′ = F, R” = 4-MeC6H4 against HepG2 and CT26 at 50 µg/mL,
respectively) [58].
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3.5. Antimalarial Spirooxindoles

Malaria is one of the most endemic diseases worldwide. This is due to the suitable
environment for mosquitoes in tropical and subtropical regions with a high global pop-
ulation. Many parasitic species of protozoa causing this disease have been identified as
transmitted to humans through mosquito bites. Although several agents were investigated
against malaria (Artemisinin 115, Nobel Prize in Physiology awarded to Professor Youyou
Tu due to efforts in its discovery) [59] (Figure 9), there remains a need for newer ones. This
is attributed to the resistance observed by some varieties of this parasite [60].
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Artemisinin and its derivatives are fast-acting agents against the asexual blood stage
parasites. Co-administration of artemisinin analog (fast-acting) with a long-acting drug
as first-line therapeutics is recommended [61]. Cipargamin (Figure 2) is a promising anti-
malarial compound in clinical studies as a therapeutic inhibiting blood-stage P. falciparum.
This is considered a promising agent to combat the artemisinin resistance parasite [62].
Hepatic safety behavior was achieved through clinical studies (phase II) across wide-range
doses [63,64].

A series of spiro[indoline-3,2′-[1,3,4]oxadiazols] 117 were obtained through nitrilimine
cycloaddition obtained by dehydrochlorination of hydrazonyl chloride 116 with isatins
in CH2Cl2 containing Et3N at room temperature (Scheme 39). Some of the synthesized
spirooxindoles reveal promising properties against erythrocytic stage of P. falciparum and
the liver-stage of P. berghei. This supports the possibility of developing active agents
inhibiting both blood-stage and (P. falciparum) and liver-stage (P. berghei) parasites [65].

Molecules 2023, 28, 618 27 of 34 
 

 

isatins in CH2Cl2 containing Et3N at room temperature (Scheme 39). Some of the synthe-
sized spirooxindoles reveal promising properties against erythrocytic stage of P. falcipa-
rum and the liver-stage of P. berghei. This supports the possibility of developing active 
agents inhibiting both blood-stage and (P. falciparum) and liver-stage (P. berghei) parasites 
[65]. 

 
Scheme 39. Synthesis of spiro[indoline-3,2′- [1,3,4]oxadiazol]-2-ones 117. 

Spiro[indoline-3,2′-quinolins] 121 and spiro[indoline-3,5′-pyrano[3,2-c]quinolins] 
122 were obtained through Povarov reaction taking place from imines 118 (formed from 
the condensation of substituted anilines and isatin) and alkene-containing compound, 
trans-isoeugenol 119 or 3,4-dihydro-2H-pyran 120, respectively in CH2Cl2 in presence of 
BF3.OEt2 (Lewis acid) at room temperature (Scheme 40). Some of the synthesized 121 re-
vealed efficacy against P. falciparum drug-resistant FCR-3 strain (IC50 = 1.52–4.20 μM) rel-
ative to that of chloroquine (IC50 = 0.11 μM) through in vivo testing. Meanwhile, com-
pounds 122 revealed activity (IC50 = 1.31–1.80 μM) against P. falciparum drug-sensitive 3D7 
strain relative to that of chloroquine (IC50 = 0.0127 μM) [66]. 

 
Scheme 40. Synthesis of Spiro[indoline-3,2′-quinolins] 121 and spiro[indoline-3,5′-pyrano[3,2-
c]quinolins] 122. 

N
H

O

O
EtOH, AcOH

reflux
+

R

NH2

N
H

N

O

R

118

CH2Cl2, BF3.OEt2, r.t.

CH2Cl2, BF3.OEt2, r.t.

N
H

NH

O H

H
R

O

119

120

N
H

NH
R

O

HO OMe

121

122R = H, 2-F, 2-Cl, 3-Cl, 4-Cl, 2-Cl,4-Me, 3-Br, 4-Br, 4-Me, 2,4-di-Me, 3-CF3, 4-CF4

O

OMe
HO

Scheme 39. Synthesis of spiro[indoline-3,2′- [1,3,4]oxadiazol]-2-ones 117.

Spiro[indoline-3,2′-quinolins] 121 and spiro[indoline-3,5′-pyrano[3,2-c]quinolins] 122
were obtained through Povarov reaction taking place from imines 118 (formed from the
condensation of substituted anilines and isatin) and alkene-containing compound, trans-
isoeugenol 119 or 3,4-dihydro-2H-pyran 120, respectively in CH2Cl2 in presence of BF3.OEt2
(Lewis acid) at room temperature (Scheme 40). Some of the synthesized 121 revealed
efficacy against P. falciparum drug-resistant FCR-3 strain (IC50 = 1.52–4.20 µM) relative
to that of chloroquine (IC50 = 0.11 µM) through in vivo testing. Meanwhile, compounds
122 revealed activity (IC50 = 1.31–1.80 µM) against P. falciparum drug-sensitive 3D7 strain
relative to that of chloroquine (IC50 = 0.0127 µM) [66].

Mild anti-plasmodial properties were observed by spirooxindoles 124a and 124b, re-
vealing weak properties against the artemisinin-sensitive and resistant P. falciparum strains.
Spirooxindoles 124a/b were obtained through a reaction of indolo[8,7-b]indolizine 123 with
N-bromosuccinimide (NBS) in AcOH/THF/H2O (1:1:1) at 0 ◦C to room temperature [67]
(Scheme 41).
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c]quinolins] 122.
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3.6. Anti-Inflammatory Spirooxindoles

Spirooxindoles 126 were prepared via azomethine (obtained through condensation
of isatin and pipecolinic acid) cycloaddition of 3,5-bis(ylidene)-4-piperidones 125 in ionic
liquid “[bmim]Br, (1-butyl-3-methylimidazoliumbromide)” at 100 ◦C (Scheme 42). Some of
the synthesized agents showed promising acute and chronic anti-inflammatory properties
relative to that of indomethacin with inhibitory observations against PGE2, TNF-α, and
nitrite levels (% reduction of TNF-α = 36.23, 38.52, 39.19, 37.13 and % decline in nitrite level
= 42.99, 41.22, 44.04, 41.64 for the synthesized compounds with R = 4-MeC6H4, 4-MeOC6H4,
3-NO2C6H4, and indomethacin, respectively) [68].
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3.7. Antihyperglycemic Spirooxindoles

Multi-component azomethine (formed from isatin and thioproline) cycloaddition
with 4-arylidene-5(4H)-oxazolones 127 in refluxing methanol afforded the corresponding
spirooxindoles 128 and 129 as a mixture of two diastereoisomers (Scheme 43). Promising
antihyperglycemic properties were observed by some of the synthesized agents. Compound
128 with R = 4-MeC6H4 is the most potent (IC50 = 1.76, 4.81 µM against α-amylase from
human saliva and α-glucosidase from Saccharomyces cerevisiae, respectively) [69].
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Spirooxindoles 130 were obtained through azomethine (obtained through conden-
sation of isatin and benzylamine) cycloaddition with chalcones 88 in refluxing methanol
(Scheme 44). Some of the synthesized agents revealed AGE (advanced glycation end, which
is the formation of sugar-derived substances) inhibitory properties in the BSA (bovine
serum albumin) glucose assay, supporting the suitability for diabetes. The most promising
agent synthesized is that with R = Ph (IC50 = 11.37 µM) relative to the aminoguanidine
“standard reference” (IC50 = 40.54 µM) [70].
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3.8. Anti-Leishmanial Spirooxindoles

Spiro[indoline-3,2′-quinolins] 121 (Figure 10) obtained through Diels–Alder reaction
of imines and trans-isoeugenol (Scheme 40) revealed promising anti-leishmanial properties.
The most promising is that with R/R’ = Et/H against L. braziliensis, with safe behavior
towards mammalian cells viability [71].
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Spirooxindoles 131 were prepared through cycloaddition of 2,6-bis(ylidend)cyclohexan
ones and azomethine ylide (formed from the condensation of proline and isatin) (Scheme 45).
Few of the synthesized agents revealed anti-leishmanial properties (a compound with Ar =
3-NO2C6H4 is the most effective agent with IC50 = 6.8 µg/mL relative to amphotericin B (IC50
= 0.29 µg/mL) [72].
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4. Conclusions and Future Directions

Development of new potential therapeutics is always a challenge for medicinal chem-
istry research. Spirooxindoles represent an important class of heterocyclic compounds and
have emerged as attractive scaffolds with unique structural architecture and diverse phar-
macological properties. Many natural and synthetic compounds have been identified as
potential pharmacophores. Even though there have been several important breakthroughs
and encouraging results on spirooxindoles as potential therapeutic agents as discussed
above, challenges and opportunities remain for medicinal chemistry research. Several
investigations on spirooxindole scaffolds were reported and studied in recent years [73–77].
The current compiled synthetic protocols of pharmacologically active spirooxindole scaf-
folds will provide an efficient platform to create a new generation of potential spirooxindole
analogues for various diseases.
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