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Abstract: A practical and efficient Suzuki coupling of phenols has been developed by using trans-
NiCl(o-Tol)(PCy3)2/2PCy3 as a catalyst in the presence of tosyl fluoride as an activator. The key
for the direct use of phenols lies in the compatibility of the nickel catalyst with tosyl fluoride (TsF)
and its sulfur(VI) fluoride exchange (SuFEx) with CAr-OH. Water has been found to improve the
one-pot process remarkably. The steric and electronic effects and the functional group compatibility
of the one-pot Suzuki coupling of phenols appear to be comparable to the conventional one of
pre-prepared aryl tosylates. A series of electronically and sterically various biaryls could be obtained
in good to excellent yields by using 3–10 mol% loading of the nickel catalyst. The applications of this
one-pot procedure in chemoselective derivatization of complex molecules have been demonstrated
in 3-phenylation of estradiol and estrone.
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1. Introduction

Construction of biaryls has attracted the most interest in applications of Suzuki
coupling because of their ubiquitousness in important fine chemicals, e.g., pharmaceuti-
cals [1,2], advanced organic materials [3], pesticides, etc. [4]. Since the seminal report from
Percec using aryl tosylates in Suzuki coupling [5], many efforts have been devoted to using
O-based pseudohalides, e.g., triflates [6–14], sulfonates [15], carbonate [16], sulfamates [16],
carbamates [16–18], etc., as an alternative to aryl halides because of the good diversity,
abundance, and availability of phenols [19]. Obviously, from the practical point of view, it
is desirable to in situ form these phenol derivatives in the very Suzuki coupling system, in-
stead of pre-preparing them in a separate step. In fact, several reports had described direct
use of phenols in palladium or nickel-catalyzed Suzuki coupling through in situ formation
of tosylates [20,21], nonaflates [22], pivalates [23], heteroaryl ethers [24], and even phenolic
salts [25,26]. Comparing with palladium, nickel-based catalysts are not only less expensive
but also have shown higher activities in Suzuki coupling of O-based pseudohalides [27–35].
However, the rich redox chemistry of nickel often makes nickel-based catalysts less com-
patible with the conditions and reagents required for in situ derivatization of CAr-OH in
one-pot processes. Therefore, it is important to further develop CAr-OH activation for
one-pot nickel-catalyzed Suzuki coupling of phenols to practically construct biaryls.

Sulfur(VI) fluoride exchange (SuFEx), the so-called second generation of click reac-
tion [36–39], has proven to be a privileged protocol in activating phenolic CAr-OH group
via chemoselective formation of sulfonates with SO2F-containing reagents in the pres-
ence of various other nucleophiles [37,40]. As a part of our continuous efforts to develop
practical procedures for construction of biaryls from pseudohalides [41–44], we report
herein a SuFEx enabled, nickel/phosphine catalyzed Suzuki coupling of phenols via in
situ formation of tosylates with tosyl fluoride (TsF) using trans-NiCl(o-Tol)(PCy3)2/2PCy3
as a catalyst to practically and efficiently synthesize various biaryls with good functional
group comparability.
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2. Results and Discussion

The cheap, readily available and easy-to-handle tosyl fluoride (TsF) has been cho-
sen as the sulfur(VI) fluoride in SuFEx for practical purposes. Using the reaction of
4-hydroxyacetophenone (1a) with phenylboronic acid (2a) as a model, although the com-
mon nickel dichloride/phosphine complexes NiCl2(PR3)2Cl2 (R = PPh3, PCy3, dppf) were
almost inactive, an aryl nickel/phosphine catalyst, trans-NiCl(Ph)(PPh3)2 (cat-1), which had
been established for efficient Suzuki coupling of tosylates [42,45], offered a promising result,
giving the desired product 3aa in 26% yield with 5 mol% catalyst loading in the presence
of K3PO4·3H2O in aqueous THF (THF/H2O = 4/1, vol/vol) (Table 1). Encouraged by the
preliminary result of trans-NiCl(Ph)(PPh3)2, structural effects of the nickel complexes with
respect to aryl and phosphine ligands were briefly explored to increase catalytic efficiency.
A delicate balance between the steric hindrance of the aryl group and catalytic activity of the
nickel catalysts was observed. For example, the phenyl groups bearing a small ortho alkyl
substituent, i.e., trans-NiCl(o-Tol)(PPh3)2 (cat-2, 59%) and trans-NiCl(o-EtPh)(PPh3)2 (cat-3,
56%), as well as anthracen-9-yl (cat-6, 46%) could increase 3aa yields while naphthalen-1-yl
(cat-7, 30%) and more sterically demanding aryls, e.g., 2-isopropylphenyl (cat-4, 20%) and
2,6-dimethylphenyl (cat-5, 17%), gave no improvement or even poorer results (Table 1,
entries 2–8). The supporting phosphine ligand also played an important role in the cat-
alytic activity of the aryl nickel complexes. The product (3aa) yields increased to 55%
and 87% using tricyclohexylphosphine complexes of trans-NiCl(Ph)(PCy3)2 (cat-8) and
trans-NiCl(o-Tol)(PCy3)2 (cat-9) from 26% and 59% with the triphenyl phosphine analogs,
cat-1 and cat-2, respectively (Table 1, entries 2, 3, 9 and 10). In fact, the yield was further
increased to 96% by using extra 10 mol% tricyclohexylphosphine ligand with 5 mol%
trans-NiCl(o-Tol)(PCy3)2 (cat-9). A satisfactory yield (93%) could still be obtained by using
3 mol% trans-NiCl(o-Tol)(PCy3)2/2PCy3 although the reaction became slow and required
10 h to complete. Use of 1 mol% catalyst loading led to incomplete reaction within 12 h and
a significantly lower yield (32%) for 3aa (Table 1, entries 11–13).

Water proved to be crucial for high catalytic efficiency. The desired product 3aa
was isolated in a lower yield (83%) in pure THF solution using hydrous base, 5 equiv.
K3PO4·3H2O, while only a 12% yield could be isolated in strict anhydrous conditions
(Table 1, entries 14 and 15). Increasing the volume ratio of water to THF from 1/4 to 1/2
significantly decreased 3aa yield to 78%, possibly due to the limited solubility of the
tosylate intermediate in water. Bases and organic co-solvents screening failed to improve
the reaction comparing with the K3PO4·3H2O in THF/H2O system. A couple of common
solvents, e.g., DMF, DMSO, toluene, DME, etc., gave lower yields while CH3CN and
dioxane performed similarly to THF (Table 1, entries 19–25). K3PO4·3H2O appeared to
be the choice of base. In fact, when weaker or stronger bases, e.g., K2CO3, KOAc, NaOH
and KOH, were used to replace K3PO4·3H2O, much lower yields were obtained (Table 1,
entries 26–29). No reaction was observed using NaF and KF as bases, excluding any
positive role played by the SuFEx by-product fluoride in the system. Therefore, the optimal
conditions for the SuFEx enabled Suzuki coupling of phenols were set as 3 mol% trans-
NiCl(o-Tol)(PCy3)2/2PCy3 in THF/H2O (4/1, vol/vol) using 5 equiv. K3PO4·3H2O as
base (Table 1, entry 12). A control experiment using 1.1 equiv. TsCl instead of TsF under
the otherwise identical conditions confirmed the necessary role of SuFEx in the one-pot
procedure. The nickel catalyst appeared to be completely deactivated by TsCl since no
coupling product was detected while formation of tosylate intermediate could still take
place. Indeed, when a second dose of the catalyst, 3 mol% trans-NiCl(o-Tol)(PCy3)2/2PCy3,
was added to the very reaction mixture after TsCl was consumed, 3aa could be isolated in
57% yield after 6 h reaction.
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Table 1. Optimization of the SuFEx-enabled, Ni-catalyzed Suzuki coupling of phenols a.
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a Reaction conditions: 1a (1.0 mmol), 2a (1.3 mmol), TsF (1.1 mmol), solvent (5.0 mL), N2, at reflux or 
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2 cat-1 (5) / K3PO4·3H2O (5) THF/H2O (4/1) 26
3 cat-2 (5) / K3PO4·3H2O (5) THF/H2O (4/1) 59
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9 cat-8 (5) / K3PO4·3H2O (5) THF/H2O (4/1) 55

10 cat-9 (5) / K3PO4·3H2O (5) THF/H2O (4/1) 87
11 cat-9 (5) PCy3(10) K3PO4·3H2O (5) THF/H2O (4/1) 96
12 cat-9 (3) PCy3(6) K3PO4·3H2O (5) THF/H2O (4/1) 93 d

13 cat-9 (1) PCy3(2) K3PO4·3H2O (5) THF/H2O (4/1) 32 d

14 cat-9 (3) PCy3(6) K3PO4·3H2O (5) THF 83
15 cat-9 (3) PCy3(6) K3PO4 (5) THF 12
16 cat-9 (3) PCy3(6) K3PO4·3H2O (5) THF/H2O (2/1) 78 d

17 cat-9 (3) PCy3(6) K3PO4·3H2O (5) THF/H2O (6/1) 93 d

18 cat-9 (3) PCy3(6) K3PO4·3H2O (5) THF/H2O (8/1) 90 d
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27 cat-9 (3) PCy3(6) NaOH (5) THF/H2O (4/1) 18
28 cat-9 (3) PCy3(6) AcOK (5) THF/H2O (4/1) 47
29 cat-9 (3) PCy3(6) KOH (5) THF/H2O (4/1) 30
30 cat-9 (3) PCy3(6) NaF/KF (5) THF/H2O (4/1) trace
31 cat-9 (3) PCy3(6) K3PO4·3H2O (4) THF/H2O (4/1) 82

a Reaction conditions: 1a (1.0 mmol), 2a (1.3 mmol), TsF (1.1 mmol), solvent (5.0 mL), N2, at reflux or 70 ◦C, 6 h.
b Isolated yields. c PR3 = PPh3, PCy3 and dppf (1,1′- bis(diphenylphosphino)ferrocene). d 10–12 h.

With the optimal conditions in hand, the scope of the SuFEx enabled, nickel-catalyzed
Suzuki coupling of phenols with arylboronic acids was briefly explored (Table 2). Given
the fact that there are two sequential steps, i.e., tosylation via SuFEx and the following
nickel-catalyzed cross-coupling, for the phenol counterpart in the one-pot procedure, the
structural effects of phenols were investigated at first. Phenols bearing 4-CO2Et (1b, 96%) or
4-CN (1c, 95%) group at para-position reacted similarly to 1a (4-Ac) affording the products
4-ethoxycarbonylbiphenyl (3ba, 96%) and 4-cyanobiphenyl (3ca, 95%) in excellent yields,
respectively, while the 4-NO2 (1d) substituted one gave a low yield (45%).
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Table 2. Nickel/phosphine catalyzed Suzuki coupling of phenols with arylboronic acids enabled by
SuFEx of TsF a.
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Similar to the report in literature [46], 4-biphenyl aldehyde (3ea) appeared to be labile
to air-oxidation to acid and was isolated in only 50% yield along with carboxylic acid
in 42% yield. A modest yield (40%) was obtained for 4-chlorobiphenyl (3ga) because of
the intramolecular competition between CAr-Cl and the 4-tosyloxy groups in 1g [47–49],
consistent with the comparable reactivities of aryl tosylates to chlorides in nickel-catalyzed
Suzuki coupling. In fact, the by-products 4-tosyloxybiphenyl and 4-phenylbiphenyl were
also obtained in 35% and 12% yields, respectively. Phenols with electron-rich and electron-
neutral substituents, such as 4-CH(CH3)2 (1h) and 4-OMe (1i), displayed low reactivities
and required 10 mol% catalyst loading to reach good yields (3ha, 90% and 3ia, 90%). The
amino group (4-NH2, 3ja, 18%) obviously disturbed the tosylation of phenolic OH group,
while the CAr-OH group could be preferentially coupled in the presence of an aliphatic
hydroxyl group (1l), and the desired product 3la could be obtained in 74% yield. ortho-
Substituted phenols gave lower yields than para-substituted analogs e.g., 3ma (o-Ac, 70%),
3na (o-CHO, 38%), 3pa (o-tBu, 16%), 3qa (o-OMe, 30%) and 3ra (o-OMe, 40%), although
the yields 3pa (o-tBu, 43%), 3qa (o-OMe, 65%), and 3ra (o-OMe, 86%) could increase with
10 mol% catalyst loading, indicating a large steric effect from phenol substrates. Further-
more, when catechol 1s was investigated, biphenyl-2-yl tosylate (3sa, 93%) was isolated
as a sole cross-coupling product even with 2.5 equiv. TsF and phenylboronic acid (2a),
indicating that it is the cross-coupling step, instead of tosylation via SuFEx, should be
sensitive to the steric hindrance. In contrast, 4-phenylbiphenyl (3ta) could be obtained in
94% yield from hydroquinone (1t) under the otherwise identical conditions for catechol.
3-Phenylation of estradiol (1u) and estrone (1v) clearly demonstrated the feasibility of this
one-pot Suzuki coupling of phenols in chemoselective derivatization of complex molecules.

Unlike the large structural effects of phenol counterpart, electronically and sterically
various aryl boronic acids could be cross-coupled smoothly to provide biaryls in good to
excellent yields. Aryl boronic acids bearing an electron-donating group, e.g., 4-Me (2b,
95%) or 4-OMe (2d, 90%) appeared to be some more reactive than their analogs with an
electron-withdrawing group, e.g., 4-CF3 (2f, 74%) or 4-CHO (2g, 80%). Steric hindrance
from aryl boronic acids could be also tolerated to a large extent. For example, 2-Et (2h),
2-CH(CH3)2 (2i), 2-Ph (2j) and 2-CHO (2k) phenyl boronic acids reacted with 1a to give
3ah, 3ai, 3aj, and 3ak in 91%, 87%, 72%, and 68% yields, respectively. 2-Thiophenyl (2l) and
3-furanyl boronic acids (2m) could also react to give the products (3al, 79%) and (3am, 75%),
although 3-pyridyl boronic acid failed, possibly, at least in part, due to its poor solubility.

Given the small structural effects from aryl boronic acid counterpart, we anticipated
that the other aryl boron reagents, e.g., the shelf-stable and easy-to-handle derivatives
of aryl boronic acids, potassium trifluoroboronates, N-methyliminodiacetic acid (MIDA)
boronates or boronic acid pinacol esters, and the cost-effective diarylborinic acids, should
be also usable in the one-pot procedure. In fact, excellent yields could be obtained for 3aa
with potassium phenyltrifluoroboronate (PhBF3K, 1.3 equiv.), phenylboronic acid pinacol
ester (PhB(pin), 1.3 equiv.), and diphenyl borinic acid (Ph2B(OH), 0.6 equiv.), although
MIDA phenylboronate and sodium tetraphenylboronate failed (Scheme 1).
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A plausible mechanism has been proposed for the nickel-catalyzed Suzuki coupling
of phenols enabled by SuFEx of tosyl fluoride (Scheme 2). Given the observation of the
homocoupling product of aryl boronic acids, the aryl nickel(II) di(phosphine) complexes
are most likely reduced to nickel(0) phosphine complexes, which require 2 equiv. more
phosphine ligand to be stable, by aryl boronic acids via sequential transmetalation and
reductive elimination. The facts that sharply different structural effects of phenol vs. boron
counterparts, as well as the isolation of biphenyl-2-yl tosylate as a sole product from
catechol, imply that the oxidative addition of nickel to tosylate intermediates, instead
of the SuFEx or aryl transmetalation from boron, should be the rate-determining step
in the catalytic cycle. The better performance of electron-richer PCy3 than PPh3 and
the requirement of extra 2 equiv. PCy3 with respect to trans-NiCl(o-Tol)(PCy3)2 support
the speculation of rate-determining oxidative addition of tosylate intermediate to the
nickel(0) species.
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3. Materials and Methods
3.1. General Information

All reactions were carried out under nitrogen by using standard Schlenk techniques
unless otherwise stated. Commercially available chemicals were used as received without
further purification. Nickel complexes, Cat 1–Cat 9, were prepared according to previously
reported procedures [45,50,51]. The reaction progress was monitored by TLC. Column
chromatograph was performed on 300–400 mesh silica gel. 1H and 13C NMR spectra were
recorded in CDCl3 or Acetone-d6 at ambient temperature on a Bruker DPX-400 spectrometer
(Bruker BioSpin GmbH, Germany). Chemical shifts (δ) in NMR are reported in ppm, relative
to the internal standard of tetramethylsilane (TMS) or residues of the deuterated solvents.
Coupling constants J are reported in Hz. Proton coupling patterns were described as singlet
(s), doublet (d), triplet (t), quartet (q), and multiple (m). High-resolution mass spectra
(HRMS) were measured with an Agilent mass spectrometer (HR-TOF-MS, EI).
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3.2. General Procedure for Nickel/Phosphine Catalyzed Suzuki Coupling of Phenols with Aryl
Boronic Acids Enabled by SuFEx of TsF

To a 25 mL dry flask were added phenol 1 (1.0 mmol), aryl boronic acid 2 (1.3 mmol),
TsF (1.1 mmol, 0.193g), trans-NiCl(o-Tol)(PCy3)2 (3 mol%, 0.022g), PCy3 (6 mol%, 0.017g),
and K3PO4·3H2O (5.0 mmol, 1.332g). The air in the flask was replaced by N2 using standard
Schlenk techniques before solvents THF (4.0 mL) and H2O (1.0 mL) were added by a syringe.
The mixture was stirred under N2 atmosphere at 70 ◦C (bath temperature) for a given
time or monitored by TLC until the reaction completed. The reaction mixture was diluted
with CH2Cl2 (15 mL), followed by washing with H2O (3 × 10 mL). The organic layer was
separated, dried over anhydrous Na2SO4, filtered, and evaporated under reduced pressure
to give a crude product, which was purified by column chromatography on silica gel to
afford biaryl compound 3.

All known products were characterized by comparing their NMR with those reported
in literature and the new compound, 2-tosyloxybiphenyl (3sa), was further characterized
by HRMS. For details, see Supplementary Materials.

4. Conclusions

In summary, a practical Suzuki coupling of phenols enabled by SuFEx of tosyl fluoride
has been developed by using trans-NiCl(o-Tol)(PCy3)2/2PCy3 as catalyst in the presence
of 5 equiv. K3PO4·3H2O in aqueous THF. Both aryl and phosphine ligands in the aryl
nickel complexes have proven to affect their catalytic performance significantly. Water
in the system has also been found to play an important role for high catalytic efficiency.
Large structural effects from phenols have been observed while the electronic and steric
influences from the boron counterpart appeared to be comparably small, if not negligible. A
series of electronically and sterically various biaryls could be obtained in good to excellent
yields by using the SuFEx enabled, nickel-catalyzed one-pot Suzuki coupling, eliminating
the pre-preparation of tosylates. The potentials to apply the practical one-pot procedure in
derivatization of complex molecules have also been demonstrated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020636/s1, Characterization data and copies of
1H & 13C NMR spectra of products (References [21,42,43,52–62] are cited in the Supplementary
Materials).
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