Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation of Metal-Resistant Fungal Strains
2.2. Identification of k1 Strain
2.2.1. Microscopic Identification
2.2.2. Molecular Identification
2.3. Synthesis of Silver Nanoparticles
2.4. Antimicrobial Activity of Silver Nanoparticles
2.5. Characterization of Microbially Synthesized AgNPs
2.5.1. Structural Characterization of AgNPs with X-ray Diffraction (XRD)
2.5.2. Elemental Diffraction X-ray Spectroscopy (EDX)
2.5.3. Scanning Electron Microscopy
3. Materials and Methods
3.1. Sample Collection
3.2. Isolation of Metal-Resistant Fungal Strains
3.3. Identification of Resistant Fungi
3.3.1. Morphology-Based Identification
3.3.2. Molecular Identification
3.4. Myogenesis of Silver Nanoparticles (AgNPs)
3.4.1. Preparation of Biomass
3.4.2. Biosynthesis of Silver Nanoparticles
3.5. Antimicrobial Activity of AgNPs
3.6. Characterization of AgNPs
3.6.1. XRD
3.6.2. EDX
3.6.3. SEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hazarika, A.; Yadav, M.; Yadav, D.K.; Yadav, H.S. An overview of the role of nanoparticles in sustainable agriculture. Biocatal. Agric. Biotechnol. 2022, 43, 102399. [Google Scholar] [CrossRef]
- Amaning Danquah, C.; Minkah, P.A.B.; Osei Duah Junior, I.; Amankwah, K.B.; Somuah, S.O. Antimicrobial compounds from microorganisms. Antibiotics 2022, 11, 285. [Google Scholar] [CrossRef]
- Muhammad, I.D. A comparative study of research and development related to nanotechnology in Egypt, Nigeria and South Africa. Technol. Soc. 2022, 68, 101888. [Google Scholar] [CrossRef]
- Saleem, A.; Afzal, M.; Naveed, M.; Makhdoom, S.I.; Mazhar, M.; Aziz, T.; Khan, A.A.; Kamal, Z.; Shahzad, M.; Alharbi, M. HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing in vitro and in vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally. Molecules 2022, 27, 8512. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Batool, H.; Rehman, S.U.; Javed, A.; Makhdoom, S.I.; Aziz, T.; Mohamed, A.A.; Sameeh, M.Y.; Alruways, M.W.; Dablool, A.S. Characterization and evaluation of the antioxidant, antidiabetic, anti-inflammatory, and cytotoxic activities of silver nanoparticles synthesized using Brachychiton populneus leaf extract. Processes 2022, 10, 1521. [Google Scholar] [CrossRef]
- Singla, A. Review of biological treatment solutions and role of nanoparticles in the treatment of wastewater generated by diverse industries. Nanotechnol. Environ. Eng. 2022, 7, 699–711. [Google Scholar] [CrossRef]
- Ghotekar, S.; Pansambal, S.; Bilal, M.; Pingale, S.S.; Oza, R. Environmentally friendly synthesis of Cr2O3 nanoparticles: Characterization, applications and future perspective—A review. Case Stud. Chem. Environ. Eng. 2021, 3, 100089. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef] [PubMed]
- Gade, A.; Ingle, A.; Whiteley, C.; Rai, M. Mycogenic metal nanoparticles: Progress and applications. Biotechnol. Lett. 2010, 32, 593–600. [Google Scholar] [CrossRef]
- Ashfaq, M.; Culas, R.; Baig, I.; Ali, A.; Imran, M.A. Socio-Economic Impact of Groundwater Resource Use on the Livelihood of Farming Communities in Eastern Punjab, Pakistan; Charles Sturt University: Albury, Australia, 2021. [Google Scholar]
- Cascio, C.; Geiss, O.; Franchini, F.; Ojea-Jimenez, I.; Rossi, F.; Gilliland, D.; Calzolai, L. Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products. J. Anal. At. Spectrom. 2015, 30, 1255–1265. [Google Scholar] [CrossRef]
- Shahverdi, A.R.; Minaeian, S.; Shahverdi, H.R.; Jamalifar, H.; Nohi, A.-A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochem. 2007, 42, 919–923. [Google Scholar] [CrossRef]
- Medina-Ramirez, I.; Bashir, S.; Luo, Z.; Liu, J.L. Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids Surf. B Biointerfaces 2009, 73, 185–191. [Google Scholar] [CrossRef]
- Masimen, M.A.A.; Harun, N.A.; Maulidiani, M.; Ismail, W.I.W. Overcoming methicillin-resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics 2022, 11, 951. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Bukhari, B.; Aziz, T.; Zaib, S.; Mansoor, M.A.; Khan, A.A.; Shahzad, M.; Dablool, A.S.; Alruways, M.W.; Almalki, A.A.; et al. Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches. Molecules 2022, 27, 4226. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.N.; Fromme, P.; Barty, A.; White, T.A.; Kirian, R.A.; Aquila, A.; Hunter, M.S.; Schulz, J.; DePonte, D.P.; Weierstall, U. Femtosecond X-ray protein nanocrystallography. Nature 2011, 470, 73–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Ali, M.; Aftab, M.; Shakir, S.; Qayyum, S.; Haleem, K.S.; Tauseef, I. Mycoremediation: A treatment for heavy metal-polluted soil using indigenous metallotolerant fungi. Environ. Monit. Assess. 2019, 191, 622. [Google Scholar] [CrossRef] [PubMed]
- Bantan, R.A.; Abu-Hamdeh, N.H.; Nusier, O.K.; Karimipour, A. The molecular dynamics study of aluminum nanoparticles effect on the atomic behavior of argon atoms inside zigzag nanochannel. J. Mol. Liq. 2021, 331, 115714. [Google Scholar] [CrossRef]
- Ivanisevic, I. Physical stability studies of miscible amorphous solid dispersions. J. Pharm. Sci. 2010, 99, 4005–4012. [Google Scholar] [CrossRef]
- Inagaki, S.; Ghirlando, R.; Grisshammer, R. Biophysical characterization of membrane proteins in nanodiscs. Methods 2013, 59, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Shang, L.; Wang, Y.; Jiang, J.; Dong, S. pH-dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study. Langmuir 2007, 23, 2714–2721. [Google Scholar] [CrossRef]
- Dorau, B.; Arango, R.; Green, F. An investigation into the potential of ionic silver as a wood preservative. In Proceedings of the Woodframe Housing Durability and Disaster Issues Conference, Las Vegas, NV, USA, 4–6 October 2004; Forest Products Society: Madison, WI, USA, 2004; pp. 133–145. [Google Scholar]
- Das, V.L.; Thomas, R.; Varghese, R.T.; Soniya, E.; Mathew, J.; Radhakrishnan, E. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 2014, 4, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Aftab, M.; Shakir, S.; Ali, M.; Qayyum, S.; Rehman, M.U.; Haleem, K.S.; Touseef, I. Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environ. Monit. Assess. 2019, 191, 585. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Aftab, M.; Tauseef, I.; Syed, K. Isolation, phenotypic and genotypic characterization of metallotolerant fungal isolates from industrial soil. In Proceedings of the EuroSciCon Conference on Microbiology and Virology, Paris, France, 21–22 June 2018. [Google Scholar]
- Jaidev, L.; Narasimha, G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf. B Biointerfaces 2010, 81, 430–433. [Google Scholar] [CrossRef]
- Kalimuthu, K.; Babu, R.S.; Venkataraman, D.; Bilal, M.; Gurunathan, S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 2008, 65, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Awwad, A.M.; Salem, N.M. Green synthesis of silver nanoparticles byMulberry LeavesExtract. Nanosci. Nanotechnol. 2012, 2, 125–128. [Google Scholar] [CrossRef]
Strain | KI | K2 | K3 | K4 | K5 | K6 | K7 | K8A | K8B | K9 | K10 |
---|---|---|---|---|---|---|---|---|---|---|---|
AgNPs (mg) | 1.9 | 1.1 | 0.9 | 1.5 | 1.0 | 1.2 | 0.7 | 1.66 | 1.7 | 1.3 | 1.23 |
S# | Test Organism | Nature of Bacteria | Dilution | Zone Diameter |
---|---|---|---|---|
1. | Escherichia coli | Gram-negative | 1000 µg | 3 mm |
500 µg | 2.5 mm | |||
250 µg | 0 | |||
2. | Bacillus subtilis | Gram-positive | 1000 µg | 1.3 mm |
500 µg | 0 | |||
250 µg | 0 | |||
3. | Cronobacter Sakazakii | Gram-negative | 1000 µg | 0 |
500 µg | 0 | |||
250 µg | 0 | |||
4. | Pseudomonas aeruginosa | Gram-negative | 1000 µg | 1.2 mm |
500 µg | 0 | |||
250 µg | 0 | |||
5. | Enterococcus faecalis | Gram-positive | 1000 µg | 3.2 mm |
500 µg | 1.7 mm | |||
250 µg | 0 | |||
6. | Listeria innocua | Gram-positive | 1000 µg | 2.5 mm |
500 µg | 1.5 mm | |||
250 µg | 1.0 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, P.; Khan, I.; Rehman, A.; Jamil, T.; Hayat, A.; Rehman, M.U.; Ullah, N.; Sarwar, A.; Alharbi, A.A.; Dablool, A.S.; et al. Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria. Molecules 2023, 28, 637. https://doi.org/10.3390/molecules28020637
Hayat P, Khan I, Rehman A, Jamil T, Hayat A, Rehman MU, Ullah N, Sarwar A, Alharbi AA, Dablool AS, et al. Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria. Molecules. 2023; 28(2):637. https://doi.org/10.3390/molecules28020637
Chicago/Turabian StyleHayat, Palwasha, Ibrar Khan, Aneela Rehman, Tayyaba Jamil, Azam Hayat, Mujaddad Ur Rehman, Najeeb Ullah, Abid Sarwar, Amnah A. Alharbi, Anas S. Dablool, and et al. 2023. "Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria" Molecules 28, no. 2: 637. https://doi.org/10.3390/molecules28020637
APA StyleHayat, P., Khan, I., Rehman, A., Jamil, T., Hayat, A., Rehman, M. U., Ullah, N., Sarwar, A., Alharbi, A. A., Dablool, A. S., Daudzai, Z., Alamri, A. S., Alhomrani, M., & Aziz, T. (2023). Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria. Molecules, 28(2), 637. https://doi.org/10.3390/molecules28020637